
M2N1 – Numerical Analysis

Brad Baxter

Department of Mathematics

Imperial College, London SW7 2BZ

b.baxter@ic.ac.uk

www.ma.ic.ac.uk/∼baxter

Several books are suitable for this course, although none is ideal. I recom-
mend the following.

(i) G. Strang, Introduction to Linear Algebra.

(ii) G. Strang, Introduction to Applied Mathematics.

(iii) S. D. Conte and C. deBoor, Elementary Numerical Analysis: An Algo-

rithmic Approach.

(iv) M. J. D. Powell, Approximation Theory and Methods.

(v) L. N. Trefethen and D. Bau, Numerical Linear Algebra.

For general reading, you might also like to browse Numerical Recipes.
Matrix Computations, by G. H. Golub and C. F. Van Loan is recommended
for the ambitious student.
My thanks to all students who have reported errors in the notes. No text

is perfect: please report any slips to b.baxter@ic.ac.uk.

1. Applied Linear Algebra

This section presents the matrix theory required for the course. Much of this
will be new, but some will be material covered in M1GLA and M1P2, because
a thorough understanding of linear algebra is the foundation of Numerical
Analysis.

1.1. Fundamentals

By definition, a p × q matrix has p rows and q columns, and we let R
p×q

denote the set of all p × q matrices with real elements. If A ∈ R
p×q, then

we let Ajk denote the element of A in the jth row and kth column, and
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sometimes call this the (j, k)th element, or component, of A. Thus

A =

























A11 A12 . . . A1q

A21 A22 . . . A2q

...
...

...
...

Ap1 Ap2 . . . Apq

























. (1.1)

The transpose AT of a matrix A ∈ R
p×q is the q × p matrix defined by

(AT )jk = Akj , for 1 ≤ k ≤ p, 1 ≤ j ≤ q. (1.2)

and, if M ∈ R
n×n satisfies M = MT , then we say that M is a symmetric

matrix; if MT = −M , then we call M skew-symmetric. A column vector is
simply a n× 1 matrix, whilst a row vector is a 1× n matrix.

Example 1.1. (A+B)T = AT +BT , because

(A+B)Tjk = (A+B)kj = Akj +Bkj = AT
jk +BT

jk.

Exercise 1.1. Let C ∈ R
n×n be any matrix. Show that (C + CT )/2 is a

symmetric matrix, whilst (C − CT )/2 is skew-symmetric. Prove that every
square matrix A can be written as A = S + T , where S is skew-symmetric
and T is symmetric. Is this decomposition unique?

Vector Notation: For this section, we shall usually write vectors (row and
column) in boldface (in these notes) or underlined (in script). However, in
later sections, we shall follow the modern convention of advanced work and
not use boldface for vectors.

Thus we write

v =









v1
v2
...
vn









∈ R
n ≡ R

n×1, (1.3)

and

vT = ( v1 v2 . . . vn ) ∈ R
1×n. (1.4)

We shall say that a vector v is nonzero, written v 6= 0, if v is not the zero
vector.
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If A ∈ R
p×q and B ∈ R

q×r, then their matrix product AB ∈ R
p×r is

defined by the equation

(AB)jk =

q
∑

ℓ=1

AjℓBℓk, 1 ≤ j ≤ p, 1 ≤ k ≤ r. (1.5)

The n× n identity matrix In is defined in the usual way

In =

















1 0 0 . . . 0
0 1 0 . . .
0 0 1 . . .

. . .
...

1 0
0 . . . 0 1

















∈ R
n×n. (1.6)

If the size n of the identity matrix is clear from context, then we shall
sometimes omit the subscript, writing I for In. It’s also very useful to
reserve a notation for the columns of the identity matrix. Unless stated
otherwise, we shall always use the notations

e1 =













1
0
0
...
0













, e2 =













0
1
0
...
0













, . . . , en =













0
0
...
0
1













. (1.7)

Further, if A ∈ R
n×n and there exists a matrix A−1 ∈ R

n×n such that
AA−1 = A−1A = In, then we say that A is invertible; another name is
nonsingular.

Example 1.2. Let A ∈ R
p×q and B ∈ R

q×r. Then (AB)T = BTAT ∈
R
r×p. Indeed, we have

(AB)Tjk = (AB)kj =

q
∑

ℓ=1

AkℓBℓj =

q
∑

ℓ=1

BT
jℓA

T
ℓk = (BTAT )jk. (1.8)

Now show that (Px )TAPx = xTP TAPx , where P is n× n and x ∈ R
n.

Exercise 1.2. Let a ∈ R
n. Show that

aTa =

n
∑

k=1

a2k,

but aaT is the n× n matrix whose elements are given by the formula

(aaT )jk = ajak, 1 ≤ j, k ≤ n. (1.9)
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More generally, given any two vectors u ∈ R
p and v ∈ R

q, the matrix
uvT ∈ R

p×q is called their outer product and has elements

(uvT )jk = ujvk, 1 ≤ j ≤ p, 1 ≤ k ≤ q.

Furthermore, notice that (uvT )x = u(vTx ), so that such a linear map
takes every vector to a multiple of the single vector u . In other words,
the rank of uvT is one, which just means that the image of this matrix is
one-dimensional.

Exercise 1.3. Find the eigenvectors and eigenvalues of A = uvT , where
u , v ∈ R

n. In other words, find n vectors v1, . . . , vn and n numbers λ1, . . . , λn
for which Avj = λjvj .

Exercise 1.4. Prove that A(BC) = (AB)C.

Example 1.3. This example will be rather useful later. Let A ∈ R
n×n

and let x ,y ∈ R
n. Then

xTAy =
n
∑

j=1

n
∑

k=1

Ajkxjyk.

To show this, we just need to notice that

xTAy = xT (Ay)

=
n
∑

j=1

xj(Ay)j

=
n
∑

j=1

xj

n
∑

k=1

Ajkyk

=
n
∑

j=1

n
∑

k=1

Ajkxjyk,

and we can swap the order of summation because we’re only dealing with
finite sums.

Exercise 1.5. Let A ∈ R
n×n. Show that Ajk = eT

j Aek.

Exercise 1.6. Let e1 = ( 1 0 )T , e2 = ( 0 1 )T and a = ( a1 a2 )
T be

vectors in the plane R2. Calculate the matrices P1 = I−e1e
T
1 , P2 = I−e2e

T
2

and the vectors P1a , P2a . It should come as no surprise that P1, P2 are
called projection matrices.

Exercise 1.7. Let w ∈ R
n be a nonzero vector and define P ∈ R

n×n by

P = In − wwT

wTw
.
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Show that P T = P and prove that Pv is orthogonal to w for every v ∈ R
n.

Exercise 1.8. For any n×n matrixM , we define trace M =M11+M22+
· · ·+Mnn. Prove that trace AB = trace BA, even when AB 6= BA.

Often it is useful to have a brief notation with which to manipulate the
rows and columns of a matrix. Accordingly, we write

A = (a1 a2 . . . aq ) , (1.10)

to indicate that the p× q matrix A has columns a1, . . . ,aq ∈ R
p. Similarly,

we write

A =









αT
1

αT
2
...
αT
p









, (1.11)

to indicate that the rows of A are precisely the row vectors αT
1 , . . . , α

T
p in

R
1×q.

Example 1.4. We can write In = ( e1 e2 · · · en ).

Exercise 1.9. Let A = (a1 · · · an ) ∈ R
m×n. Show that aj = Aej , for

1 ≤ j ≤ n.

Exercise 1.10. Let A ∈ R
p×q and let B = ( b1 b2 · · · br ) ∈ R

q×r.
Show that

AB = (Ab1 Ab2 · · · Abr ) .

Exercise 1.11. If A = (a1 · · · an ) ∈ R
m×n, show that

AT =





aT
1
...

aT
n



 ∈ R
n×m.

Exercise 1.12. Let

A =









aT
1

aT
2
...

aT
p









∈ R
p×q

and B = ( b1 b2 · · · br ) ∈ R
q×r. Show

(AB)jk = aT
j bk, for 1 ≤ j ≤ p, 1 ≤ k ≤ r.

Exercise 1.13. Let A = (a1 · · · an ) ∈ R
n×n. Show that

(ATA)jk = aT
j ak, 1 ≤ j, k ≤ n.
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Exercise 1.14. Let P = (p1 p2 · · · pm ) ∈ R
ℓ×m,

Q =









qT
1

qT
2
...
qT
m









∈ R
m×n.

Show that

PQ =
m
∑

k=1

pkq
T
k .

As a special case of this exercise, now let

L = ( ℓ1 ℓ2 · · · ℓn ) ,

so that

LT =









ℓT1
ℓT2
...
ℓTn









,

and show that

LLT =
n
∑

k=1

ℓkℓ
T
k .

This is also a good time to review the notion of invertibility. The matrix

A = (a1 a2 · · · an ) ∈ R
n×n

is invertible if and only if its columns are linearly independent. In other
words, the square matrix A is invertible if and only if Ax = 0 implies
x = 0. Further, and to jog your memory, the vectors v1, . . . , vm ∈ R

n

are said to be linearly independent if the equation
∑m

k=1 ckvk = 0 implies
c1 = c2 = · · · = cm = 0; they’re linearly dependent if we can find c1, . . . , cm,
not all zero, such that

∑m
k=1 ckvk = 0. In other words, no vector belonging to

a linearly independent set of vectors can be written as a linear combination
of other vectors in the set. Alternatively, setting V = ( v1 · · · vm ), the
vectors v1, . . . , vm are linearly independent if and only if there’s no nonzero
vector c ∈ R

m for which V c = 0.
We shall also be learning how to solve sets of linear equations. Let’s

begin with some rather simple, but fundamental, cases involving triangular

matrices.

Definition 1.1. A matrix M ∈ R
p×q is upper triangular if Mjk = 0 when

j > k. It’s lower triangular if Mjk = 0 for k > j.
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Example 1.5.

U =





1 2
0 −3
0 0





is a 3× 2 upper triangular matrix, whilst

L =





−4 0 0
0 7 0
2 −1 5





is lower triangular.

It’s simple to solve triangular linear systems. Here’s the back substitution

algorithm for upper triangular systems:

Algorithm 1.1. Given any upper triangular matrix U ∈ R
n×n such that

Ujj 6= 0, for 1 ≤ j ≤ n, and given any vectors x ,y ∈ R
n, we solve Ux = y

by first setting xn = yn/Unn. Then, for k = n− 1, n− 2, . . . , 2, 1, we let

xk =
(

yk −
n
∑

ℓ=k+1

Ukℓxℓ

)

/Ukk.

Exercise 1.15. Solve the upper triangular linear system




1 2 3
0 4 5
0 0 6









x1
x2
x3



 =





1
1
−1





using back substitution.

Exercise 1.16. Calculate the number of arithmetic operations required to
perform back substitution when applied to an n× n matrix.

Exercise 1.17. Prove that an upper triangular matrix is invertible if and
only if its diagonal elements {Ujj : 1 ≤ j ≤ n} are all nonzero.

Exercise 1.18. There’s a very similar forward substitution algorithm for
lower triangular systems. Describe it.

Exercise 1.19. Prove that the inverse of an invertible upper (or lower)
triangular n× n matrix is also upper (or lower) triangular.

It’s often useful to give only the order of arithmetic operations required
for an algorithm. The notation is best shown by some examples: we write
O(n) for an operation count of p0+p1n, O(n2) for a count of p0+p1n+p2n

2,
and so forth. Thus back and forward substitution require O(n2) operations
or flops (floating point operations).
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Exercise 1.20. Show that a matrix–vector multiplication requires, in gen-
eral, O(n2) operations, whilst a matrix–matrix multiplication requiresO(n3).
Optional: If Gaussian elimination was covered in last year’s courses, show
that it requires O(n3) operations to solve n linear equations in n unknowns.

Most computation is done using the subprocessor dedicated to mathemat-
ical functions incorporated into almost all modern processors, such as the
Pentium family. This performs the basic operations of arithmetic (addition,
subtraction, multiplication and division) and provides some extra functions
(at least squareroot, exponential, logarithm and trigonometric functions).
All calculations are then performed to an accuracy of about 16 decimal
places (computers use binary arithmetic, so the precise decimal precision
achieved varies slightly). For example, a Pentium 400 MHz machine, cost-
ing about £500, will provide about 8× 107 basic arithmetic operations per
second; to use one common jargon, it achieves 80 Mflops.

Exercise 1.21. Assume a computer achieves 100 Mflops and that we’re
using an algorithm that requires n3/6 operations when applied to an n× n
matrix. Estimate the time required for n = 10k, 1 ≤ k ≤ 7. You may find it
useful to know that one day contains 86400 seconds, whilst one year contains
about 3× 107 seconds. One or two significant figures will be sufficient.

The field of computational complexity is a cousin of numerical analysis and
is devoted to studying the costs of algorithms of all kinds. The algorithms
we have considered are usually described as having polynomial complexity, in
the sense that, when the size of the problem is n, then the cost is O(nm) for
some fixed positive real numberm. Unfortunately, there are some algorithms
in graph theory and combinatorics that seem to have an operation count
of O(an) operations, for some number a > 1. In other words, they seem
to extort a cost that grows exponentially with n. This is far worse than
polynomial complexity, because even a modest increase in n can take far
too long. Repeat the previous exercise assuming a = 2 to see this. (I may
discuss complexity in my M2OD course next term.)
It’s important to understand that a little thought can save lots of time.

For example, suppose we need to form matrix–vector products using the
matrix

A = I −wwT ∈ R
n×n. (1.12)

Thus

Av = v − (wTv)w . (1.13)

Forming A using (1.12) and then calculating the components {∑n
k=1Ajkvk :

1 ≤ j ≤} requires O(n2) operations, but using (1.13) requires only O(n)
operations. Consider the saving achieved here for n = 106, for instance. To
ram this point home, for a 100 Mflop machine, this is the difference between



M2N1 9

0.01s and roughly 2.8 hours. Since such matrices occur in many graphics
programs, this is important.

Exercise 1.22. Let A,B ∈ R
n×n and x ∈ R

n. Show that calculating
(AB)x requires O(n3) operations, whereas A(Bx ) takes O(n2).

It’s easy to see that multiplying two n×n matrices in the obvious way re-
quires O(n3) operations. However, there exist some unusual algorithms that
can improve on this figure, allowing matrix multiplication in O(n2+δ) opera-
tions, where the smallest known value of δ is 0.376, due to Coppersmith and
Winograd (1990). Unfortunately, their algorithm requires n to be astronom-
ically large before the operation count beats O(n3), and is not a practical
alternative in its current form. However, there’s no known reason why faster
algorithms could not exist, O(n2 log n) say, and such a breakthrough would
be dramatic.

1.2. The Gram-Schmidt algorithm

You have already met the dot product, or scalar product, of two vectors u , v
in R

n:

〈u , v〉 = uTv =
n
∑

k=1

ukvk. (1.14)

We shall call this an inner product in this course, and the concept will be
greatly generalized.

Exercise 1.23. Prove that 〈u , v〉 = 〈v ,u〉,
〈α1u1 + α2u2, v〉 = α1〈u1, v〉+ α2〈u2, v〉

and

〈u , β1v1 + β2v2〉 = β1〈u , v1〉+ β2〈u , v2〉,
where α1, α2, β1, β2 are real numbers.

Example 1.6. If 〈u , v〉 = 0, then

‖u + v‖2 = 〈u + v ,u + v〉
= 〈u ,u〉+ 〈u , v〉+ 〈v ,u〉+ 〈v , v〉
= ‖u‖2 + ‖v‖2,

which is, of course, Pythagoras’ theorem.

Exercise 1.24. Show that ‖a + b‖2 = ‖a‖2 + ‖b‖2 + 2〈a , b〉.
You should also recall that the vectors a1,a2, . . . ,am ∈ R

n are called
orthogonal if 〈aj ,ak〉 = 0 when j 6= k. Further, the vectors are said to be
orthonormal if they’re orthogonal and every vector has unit length, that is,
〈ak,ak〉 = 1, for 1 ≤ k ≤ m.
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Definition 1.2. Kronecker delta notation There is a highly useful
shorthand for describing a set of orthonormal vectors. We introduce a new
symbol δjk, called the Kronecker delta, defined by

δjk =

{

1 j = k,
0 j 6= k.

(1.15)

The Kronecker delta will be used throughout this course, and will be useful
to you in many other courses also. For example, the vectors a1, . . . ,am are
orthonormal if and only if

〈aj ,ak〉 = δjk, for 1 ≤ j, k ≤ m.

As a second example, the identity matrix I can be defined by

Ijk = δjk.

[As a frivolous aside, L. Kronecker is probably best known today for this notation

and the quote: “God created the natural numbers; all the rest is the work of Man”.]

Exercise 1.25. Later in the course, we’ll see inner products applied to
vector spaces of functions, and this example will be relevant then. Let
ej(t) = exp(ijt), for any integer j, where i =

√
−1. Show that

(2π)−1

∫ π

−π
ej(t)ek(t) dt = δjk, j, k ∈ Z,

where ek(t) is the complex conjugate of ek(t), that is, ek(t) = exp(−ikt).
Exercise 1.26. Let a1, . . . ,am ∈ R

n be nonzero orthogonal vectors. Why
can we assume the inequality m ≤ n? Prove that orthogonal vectors are
linearly independent: if

∑m
k=1 ckak = 0, then c1 = c2 = · · · = cm = 0.

The Gram-Schmidt algorithm is a simple, but extremely important, tech-
nique for constructing orthonomal vectors from any set of linearly indepen-
dent vectors. We shall use a notation for the length of a vector that may
be slightly different from that introduced last year: the length, or norm of
a vector a ∈ R

n is defined by the equation

‖a‖ =
√

〈a ,a〉. (1.16)

Of course, this is just another way of saying that

‖a‖ =
(

a21 + a22 + · · ·+ a2n

)1/2
,

but definition (1.16) allows us to generalize the notion of length when we
generalize the notion of inner product, as we shall do in this course.
Now for the algorithm:

Algorithm 1.2. (Gram-Schmidt) Let a1,a2, . . . ,am ∈ R
n be any set of
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linearly independent vectors. We begin by setting

q1 = a1/‖a1‖. (1.17)

Then, for k = 2, 3, . . . ,m, we let

vk = ak −
k−1
∑

ℓ=1

〈ak, qℓ〉qℓ. (1.18)

This vector need not have unit norm, so we normalize its length by defining

qk = vk/‖vk‖.
Then q1, q2, . . . , qm is a set of orthonormal vectors for the subspace spanned
by the vectors a1,a2, . . . ,am.

Exercise 1.27. Prove that vk is orthogonal to vj and aj for 1 ≤ j < k.
Apply the algorithm to the vectors

a1 =







1
0
0
0






,a2 =







1
1
0
0






,a3 =







1
0
0
−1






.

Example 1.7. Warning: This simple form of Gram-Schmidt can gen-
erate enormous errors in practical computation. For instance, the Hilbert
matrix H(n) ∈ R

n×n has elements

H
(n)
jk =

1

j + k − 1
, 1 ≤ j, k ≤ n.

If we apply the Gram-Schmidt algorithm above, generating vectors q1, . . . , qn
that should be orthonormal, then, setting n = 8 and Q = ( q1 · · · qn ),
we obtain

QTQ =






















1 2.2−17 −5.8−15 1.1−13 −2.6−12 3.6−11 1.4−09 1−09

2.2−17 1 −1−15 1.3−14 −6.8−13 3.7−11 −1.2−09 −1.2−09

−5.8−15 −1−15 1 3.6−12 −9.2−11 1.8−09 −3.6−08 −3.5−08

1.1−13 1.3−14 3.6−12 1 −3.4−09 1.4−07 −4.4−06 −4.1−06

−2.6−12 −6.8−13 −9.2−11 −3.4−09 1 7.6−06 −0.00049 −0.00045
3.6−11 3.7−11 1.8−09 1.4−07 7.6−06 1 −0.04 −0.032
1.4−09 −1.2−09 −3.6−08 −4.4−06 −0.00049 −0.04 1 1
1−09 −1.2−09 −3.5−08 −4.1−06 −0.00045 −0.032 1 1























,

which matrix was computed using 16 decimal places of accuracy, of which
only 2 significant figures were displayed for clarity. (I’ve used the notation
2.2−17 for 2.2 × 10−17 to save space.) Since (QTQ)jk = qT

j qk, the above
matrix should be the identity! Matters worsen for even slightly larger values
of n.
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In fairness to Gram-Schmidt, Hilbert matrices, although seemingly in-
nocuous, are horrid creatures for many methods. However, my point in this
example is that Gram-Schmidt, in the basic form given here, is really not
trustworthy in finite precision arithmetic.

You will see the Gram-Schmidt algorithm many times in this course.

1.3. The QR factorization

There is another way to describe the Gram-Schmidt algorithm that turns
out to be highly useful. Let’s begin with an exercise.

Exercise 1.28. Let Q = ( q1 q2 · · · qm ) ∈ R
m×m be any matrix, and

let R ∈ R
m×n be an upper triangular matrix. Show that

(QR)ek =
k
∑

ℓ=1

rℓkqℓ, 1 ≤ k ≤ n.

Suppose we apply the Gram-Schmidt algorithm to n vectors a1,a2, . . . ,an ∈
R
m, where m ≥ n. We obtain the equations

a1 = ‖a1‖q1 and ak =

k−1
∑

ℓ=1

〈ak, qℓ〉qℓ + ‖vk‖qk, 2 ≤ k ≤ m.

In other words, we have

ak =
k
∑

ℓ=1

rℓkqℓ,

where the vectors q1, . . . , qn are orthonormal. Hence the last exercise yields
the matrix factorization

A = QR, (1.19)

where Q ∈ R
m×m has orthonormal columns, its first n columns being

q1, . . . , qn, and R ∈ R
m×n is upper triangular. The importance of this

restatement is that, once the factorization is the recognized aim, we can use
other methods for its calculation.
Now, since the matrix Q = ( q1 q2 · · · qm ) ∈ R

m×m has orthonormal
columns, we have

(QTQ)jk = qT
j qk = δjk, 1 ≤ j, k ≤ m.

In other words, QTQ = Im, or Q−1 = QT , for any matrix whose columns
are orthonormal. The class of such matrices is extremely important and is
the subject of our next definition.

Definition 1.3. The matrix Q ∈ R
m×m is called orthogonal if QTQ = Im.
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Proposition 1.1. Orthogonal matrices preserve length and angle: If v ,w ∈
R
m and Q ∈ R

m×m is orthogonal, then

〈Qv , Qw〉 = 〈v ,w〉 and ‖Qv‖ = ‖v‖.

Proof. The equation QTQ = Im implies

〈Qv , Qw〉 = (Qv)T (Qw) = vTQTQw = vTw = 〈v ,w〉,
and we obtain the second relation by setting w = v . �

Definition 1.4. If A ∈ R
m×n and A = QR, where Q ∈ R

m×m is an
orthogonal matrix and R ∈ R

m×n is upper triangular, then we say that we
have a QR factorization of A.

Exercise 1.29. Let θ ∈ R. Prove that the matrix

Q =

(

cos θ − sin θ
sin θ cos θ

)

is orthogonal.

Exercise 1.30. Let U1, U2 ∈ R
n×n be orthogonal matrices. Prove that

U1U2 is also orthogonal.

Exercise 1.31. Let v ∈ R
n be any nonzero vector. Prove that the matrix

ρ = I − 2
vvT

vTv

is orthogonal. Interpret ρ geometrically when n = 2 and v = ( 1 0 )T , and
hence give its general geometric interpretation.

Exercise 1.32. Prove that the square matrix

Q =







































1
. . .

1
cos θ − sin θ

1
. . .

1
sin θ cos θ

1
. . .

1







































(1.20)

is orthogonal, where θ ∈ R, and the trigonometric functions occur in rows
and columns p and q.
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The rotation appearing in the previous exercise only affects the subspace
spanned by {ep, eq}, and otherwise acts as the identity. In other words, if
we form the matrix product QA, then Q only affects rows p and q of A,
the other rows remaining unchanged. Such a matrix is extremely useful
and is usually called a Givens rotation (Givens pioneered the use of these
orthogonal matrices in the 1950s). We shall write Gpq(θ) to denote the
Givens rotation of (1.20).
Specifically, let A be n× n and let

Q̃ =

(

cos θ − sin θ
sin θ cos θ

)

∈ R
2×2.

Then rows p and q of the matrix A, that is
(

ap1 ap2 · · · apn
aq1 aq2 · · · aqn

)

,

which we shall temporarily regard as n vectors
(

ap1
aq1

)

,

(

ap2
aq2

)

, . . . ,

(

apn
aqn

)

in the plane R
2, are mapped to the vectors

Q̃

(

ap1
aq1

)

, Q̃

(

ap2
aq2

)

, . . . , Q̃

(

apn
aqn

)

,

the other rows of A being unaffected.

Example 1.8. Check the following calculations: We shall calculate a QR
factorization of the 3× 2 matrix

A =





3 65
4 0
12 13



 . (1.21)

If we choose cos θ = 3/5, sin θ = −4/5, then

G12(θ) =





3/5 4/5 0
−4/5 3/5 0
0 0 1





and

A(1) = G12(θ)A =





5 39
0 −52
12 13



 .
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Further, setting cosφ = 5/13, sinφ = −12/13 and

G13(φ) =





5/13 0 12/13
0 1 0

−12/13 0 5/13



 ,

we obtain

A(2) = G13(φ)A
(1) =





13 27
0 −52
0 −31



 .

Finally, we use

G23(ψ) =





1 0 0
0 −52/

√
3665 −31/

√
3665

0 31/
√
3665 −52/

√
3665



 ,

whence

R = G23(ψ)A
(2) =





13 27
0

√
3665

0 0



 .

Exercise 1.33. Calculate the QR factorization of the 2×2 matrix

(

a b
c d

)

.

What’s the point of the QR factorization? One application is to solve
linear systems. Indeed, let A ∈ R

n×n be any square matrix and suppose we
want to solve the linear system Ax = y . One method is to apply the Givens
rotations in the order specified above to both the matrix A and the vector
y , obtaining

Rx = z ,

and then solve the resulting system by back substitution.
However, we can use the factorization to achieve far more. Consider the

linear system

Ax = y ,

where A ∈ R
m×n and m > n. In other words, we have more equations than

unknowns and, in general, there will be no solutions to the linear system.
However, if we apply Givens rotations to both sides, then we obtain

Rx = z ,

where R ∈ R
m×n is upper triangular and z ∈ R

m. We can then easily solve
for x1, . . . , xn using the first n equations only, using back substitution. But,
what is the significance of this vector, given that we know the solution does
not, in general, exist? We shall deal with this problem in our section on
“Least Squares”.
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Exercise 1.34. Use the technique suggested in the last paragraph to “solve”
the inconsistent linear equations.

Ax =





1
1
1



 ,

where A is given by equation (1.21). (You will soon see that this is a least

squares solution of the linear system.)

1.4. The Cauchy-Schwarz inequality

You already know that, for any vectors a , b ∈ R
3, we have

〈a , b〉 = ‖a‖‖b‖ cos θ,
where θ is the angle between the two vectors. This implies the inequality

|〈a , b〉| ≤ ‖a‖‖b‖,
with equality if and only if the vectors are linearly dependent (in other
words, cos θ = ±1). This inequality is true in much greater generality.

Theorem 1.2. Let a , b be any vectors in R
n. Then

|〈a , b〉| ≤ ‖a‖‖b‖,
with equality if and only if the vectors are linearly dependent.

Proof. The inequality is obvious if one of the vectors is the zero vector, so
we shall assume that a is not the zero vector. Following the first step of the
Gram-Schmidt algorithm, we set q = a/‖a‖ and define

c = b − 〈q , b〉q .
Then ‖c‖ ≥ 0, with equality if and only if c is the zero vector, which can
occur if and only if the vectors a , b are linearly dependent. But then

0 ≤ ‖c‖2 (1.22)

=
〈

b − 〈q , b〉q , b − 〈q , b〉q
〉

= ‖b‖2 − (〈q , b〉)2
= ‖b‖2 − (〈a , b〉)2/‖a‖2,

(1.23)

which completes the proof. �

Exercise 1.35. Use the Cauchy-Schwarz inequality to prove that, for any
real numbers x1, x2, . . . , xn, we have the inequality

(

x1 + · · ·+ xn

)2
≤ n

(

x21 + · · ·+ x2n

)

.
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Exercise 1.36. Use Cauchy-Schwarz to prove that, for any vectors a , b ∈
R
n

(‖a‖ − ‖b‖)2 ≤ ‖a + b‖2 ≤ (‖a‖+ ‖b‖)2 .
These inequalities are usually called the triangle inequalities. Interpret them
geometrically when n = 2.

1.5. The Gradient

If f(x) is a function of one variable, then you should be familiar with the
Taylor expansion

f(a+ h) = f(a) + f ′(a)h+
1

2
f ′′(a)h2 +O(h3). (1.24)

Thus we can approximate f(x) by the quadratic polynomial

p(x) = f(a) + f ′(a)(x− a) +
1

2
f ′′(a)(x− a)2

near the point x = a. If we’re rather close to x = a, then we might only
need the linear approximation

ℓ(x) = f(a) + f ′(a)(x− a).

Exercise 1.37. Use these linear and quadratic polynomials to calculate
two approximations to

√
65 and

√
220.

But what happens if f is a function defined on R
n? For example, f(x )

might be the temperature at the point x ∈ R
3. As a second example, to

emphasize that applications do not require n ≤ 3, f(x ) might be the value
of a financial contract depending on financial variables x1, x2, . . . , x100, such
as interest rates and exchange rates for various currencies.
In fact, the n-dimensional form of Taylor’s theorem is rather nice: if f(x ),

x ∈ R
n, is a function of n variables, then

f(a + h) = f(a) +∇f(a)Th +
1

2
hTD2f(a)h +O(‖h‖3), (1.25)

where the gradient vector is given by

(∇f(a))j =
∂f

∂xj
(a), 1 ≤ j ≤ n, (1.26)

and the second derivative matrix, or Hessian matrix, is defined by

D2f(a)jk =
∂2f

∂xj∂xk
(a), 1 ≤ j, k ≤ n. (1.27)

Assumption: In this course, we shall always assume that

∂2f

∂xj∂xk
=

∂2f

∂xk∂xj
,
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which implies that our Hessian matrices are always symmetric.

WARNING: A common error is to confuse the symbols ∂ and δ, so that a
large minority of students write, say, δf/δx, believing this to mean ∂f/∂x.
This is not so! Any student making this error will be heavily penalized in
M2N1.

Exercise 1.38. If f(x ) = xp, for some p ∈ {1, 2, . . . , n}, show that∇f(x ) =
ep.

Example 1.9. If f(x, y) = sinx sin y, then

f(x+h, y+k) = f(x, y)+h cosx sin y+k sinx cos y−1

2
(h2+k2) sinx sin y+hk cosx cos y+· · · .

Exercise 1.39. Repeat this example when f(x1, x2, . . . , xn) = sinx1 sinx2 · · · sinxn
and f(x ) = ‖x‖2.
You can use (1.25) without knowing its proof, which is not examined

in this course. However, whilst I don’t have time to present a rigorous
treatment, the following sketch should provide some food for thought.

The multivariate form of Taylor’s expansion

This material is not examinable.
For a univariate function f(x), x ∈ R, we have the Taylor expansion

f(a+ h) =

∞
∑

m=0

hm

m!
f (m)(a).

If we write D ≡ d
dx
, so that Dmf(z) ≡ f (m)(z), then the Taylor expansion takes

the suggestive form

f(a+ h) =
∞
∑

m=0

(hD)m

m!
f(a),

which should immediately remind you of the series exp z =
∑

∞

m=0 z
m/m!. Although

a rigorous treatment of this resemblance is far beyond the scope of this course, we
shall briefly forget the pedantry of the Twentieth Century and emulate the more
relaxed manipulations of our Eighteenth Century ancestors. Thus we shall write
our Taylor expansion in the form

f(a+ h) = ehDf(a).

If we now consider a function f(x ), x ∈ R
n, of n variables, then (why?) we find

that

f(a + h) = eh1∂1 · · · ehn∂nf(a),

where ∂j ≡ ∂/∂xj . Thus we obtain

f(a + h) = eh1∂1 · · · ehn∂nf(a)
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= eh1∂1+···+hn∂nf(a)

=

∞
∑

m=0

(h1∂1 + · · ·+ hn∂n)
m

m!
f(a)

= f(a) +
(

h1
∂f

∂x1
(a) + · · ·+ hn

∂f

∂xn
(a)
)

+
1

2

(

h1∂1 + · · ·+ hn∂n

)2

f(a) + · · · .

Now for the third displayed term, using Example 1.3,

(

h1∂1 + · · ·+ hn∂n

)2

f(a) =
n
∑

j=1

n
∑

k=1

hjhk∂j∂kf(a)

=

n
∑

j=1

n
∑

k=1

hjhk
∂2f

∂xj∂xk
(a)

= hTD2f(a)h ,

as required.

By analogy with the univariate case, we call the function

ℓ(x ) = f(a) +∇f(a)T (x − a)

a linear polynomial in n variables, or simply a linear function, whilst

p(x ) = f(a) +∇f(a)T (x − a) +
1

2
(x − a)TD2f(a)(x − a)

is termed a quadratic in n variables, or simply a quadratic.

Exercise 1.40. Let

f(x ) = aTx , x ∈ R
n.

Show that ∇f(x ) = a .

Hessian matrices can be a little harder to compute.

Example 1.10. Let

f(x ) = xTAx , x ∈ R
n,

where A ∈ R
n×n is a symmetric matrix. Then, using Example 1.3,

f(x ) =

n
∑

j=1

n
∑

k=1

Ajkxjxk,

which implies

∂f

∂xp
=

n
∑

j=1

n
∑

k=1

Ajk
∂

∂xp
(xjxk).
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Now
∂xℓ
∂xp

= δℓp,

which yields

n
∑

j=1

n
∑

k=1

Ajk
∂

∂xp
(xjxk) =

n
∑

j=1

n
∑

k=1

Ajk (δjpxk + xjδkp)

=

n
∑

k=1

Apkxk +

n
∑

j=1

Ajpxj

= (Ax )p + (ATx )p.

Since A is symmetric, we obtain

∇f(x ) = 2Ax .

As for the second derivative matrix, or Hessian matrix D2f(x ), we note that

∂

∂xq

(

∂f

∂xp

)

=
∂

∂xq

(

2
n
∑

k=1

Apkxk

)

= 2
n
∑

k=1

Apkδkq

= 2Apq.

Thus D2f(x ) = 2A, for all x ∈ R
n.

Exercise 1.41. Let A be a symmetric n× n matrix and define

g(x ) = a+ bTx +
1

2
xTAx , x ∈ R

n.

Show that

∇g(x ) = b +Ax .

Exercise 1.42. Let h(x ) = exp(xTAx ), x ∈ R
n, where A ∈ R

n×n. Com-
pute ∇h(x ).
One extremely important example of the above mathematical ideas occurs

when our task is to minimize a function of n variables. We say that the
function f(x ) has a local minimum at x = a if

f(a + hu) ≥ f(a), for every unit vector u , (1.28)

when h > 0 is sufficiently small. More rigorously, there exists ǫ > 0 such
that (1.28) holds for 0 ≤ h ≤ ǫ.
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Exercise 1.43. Define local maximum for a function of n variables.

Of course, when n = 1, you should already be aware that f(x) has a
local minimum at x = a if f ′(a) = 0 and f ′′(a) > 0. We now consider the
corresponding conditions for n > 1.

Example 1.11. The condition f ′′(a) > 0 is sufficient, but not necessary.
For example, f(x) = x4 has a local minimum at x = 0, but f ′′(0) = 0.

Proposition 1.3. If ∇f(a) 6= 0, then f(x ) does not have a local mini-
mum, or maximum, at x = a .

Proof. Consider the linear approximation

ℓ(x ) = f(a) + gT (x − a)

to f(x ), where g = ∇f(a). Thus, for any h > 0 and any unit vector u ∈ R
n,

we have

ℓ(a + hu) = f(a) + hgTu .

Setting u = −g/‖g‖, we obtain

ℓ(a + hu) = f(a)− h‖g‖ < f(a).

Since f(a+hu) = ℓ(a+hu)+O(h2), we deduce the inequality f(a+hu) <
f(a), for all sufficiently small positive h. Hence f(x ) does not possess a local
minimum at x = a . If we choose u = g , then a similar argument shows
that no local maximum occurs. �

Thus ∇f(a) = 0 is a necessary condition that f(x ) possess a local min-
imum or maximum at x = a . As in the univariate case, the necessary
condition for a local minimum involves the second derivative.

Proposition 1.4. If ∇f(a) = 0 and the Hessian matrix D2f(a) satisfies
the inequality

wTD2f(a)w > 0,

for every vector w ∈ R
n that’s not the zero vector, then f(x ) has a local

minimum at x = a .

Proof. Using the quadratic approximation

p(x ) = f(a) +
1

2
(x − a)TD2f(a)(x − a)

we obtain, for h > 0 and any unit vector u ∈ R
n,

p(a + hu) = f(a) +
1

2
h2uTD2f(a)u .

Hence

p(a + hu) > f(a),
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which implies that

f(a + hu) > f(a),

for all sufficiently small h. �

Example 1.12. Let f(x ) = x21 − 2x1 + 1 + x22 − 2x2 + 1, where x =

(x1 x2 )
T , so the only stationary point is at x = a = ( 1 1 )T . Now

the Hessian matrix D2f(x ) = 2I (check this!), so that the last proposition
implies that f(x ) has a local minimum at x = a .

Exercise 1.44. Construct a function f(x ), x ∈ R
n, n > 1, for which

∇f(a) = 0, D2f(a) = 0, and f(x ) has a local minimum at x = a .

Lots of applications generate Hessian matrices at local minima, so the
condition required above has its own name and is studied in the next section.

Definition 1.5. The matrix A ∈ R
n×n is non-negative definite if

xTAx ≥ 0 (1.29)

for every vector x ∈ R
n. We say that A is positive definite if inequality

(1.29) is strict when x is not the zero vector, that is

xTAx > 0 when x 6= 0.

In particular, the last proposition can be restated: If ∇f(a) = 0 and the
Hessian matrix D2f(a) is symmetric positive definite, then f(x ) has a local
minimum at x = a .

Example 1.13. The matrix

A =

(

1 −1
−1 1

)

is non-negative definite, because
(

x1
x2

)T

A

(

x1
x2

)

= x21 + x22 − 2x1x2 = (x1 − x2)
2 ≥ 0.

It’s not positive definite, since eTAe = 0, where e = ( 1 1 )T .

Exercise 1.45. Show that the matrix

A =

(

2 −1
−1 2

)

is positive definite.

Exercise 1.46. Show that the symmetric matrix

A =

(

a b
b c

)
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is positive definite if and only if a > 0 and ac − b2 > 0. (Hint: first prove
that

(

x
y

)T

A

(

x
y

)

= cy2 + a
[

(x+ by/a)2 − b2y2/a2
]

.

and expand.)

1.6. Inner products revisited and positive definite matrices

Let A ∈ R
n×n be a symmetric positive definite matrix. We can use A to

generate a new definition of the length of a vector:

‖x‖A =
√
xTAx . (1.30)

We can also use A to generalize the idea of inner product, by defining

〈u , v〉A = uTAv , (1.31)

and we shall call this the inner product induced by A.

Exercise 1.47. Let A =

(

2 −1
−1 2

)

, e1 = ( 1 0 )T , e2 = ( 0 1 )T .

Calculate 〈e1, e2〉A, ‖e1‖A and ‖e2‖A.
Exercise 1.48. Prove that an n× n symmetric positive definite matrix is
invertible.

Our original notion of inner product is now the special case A = I, All of
the ideas you’ve met for inner products generalize very easily to this more
general definition. You’ll have to trust me that this generalization is useful,
and not some otiose abstraction. The Cauchy-Schwarz inequality also holds
for this more general notion of inner product.

Theorem 1.5. Let a , b be any vectors in R
n and let A ∈ R

n×n be any
symmetric positive definite matrix. Then

|〈a , b〉A| ≤ ‖a‖A‖b‖A,
with equality if and only if the vectors are linearly dependent.

Proof. We simply replace 〈·, ·〉 by 〈·, ·〉A and ‖ · ‖ by ‖ · ‖A in the proof of
Theorem 1.2. �

Exercise 1.49. Let

A =





2 −1 0
−1 2 0
0 0 1



 .

Prove that A is positive definite. Apply the Gram-Schmidt algorithm using
the inner product induced by A to the vectors e1 = ( 1 0 0 )T , e2 =

( 0 1 0 )T and e3 = ( 0 0 1 )T .
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There’s a very simple way to generate symmetric positive definite matri-
ces. Let P = (p1 p2 · · · pn ) ∈ R

n×n be any invertible matrix, which
just means that the columns p1, . . . ,pn are linearly independent. In partic-
ular, Px = 0 implies x = 0. Then the matrix A = P TP satisfies

xTAx = xTP TPx = (Px )T (Px ) = ‖Px‖2 ≥ 0,

with equality if and only if Px = 0, that is, if and only if x = 0.

Exercise 1.50. Let P ∈ R
n×n be any invertible matrix and letM = PP T .

Is M symmetric positive definite? Give an example of a symmetric 2 × 2
matrix that is not positive definite.

In fact, every symmetric positive definite matrix arises in this way. Fur-
thermore, the proof is extremely important, because it introduces the Cholesky
factorization.

Theorem 1.6. Let A ∈ R
n×n be any symmetric positive definite matrix.

Then there exists an invertible matrix P ∈ R
n×n such that A = P TP .

Furthermore, we can choose P to be upper triangular, in which case we say
that A = P TP is a Cholesky factorization of A.

Proof. Let v1, v2, . . . , vn be any n linearly independent vectors in R
n. Using

the inner product

〈a , b〉A = aTAb

induced by A, we apply the Gram-Schmidt algorithm to generate n vectors
u1,u2, . . . ,un satisfying

〈uj ,uk〉A = δjk, 1 ≤ j, k ≤ n.

In other words, setting U = (u1 u2 · · · un ) ∈ R
n×n, we have

UTAU = In.

Since U is invertible (Exercise: Why?), we can set P = U−1, whence A =
P TP .
If we choose v1, v2, . . . , vn to be the columns of the identity matrix, that

is, v1 = e1, . . . , vn = en, then U is upper triangular. Hence P is also upper
triangular. �

Theorem 1.6 characterizes the symmetric positive definite matrices in a
rather straightforward way that allows us to deduce some more useful prop-
erties with ease.

Proposition 1.7. Let A ∈ R
n×n be a symmetric positive definite matrix.

Then

Akk > 0, for 1 ≤ k ≤ n,
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and

|Ajk| <
√

AjjAkk, when j 6= k.

Proof. By Theorem 1.6, we can find an invertible matrix P = (p1 · · · pn )
for which A = P TP . Hence Ajk = 〈pj ,pk〉 and Akk = ‖pk‖2 > 0 ( if pk = 0,
then the columns of P would not be linearly independent, contradicting the
invertibility of P ). By the Cauchy-Schwarz inequality, we deduce

|Ajk| = |〈pj ,pk〉| < ‖pj‖‖pk‖ =
√

AjjAkk,

and the inequality is strict because pj and pk are linearly independent, being
the columns of an invertible matrix. �

Exercise 1.51. Let A ∈ R
n×n be a symmetric positive definite matrix.

Show that Akk = eT
k Aek. Why does this imply Akk > 0?

Thus Theorem 1.6 implies that, if A ∈ R
n×n is symmetric positive definite,

then we can find a lower triangular matrix L ∈ R
n×n such that A = LLT .

However, although we could in principle simply apply the proof given above,
there is an easier way. I’ll present this method in an example, and then prove
that the algorithm works.

Example 1.14. Let

A =





2 −1 0
−1 5/2 −1
0 −1 5/2



 (1.32)

which you may assume is positive definite. We shall construct a lower trian-
gular matrix L = ( ℓ1 ℓ2 ℓ3 ) ∈ R

3×3 for which A = LLT . Using Exercise
1.14, we have

A = ℓ1ℓ
T
1 + ℓ2ℓ

T
2 + ℓ3ℓ

T
3 .

However

ℓ2ℓ
T
2 =





0
×
×



 ( 0 × × ) =





0 0 0
0 × ×
0 × ×



 (1.33)

and

ℓ3ℓ
T
3 =





0
0
×



 ( 0 0 × ) =





0 0 0
0 0 0
0 0 ×



 , (1.34)

which implies

Aj1 = (ℓ1ℓ
T
1 )j1 = (ℓ1)j(ℓ1)1, 1 ≤ j ≤ 3.
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Setting j = 1, we see that one choice is (ℓ1)1 =
√
A11 =

√
2. For j > 1, we

then have (ℓ1)j1 = Aj1/
√
A11, or

ℓ1 =
1√
A11

(first column of A) =
1√
2





2
−1
0



 .

Now

ℓ1ℓ
T
1 =

1

2





2
−1
0



 ( 2 −1 0 ) =





2 −1 0
−1 1/2 0
0 0 0



 .

Thus

A(1) ≡ A− ℓ1ℓ
T
1 =





0 0 0
0 2 −1
0 −1 5/2



 .

By (1.33, 1.34), we have

A
(1)
j2 = (ℓ2ℓ

T
2 )j2 = (ℓ2)j(ℓ2)2,

whence we choose (ℓ2)2 =

√

A
(1)
22 =

√
2 and

ℓ2 =
1

√

A
(1)
22

(

second column of A(1)
)

=
1√
2





0
2
−1



 .

Therefore

ℓ2ℓ
T
2 =

1

2





0
2
−1



 ( 0 2 −1 ) =





0 0 0
0 2 −1
0 −1 1/2



 ,

and

A(2) ≡ A(1) − ℓ2ℓ
T
2 =





0 0 0
0 0 0
0 0 2



 .

Hence

ℓ3 =





0
0√
2



 =
1

√

A
(3)
33

(

third column of A(2)
)

.

Recombining our columns to form L, we obtain

L =





√
2 0 0

−1/
√
2

√
2 0

0 −1/
√
2

√
2



 . (1.35)
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Exercise 1.52. Prove that the matrix of equation (1.32) is positive defi-
nite.

Let’s consider the method of the last example more abstractly. Accord-
ingly, let A ∈ R

n×n be any symmetric positive definite matrix. Then A11 > 0
and we can define the vector

ℓ1 =
1√
A11









A11

A21
...

An1









. (1.36)

In other words, we have (cf. Exercise 1.5)

ℓ1 =
Ae1√
A11

=
Ae1

√

eT
1 Ae1

. (1.37)

We then form the matrix

A(1) = A− ℓ1ℓ
T
1 , (1.38)

which is symmetric (why?). Now the first row and column of A and ℓ1ℓ
T
1

are identical, because

(ℓ1ℓ
T
1 )j1 = (ℓ1)j(ℓ1)1 =

Aj1√
A11

A11√
A11

= Aj1,

which implies that the first row and column of A(1) consist entirely of zeros.
To illustrate this, we write

A(1) =









0 0 0 · · · 0
0 × × · · · ×
...

...
...

...
0 × × · · · ×









,

where × denotes any element that is not guaranteed to be zero. Writing
this in the form

A(1) =





0 · · · 0
... B
0



 ,

so that B ∈ R
(n−1)×(n−1), we prove the following key result.

Theorem 1.8. The (n−1)×(n−1) matrixB is symmetric positive definite.

Proof. We must show that, if v ∈ R
n is not the zero vector and vTe1 = 0,

then

vT
(

A− ℓ1ℓ
T
1

)

v > 0.
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Now

vT
(

A− ℓ1ℓ
T
1

)

v = vTAv − (ℓT1 v)
2

= vTAv − (eT
1 Av)

2

eT
1 Ae1

=
‖v‖2A‖e1‖2A − (〈e1, v〉A)2

‖e1‖2A
> 0,

by the Cauchy-Schwarz inequality — we get strict inequality because, by
hypothesis, the vectors e1 and v are orthogonal, and hence linearly inde-
pendent. �

With this result in hand, we know that we can repeat our construction,

because A
(1)
22 = B22 > 0, by Proposition 1.7, and we can define

ℓ2 =
1

√

A
(1)
22









0
A

(1)
22
...

A
(1)
n2









,

and then form

A(2) = A(1) − ℓ2ℓ
T
2 ,

whose first and second rows and columns contain only zeros. Further, be-
cause of our last theorem, the bottom right (n−2)× (n−2) of A(2) will also
be positive definite symmetric, so that we can continue our algorithm.
What’s the point of the Cholesky factorization? We can use it to solve

the linear system Ax = y when A is symmetric positive definite, as follows.
First, let’s assume we have calculated A = LLT using the algorithm given
in the last exercise. We first solve Lz = y using forward substitution. Then
we solve LTx = z using back substitution. This is the preferred method for
solving such systems for n ≤ 1000, or n ≤ 104 on faster machines.

Exercise 1.53. Solve

Ax =





1
2
3



 ,

where A is given by (1.32).

1.7. Least squares problems

Let A = (a1 a2 · · · an ) ∈ R
m×n, where m > n. In general, the linear

system

Ax = y , x ∈ R
n,y ∈ R

m,
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has no solution. However, many practical problems generate systems of this
form where, typically, the number m of equations is vastly greater than the
number n of unknowns. Further, such applications often have the property
that it is possible to choose x so that y −Ax is “small”. The problem is to
choose the best x , in some sense. This section deals with one fundamental
solution to this problem, but it’s important to understand that it’s not the
only solution. We shall begin with a longish example.

Example 1.15. For a simple pendulum of length ℓ, the period of oscilla-
tion is given approximately by

T ≈ 2π
√

ℓ/g, (1.39)

where g denotes the acceleration due to gravity. If we choose many lengths,
and let L = (

√
ℓ1 · · ·

√
ℓn )

T and measure the corresponding periods

T = (T1 T2 · · · Tn )
T , then we should have two vectors for which

T ≈ CL,

where C = 2π/
√
g. Once we’ve estimated the best C, in some sense, then

we can estimate g via the equation g = 4π2/C2, so that this experiment
provides a simple method for estimating the acceleration due to gravity.
How do we estimate C?
One method is to choose C to minimize the sum of squares

S(C) =
n
∑

k=1

(Tk − CLk)
2 = ‖T − CL‖2.

Thus

S(C) = C2‖L‖2 − 2C〈T ,L〉+ ‖T‖2,
and, because the coefficient of C2 is positive, this quadratic possesses exactly
one minimum which occurs when dS/dC = 0, that is,

0 =
dS

dC
= 2C‖L‖2 − 2〈T ,L〉,

or

C = 〈T ,L〉/‖L‖2,
and this is the best least squares estimate for C.
We can also picture this geometrically, because the vector 〈T ,L〉L/‖L‖2

is the projection of T onto the line {λL : λ ∈ R}. This interpretation yields
another way to determine C: we choose C so that T −CL is perpendicular
to L, so that

〈T − CL,L〉 = 0,

which again implies C = 〈T ,L〉/‖L‖2.
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Now we address our original problem. We want to choose x ∈ R
n mini-

mizing the quadratic

Q(x ) ≡ ‖y −Ax‖2 = ‖y −
n
∑

k=1

xkak‖2 (1.40)

= (y −Ax )T (y −Ax )

= yTy − (Ax )Ty − yT (Ax ) + (Ax )T (Ax )

= ‖y‖2 − 2xTATy + xTATAx

(1.41)

Setting µ = ATy and G = ATA, we have

Q(x ) = ‖y‖ − 2µTx + xTGx . (1.42)

Thus

∇Q(x ) = 2(Gx − µ) (1.43)

and the Hessian matrix is given by

D2f(x ) = 2G. (1.44)

This enables us to state and prove our main theorem.

Theorem 1.9. Let A ∈ R
m×n have linearly independent columns, and let

y ∈ R
m. Then the vector x ∗ defined by the so called normal equations

ATAx ∗ = ATy (1.45)

is the unique vector minimizing the sum of squares

Q(x ) = ‖y −Ax‖2, (1.46)

and this is called the least squares solution of Ax = y .

Proof. Let A = (a1 a2 · · · an ). Now ATA is non-negative definite.
Indeed,

cTATAc = ‖Ac‖ = ‖
n
∑

k=1

ckak‖2 ≥ 0,

with equality if and only if c = 0, because the columns of A are linearly inde-
pendent. Thus ATA is symmetric positive definite, and therefore invertible,
which implies that there’s a unique vector x ∗ satisfying the normal equa-
tions (1.45), and hence, by Proposition 1.4 minimizing the quadratic. It’s
a minimum because the Hessian matrix ATA is symmetric positive definite.

�
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Example 1.16. Use the normal equations to solve the linear system




3 65
4 0
12 13





(

x1
x2

)

=





1
1
1





in the least squares sense. You should find that x1 = 0.090587, x2 =
0.010515, to 5 decimal places.

In practice, forming the normal equations is almost always a bad idea. For
reasons that are essentially beyond the scope of the course, it can lead to
large computational errors in floating point arithmetic. Further, it’s often
less efficient to form the matrix ATA. The preferred method at present
uses the QR factorization we’ve already discussed in some detail. Therefore
suppose we have calculated a QR factorization A = QR, where Q ∈ R

m×m

is orthogonal and R ∈ R
m×n is upper triangular. By Proposition 1.1,

‖y −Ax‖2 = ‖QT (y −Ax )‖2 = ‖QTy −Rx‖2. (1.47)

Now we can write

QTy = α+ β,

where

α =























(QTy)1
(QTy)2

...
(QTy)n

0
...
0























and β =























0
0
...
0

(QTy)n+1
...

(QTy)m























.

Because R is upper triangular, we also have (Rx )Tek = 0, for n < k ≤ m.
Hence, by Pythagoras’ theorem

‖y−Ax‖2 = ‖QTy−Rx‖2 = ‖(α−Rx )+β‖2 = ‖α−Rx‖2+‖β‖2 ≥ ‖β‖2,

with equality if and only if Rx = β, which, if the diagonal elements of R
are nonzero, we can solve by back substitution. Let’s state this formally.

Algorithm 1.3. (The QR factorization via Givens Rotations) Let A ∈
R
m×n, m > n, have linearly independent columns, and let y ∈ R

m. For
each column j ∈ {1, 2, . . . , n}, and for each row k ∈ {j + 1, j + 2, . . . ,m},
we apply a Givens rotation to rows j and k to zeroize element Akj ; call
these rotations {Q1, Q2, . . .}. Thus we reduce A to upper triangular form
(triangularize A is the jargon!). We also apply each rotation to y in turn.



32 Brad Baxter

Thus we obtain

· · ·Q2Q1A = R =





























R11 R12 · · · R1n

R22 R2n
. . .

...
Rnn





























and z = · · ·Q2Q1y .

Finally, we solve








R11 R12 · · · R1n

R22 R2n
. . .

...
Rnn

















x1
x2
...
xn









=







z1
z2
· · ·
zn






,

if R is invertible, obtaining the least squares solutions of the original linear
system.

Exercise 1.54. The diagonal elements R11, . . . , Rnn are all nonzero if and
only if the columns of A are linearly independent. Prove this.

Exercise 1.55. Show that ATA = RTR. Hence prove that R is invertible
if the columns of A are linearly independent.

Example 1.17. We shall use Givens rotations to obtain the least squares
solution of the linear system

A

(

x1
x2

)

=





1
1
1



 ,

where the matrix A is given by (1.21). The Givens rotations required to
triangularize A were computed in Example 1.8. It is easily checked that

G23(ψ)G13(φ)G12(θ)





1
1
1



 =







19
13
501

13
√
3665
41√
3665






=





1.46154
0.63659
0.67725



 ,

to 5 decimal places. Therefore we simply solve the 2× 2 linear system
(

13 27
0

√
3665

)(

x1
x2

)

=

(

1.46154
0.63659

)

,

which provides x1 = 0.090587, x2 = 0.010515.
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Finally, let’s state our algorithms in a more formal way. The following
pseudo-code is intended for students who are familiar with a programming
language, but it should be readily apprehended by all.

Algorithm 1.4. Let A ∈ R
m×n, m > n. The following calculations will

reduce A to an upper triangular matrix (triangularize is the jargon!) by
applying Givens rotations.

For j = 1, 2, . . . , n

For k = j + 1, j + 2, . . . ,m

Let c = Ajj/(A
2
jj +A2

kj)
1/2, s = Akj/(A

2
jj +A2

kj)
1/2.

Replace

(

Ajj Ajj+1 · · · Ajn

Akj Akj+1 · · · Akn

)

by

(

c s
−s c

)(

Ajj Ajj+1 · · · Ajn

Akj Akj+1 · · · Akn

)

On completion, the resulting matrix R ≡ A is upper triangular.

The next algorithm describes the least squares solution of an over-determined
set of linear equations using Givens rotations.

Algorithm 1.5. Let A ∈ R
m×n, where m > n and let y ∈ R

m.

For j = 1, 2, . . . , n

For k = j + 1, j + 2, . . . ,m

Let c = Ajj/(A
2
jj +A2

kj)
1/2, s = Akj/(A

2
jj +A2

kj)
1/2.

Replace

(

Ajj Ajj+1 · · · Ajn yj
Akj Akj+1 · · · Akn yk

)

by

(

c s
−s c

)(

Ajj Ajj+1 · · · Ajn yj
Akj Akj+1 · · · Akn yk

)

The resulting matrix R ≡ A is now upper triangular. We now compute
the solution of the linear system









R11 R12 · · · R1n

R22 · · · R2n
. . .

Rnn

















x1
x2
...
xn









=









y1
y2
...
yn









by back substitution.



34 Brad Baxter

2. Least Squares Problems II

We’ve already extended the definition of inner product once. In this section,
we become more abstract still.

Definition 2.1. Let V be a real vector space. An inner product is just a
function 〈·, ·〉:V × V → R satisfying the following conditions:

(i) 〈λx+ µy, z〉 = λ〈x, z〉+ µ〈y, z〉;
(ii) 〈y, x〉 = 〈x, y〉.
(iii) 〈x, x〉 ≥ 0, with equality if and only if x = 0.

Every inner product is associated with a norm defined by

‖x‖ = +
√

〈x, x〉, x ∈ V. (2.1)

These definitions are in their most general form, but almost all of the
inner products we’ll consider fall into two categories. Because our vectors
can now be functions, we shall follow the convention of advanced numerical
analysis and not use bold type to indicate vectors in this section.

(i) Discrete inner products: Given positive numbers w0, w1, . . . , wn,
we define

〈f, g〉 =
n
∑

k=0

wkf(xk)g(xk). (2.2)

The numbers w0, . . . , wn are usually called weights.
(ii) Continuous inner products: Given a continuous function w(x)

that is non-negative on the interval [a, b] and has at most finitely many
zeros in that interval, we define

〈f, g〉 =
∫ b

a
w(x)f(x)g(x) dx. (2.3)

We usually call w(x) the weight function.

The justification for studying the above is simple: they arise in many
different areas of mathematics and its applications. The general definition
allows us to treat all of these special cases at once.
Much of the rest of this section restates theory you’ve already met, but

stated in the more general form. You should be aware that the properties
of inner products covered earlier all generalize to this setting. In particular,
the Cauchy-Scwarz inequality holds, its proof being unchanged.

Example 2.1. Let w(x) be any positive continuous function defined on the
interval [a, b]. Then, for any continuous function f(x), the Cauchy-Schwarz
inequality implies the bound

(∫ b

a
w(x)f(x) dx

)2

≤
∫ b

a
w(t) dt

∫ b

a
w(x)f(x)2 dx,
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with equality if and only if f(x) is a constant function. (Just set g(x) = 1
in the inequality.)

We can now state the abstract form of the least squares problem: Let V be
an inner product space and let U be a subspace of V with basis {φ1, . . . , φm}.
Given any point v ∈ V , find a best approximation u∗ ∈ U .

Example 2.2. To continue the previous example, we let U be the vector
space of polynomials of degree m − 1. Given any function f ∈ V , we want
to construct a polynomial q = p∗ ∈ U minimizing the integral

∫ b

a
(f(x)− q(x))2 dx, q ∈ U.

In other words, we want to find a vector λ∗ = [λ∗1, . . . , λ
∗
m] ∈ R

m minimiz-
ing the quadratic

E(λ) = ‖v −
m
∑

k=1

λkφk‖2, (2.4)

for all λ = [λ1, . . . , λm]T ∈ R
m. Expanding the quadratic using the inner

product, we obtain

E(λ) = ‖v‖2 − 2
m
∑

k=1

λk〈v, φk〉+
m
∑

j=1

m
∑

k=1

λjλk〈φj , φk〉. (2.5)

It’s useful to state 2.5 in matrix form: let G be the m ×m matrix given
by

Gjk = 〈φj , φk〉, 1 ≤ j, k ≤ m, (2.6)

and define the vector µ ∈ R
m by

µj = 〈v, φj〉, 1 ≤ j ≤ m. (2.7)

Then

E(λ) = ‖v‖2 − 2λTµ+ λTGλ. (2.8)

The entire theory of least squares rests on analysis of this quadratic. It is
evident that any stationary point must satisfy the equation

∇E(λ∗) = 0 where ∇E(λ) = 2(Gλ− µ), (2.9)

or, equivalently,

Gλ∗ = µ. (2.10)

The equations forming (2.10) are still called the “normal equations”. The
form of G is sufficiently important to deserve a name: it’s called a Gram

matrix, and we sometimes write G(φ1, . . . , φm) to indicate its dependence
on φ1, . . . , φm. In fact the normal equations are necessary and sufficient for
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λ∗ to be a global minimum of the quadratic E in this more general setting,
as we shall soon see.

Lemma 2.1. Let φ1, . . . , φm be any vectors in an inner product space and
let G = G(φ1, . . . , φm) be the corresponding Gram matrix. The G is non-
negative definite and symmetric. Furthermore, it is positive definite if and
only if the vectors φ1, . . . , φm are linearly independent.

Proof. Let h ∈ R
m. We have

hTGh =
m
∑

j=1

m
∑

k=1

hjhk〈φj , φk〉 = 〈
m
∑

j=1

hjφj ,
m
∑

k=1

hkφk〉 = ‖
m
∑

k=1

hkφk‖2 ≥ 0,

with equality if and only if
∑m

k=1 hkφk = 0. If the vectors φ1, . . . , φm are
linearly independent, then the last equation can only hold when every coef-
ficient hk = 0, in which case G is positive definite. �

Corollary 2.2. Let ∇E(λ∗) = 0. Then E(λ∗ + h) ≥ E(λ∗) for every h ∈
R
m. Thus any solution of the normal equations provides a global minimum

for E.

Proof. We have

E(λ∗ + h) = ‖v‖2 − 2µT (λ∗ + h) + (λ∗ + h)TG(λ∗ + h)

= E(λ∗) + 2hT (Gλ∗ − µ) + hTGh

= E(λ∗) + hT∇E(λ∗) + hTGh

= E(λ∗) + hTGh

≥ E(λ∗),

by Lemma 2.1. �

The next result is closely related to Corollary 2.2. Geometrically, it states
that the least squares solution u∗ =

∑m
k=1 λ

∗
kφk is the orthogonal projection

of v onto the subspace U ; we’re simply dropping a perpendicular.

Theorem 2.3. The vector u∗ =
∑m

k=1 λ
∗φk ∈ U minimizes the quadratic

E defined in (2.4) if and only if

〈v − u∗, u〉 = 0 for every u ∈ U.

Proof. The vector u∗ ∈ U minimizes (2.4) if and only if ∇E(λ∗) = 0, by
Corollary 2.2. Setting u =

∑m
k=1 λkφk, we have

〈v − u∗, u〉 = λTµ− λTGλ∗ = λT∇E(λ∗) = 0,

using (2.7) and (2.9). �

Example 2.3. Let V = C[0, 1], the vector space of continuous, real-valued
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functions defined on the interval [0, 1]. We let the inner product be given by

(f, g) =

∫ 1

0
f(x)g(x) dx

and the corresponding norm is

‖f‖2 =
∫ 1

0
f(x)2 dx.

Our basis functions will be φk(x) = xk, for 0 ≤ k ≤ n, and our problem is
to find numbers λ∗0, . . . , λ

∗
n minimizing the integral

E(λ) = ‖f −
n
∑

k=0

λkφk‖2 =
∫ 1

0

∣

∣

∣
f(x)−

n
∑

k=0

λkx
k
∣

∣

∣

2
dx.

The normal equations are

Gλ∗ = µ,

where the elements of the Gram matrix are

Gjk =

∫ 1

0
xj+k dx =

1

j + k + 1
, 0 ≤ j, k ≤ n,

and

µj =

∫ 1

0
f(x)xj dx, 0 ≤ j ≤ n.

This Gram matrix is usually called a Hilbert matrix. Hilbert matrices are
far too ill-conditioned for practical work unless n is tiny; our first glimpse
of the fact that normal equations are usually to be avoided unless the basis
{φ1, . . . , φm} is chosen rather carefully.

Example 2.4. Let A be a m × n real matrix whose columns are denotes
a1, a2, . . . , an. In general, we cannot solve the linear system

Aλ = v,

where λ ∈ R
n and v ∈ R

m. However, it is sometimes necessary to construct
an approximate solution. One approach is to choose λ∗ ∈ R

n to minimize
the quadratic

E(λ) = ‖v −Aλ‖2 = ‖v −
n
∑

k=1

λkak‖2, λ = [λ1, . . . , λn]
T ∈ R

n.

The normal equations for this least squares problem are Gλ∗ = µ, where

Gjk = aTj ak and µj = aTj v for 1 ≤ j, k ≤ n.

In other words, we have the system

ATAλ∗ = AT v.
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Again, these equations are often too ill-conditioned to be of practical value.

We have observed that the Gram matrix G(φ1, . . . , φm) can often have an
unsuitably large condition number – after all, the horrid Hilbert matrix is a
Gram matrix. One remedy for this problem is to choose an orthogonal basis
ψ1, . . . , ψm for the space spanned by φ1, . . . , φm, because then the new Gram
matrix G(ψ1, . . . , ψm) is diagonal and the solution of the normal equations
reduces to m divisions. The Gram-Schmidt algorithm provides a poor tool
for constructing such orthogonal bases. Fortunately, there’s a much more
accurate algorithm that requires less computation also. This is the three-

term recurrence relation of orthogonal polynomials, which is studied in the
next section.
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3. Orthogonal Polynomials

In this section our inner product will either be discrete

〈f, g〉 =
n
∑

k=1

wkf(xk)g(xk), (3.1)

where (wk)
n
k=1 is some set of positive numbers, or continuous

〈f, g〉 =
∫ b

a
w(x)f(x)g(x) dx, (3.2)

where the weight function w is a non-negative continuous function on the
open interval (a, b) with at most finitely many zeros in (a, b). Our first topic
is to construct monic orthogonal polynomials φ0, . . . , φn from the monomials
1, x, . . . , xn, where “monic” simply means that the coefficient of the highest
degree term is one. The whole point of orthogonal polynomials is their
simplification of the least squares problem: the polynomial p∗(x) minimizing
‖f − p‖ for all p ∈ Pn is given by the simple formula

p∗(x) =
n
∑

k=0

( 〈f, φk〉
〈φk, φk〉

)

φk(x),

because the Gram matrix

G(φ0, φ1, . . . , φn) =









‖φ0‖2
‖φ1‖2

. . .

‖φn‖2









is diagonal.

Exercise 3.1. Is 4x2 + 2x+ 1 monic? Is x2 + 3x+ 1 monic?

But how do we calculate orthogonal polynomials? For hand computation,
such as examination problems, the Gram-Schmidt algorithm suffices.
The key trick is the observation that φn+1(x)− xφn(x) is a polynomial of

degree n, so that

φn+1(x)− xφn(x) =
n
∑

k=0

ckφk(x). (3.3)

If φ0, . . . , φn are orthogonal polynomials, then

cj〈φj , φj〉 = 〈φn+1 − xφn, φj〉, 0 ≤ j ≤ n. (3.4)

In fact, all but two of these coefficients vanish.

Theorem 3.1. Orthogonal polynomials satisfy the three term recurrence
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relation

φn+1(x) = (x− an)φn(x)− bnφn−1(x), n ≥ 1, (3.5)

where

an =
〈xφn, φn〉
‖φn‖2

and bn =
‖φn‖2
‖φn−1‖2

. (3.6)

Proof. Equation (3.4) implies the relation

cj‖φj‖2 = −〈φn, xφj〉, 0 ≤ j ≤ n,

because φn+1 is orthogonal to every polynomial of degree n. Furthermore,
xφj(x) is a polynomial of degree j+1, so that cj is zero unless j ∈ {n−1, n}.
Hence

cn−1 = −〈φn, xφn−1〉
‖φn−1‖2

and cn = −〈φn, xφn〉
‖φn‖2

.

Finally, we obtain the relations

〈φn, xφn−1〉 = 〈φn, xφn−1 − φn〉 − ‖φn‖2 = −‖φn‖2,
because xφn−1−φn is a polynomial of degree n−1, and therefore orthogonal
to φn. A simple algebraic rearrangement then provides (3.5) and (3.6). �

Theorem 3.1 requires φ0 and φ1 initially. Of course, φ0(x) ≡ 1. For φ1, we
must have φ1(x) = x − a0, say, and 〈φ0, φ1〉 = 0. Thus a0 = 〈x, φ0〉/‖φ0‖2,
which satisfies the recurrence relation (3.5) if we define φ−1(x) = 0 and
b0 = 0.
I’ve already mentioned that the three-term recurrence relation is suitable

for use in floating point arithmetic. However, it enjoys another advantage:
to form φn requires the calculation of only O(n) inner products. However,
Gram-Schmidt requires O(n2) operations, a severe disadvantage unless n is
tiny. This latter case includes most examination questions, so it’s useful to
give some examples of Gram-Schmidt in action. The next lemma provides
a very simple pair of results that are nevertheless rather useful.

Lemma 3.2. We shall say that f(x) is even if f(−x) = f(x), for all x.
We’ll call it an odd function if f(−x) = −f(x), for all x. Then, for any
positive number A, we have

∫ A

−A
f(x) dx = 2

∫ A

0
f(x) dx,

when f(x) is an even function, and
∫ A

−A
f(x) dx = 0,

when f(x) is an odd function.
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Proof. If f(x) = f(−x), for all x, then
∫ A

−A
f(x) dx =

∫ 0

−A
f(x) dx+

∫ A

0
f(x) dx =

∫ A

0
(f(−x) + f(x)) dx = 2

∫ A

0
f(x) dx.

A similar manipulation proves that the integral
∫ A
−A f = 0 when f(x) is an

odd function. �

Example 3.1. Let the inner product be

〈f, g〉 =
∫ 1

−1
f(x)g(x) dx.

It is easily checked that φ1(x) = x. Let us calculate φ2 from first principles:
we write φ2(x) = x2+αx+β and note the equations 0 = 〈φ0, φ2〉 = 〈φ1, φ2〉,
that is

0 =

∫ 1

−1
x2 + αx+ β dx =

∫ 1

−1
x3 + αx2 + βx dx.

Because the integral of an odd function vanishes on [−1, 1], we obtain

α = 0 and β = −(1/2)

∫ 1

−1
x2 dx =

∫ 1

0
x2 dx = 1/3.

Thus φ2(x) = x2 − 1/3. The reader is encouraged to calculate φ3 and φ4
using (i) the Gram-Schmidt algorithm and (ii) the three term recurrence
relation; only masochists will prefer the former.

Exercise 3.2. Let the inner product be

〈f, g〉 =
∫ 2

−2
x6f(x)g(x) dx.

Compute the monic orthogonal polynomials φk(x), for 0 ≤ k ≤ 3.

Example 3.2. Show that the polynomials Tk(x) = cos(k cos−1 x), −1 ≤
x ≤ 1, are orthogonal with respect to the inner product

(f, g) =

∫ 1

−1
f(x)g(x)(1− x2)−1/2 dx.

We have

〈Tj , Tk〉 =
∫ 1

−1
cos(j cos−1 x) cos(k cos−1 x)(1−x2)−1/2 dx =

∫ π

0
cos(jθ) cos(kθ) dθ,

using the change of variable x = cos θ. It is not hard to show that this
integral vanishes when j 6= k, but you should check this.

These are the Chebyshev polynomials. We shall see another of their sur-
prising properties in the section on polynomial interpolation.



42 Brad Baxter

Exercise 3.3. Prove that the Chebyshev polynomials satisfy the three
term recurrence relation

Tn+1(x) + Tn−1(x) = 2xTn(x), n ≥ 1.

(Hint: recall that cos(n+ 1)θ + cos(n− 1)θ = 2 cos θ cosnθ.)

Some inner products are defined by integrals over infinite intervals.

Example 3.3. Let

〈f, g〉 =
∫ ∞

0
e−xf(x)g(x) dx.

Let’s compute the monic orthogonal polynomials φ0, φ1 and φ2. A useful
trick for this example is the identity

∫ ∞

0
e−xxm dx = m!, (3.7)

for any nonnegative integer m. (To show this, let

In =

∫ ∞

0
e−xxn dx

and use integration by parts to show that In = nIn−1. Since I0 = 1, a simple
induction completes the derivation.)
We set φ0(x) ≡ 1 and φ1(x) = x− a. We determine a using the orthogo-

nality relation 0 = 〈1, x−a〉 = 1−a, or a = 1. We now set φ2(x) = x2+bx+c
and note that

0 = 〈1, x2 + bx+ c〉 = 2 + b+ c

and

0 = 〈x, x2 + bx+ c〉 = 6 + 2b+ c.

Solving these linear equations yields φ2(x) = x2 − 4x+ 2.

Solution 3.1. The polynomial 4x2 +2x+1 is not monic, but x2 +3x+1
is monic.

Solution 3.2. We set φ0(x) = 1 and φ1(x) = x − a. We see that a = 0,
because of the orthogonality relation

0 = 〈1, φ1〉 =
∫ 2

−2
x− a dx = 4a.

Thus φ1(x) = x. Setting φ2(x) = x2 + bx+ c, we have

0 = 〈x, x2 + bx+ c〉 =
∫ 2

−2
x3 + bx2 + cx dx = 2b

∫ 2

0
x2 dx = 16b/3,
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whence b = 0. To determine c, we use

〈1, x2 + c〉 =
∫ 2

−2
x2 + c dx = 2

∫ 2

0
x2 dx+ 8c,

or c = −(1/4)
∫ 2
0 x

2 dx = −2/3. Thus φ2(x) = x2 − 2/3.

Solution 3.3. The definition Tk(x) = cos(k cos−1 x) implies that, when
x = cos θ, the claimed recurrence is an immediate consequence of the given
trigonometric identity.
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4. Polynomial Interpolation

Let z0, z1, . . . , zn be different complex numbers and let f0, . . . , fn be any
given complex numbers. We want to construct a polynomial p of degree
n for which p(zj) = fj , 0 ≤ j ≤ n. Such a polynomial is called an inter-

polating polynomial, and we say that p interpolates the data {(zj , fj) : j =
0, 1, . . . , n}. We shall let Pn denote the vector space of polynomials of degree
n.

Exercise 4.1. The quadratic p(z) = (z2 − π2/4)/(−π2/4) interpolates
f(z) = cos z at the points {−π/2, 0, π/2}.
Lemma 4.1. Let

ℓj(z) =
n
∏

k=0,k 6=j

z − zk
zj − zk

, 0 ≤ j ≤ n. (4.1)

Then ℓr(zs) = δrs, 0 ≤ r, s,≤ n and ℓr ∈ Pn.

Proof. By construction, ℓr(zs) = 0 when r 6= s, because the product in
(4.1) contains the term (z − zs). However, ℓr(zr) = 1, because then every
term in (4.1) occurs in both numerator and denominator. �

These polynomials ℓ0, ℓ1, . . . , ℓn are useful because they allow us to write
down a very simple expression for the polynomial interpolant.

Proposition 4.2. The interpolating polynomial p ∈ Pn for the data {(zj , fj) :
0 ≤ j ≤ n} is given by

p(z) =

n
∑

j=0

fjℓj(z), z ∈ C. (4.2)

Proof. Equation 4.1 implies p(zk) =
∑n

j=0 fjδjk = fk, 0 ≤ k ≤ n. �

Equation 4.2 is called the Lagrange form of the interpolating polynomial.
Unfortunately, the Lagrange form is almost useless in practical work, al-
though it’s sometimes useful for theoretical work. It can also be useful in
examination questions.

Example 4.1. The quadratic polynomial satisfying p(0) = α, p(1) = β
and p(4) = γ is

p(z) = α
(z − 1)(z − 4)

(0− 1)(0− 4)
+ β

z(z − 4)

(1− 0)(1− 4)
+ γ

z(z − 1)

(0− 4)(1− 4)
.

Uniqueness of the interpolant is easily settled.

Uniqueness requires a simple lemma.

Lemma 4.3. Let p(z) = a0 + a1z + a2z
2 + · · · + anz

n, where z ∈ C and
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a0, a1, . . . , an ∈ C. Then p(z) has at most n distinct zeros in C unless
a0 = a1 = · · · = an = 0.

Proof. The lemma is plainly true when n = 0 or n = 1. We then proceed
by induction. Thus let us assume that every polynomial of degree less than
n has at most n different zeros, unless every coefficient is zero. Given any
polynomial p(z) of degree n + 1, either p has a root, say p(w) = 0, or p
has no roots. If the latter condition is valid, then there’s nothing further to
demonstrate. If the former is valid, then (z − w) is a factor of p(z). Thus
we can write p(z) = q(z)(z − w), and the roots of p are w and the roots of
q. However, by induction hypothesis, q can have at most n different roots.
Thus p can have, in total, at most n+ 1 different roots. �

Aside: The last lemma is a very simple version of the great Fundamental
Theorem of Algebra: a polynomial of degree n with complex coefficients has
exactly n complex zeros if we count multiple zeros multiply. (Thus (z − 2)2

has two zeros.) This theorem will be proved in the Complex Analysis course
next term.

Proposition 4.4. There is exactly one interpolating polynomial p ∈ Pn

when the points z0, z1, . . . , zn are distinct.

Proof. Existence was shown in Proposition 4.2, so we address uniqueness.
Thus let p and q be interpolating polynomials of degree n. Their difference
p− q is a polynomial of degree n that vanishes at the n+ 1 different points
z0, . . . , zn. Hence p− q vanishes identically, using the last lemma. �

Exercise 4.2. Let h > 0 and let p ∈ P2 be the quadratic interpolating f
at {−h, 0, h}. Show that

∫ h

−h
p(x) dx =

h

3

(

f(−h) + 4f(0) + f(h)
)

,

which you should recognize as Simpson’s rule.

Example 4.2. You’ve already met the Lagrange form when computing
partial fractions. Let w0, w1, . . . , wn be different complex numbers. We shall
compute the scalars α0, α1, . . . , αn in the partial fraction decomposition

1

(z − w0)(z − w1) · · · (z − wn)
=

n
∑

j=0

αj

z − wj
.

Let us set f(z) ≡ 1. The Lagrange form of the polynomial interpolating f
at w0, w1, . . . , wn is

1 =
n
∑

j=0

ℓj(z),
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by 4.2. Dividing both sides by (z − w0) · · · (z − wn) yields the expression

αj =
(

n
∏

k=0,k 6=j

(wj − wk)
)−1

, j = 0, 1, . . . , n.

The Lagrange form of the interpolating polynomial is useful when n is
small and in theoretical work. However, it is particularly inconvenient if we
have constructed pn−1 ∈ Pn−1 interpolating data {(zj , fj) : 0 ≤ j ≤ n − 1}
and are then given a new datum (zn, fn), because we almost have to start
the calculation from scratch. Fortunately a more compact form is available.
The key idea is to let p ∈ Pn take the form

pn(z) = pn−1(z) + C(z − z0)(z − z1) · · · (z − zn−1), z ∈ C. (4.3)

We see that pn(zj) = pn−1(zj) = fj , for 0 ≤ j ≤ n− 1, so we do not disturb
our previous interpolant at these points. Of course we choose C to satisfy
the equation

fn = pn−1(zn) + C

n−1
∏

k=0

(zn − zk). (4.4)

Obviously C depends on f and z0, z1, . . . , zn. A traditional notation is

C = f [z0, z1, . . . , zn], (4.5)

so that 4.3 becomes

pn(z) = pn−1(z) + f [z0, z1, . . . , zn](z − z0)(z − z1) · · · (z − zn−1). (4.6)

The number f [z0, . . . , zn] is called a divided difference, because of the method
used to calculate these numbers described below. Note that the coefficient
of highest degree for pn does not depend on the order in which we take
the points. In other words, if we replace z0, z1, . . . , zn by zπ0, zπ1, . . . , zπn,
for any permutation π of the numbers {0, 1, . . . , n}, then f [zπ0, . . . , zπn] =
f [z0, . . . , zn]. Another way to see this is the following explicit expression for
f [z0, . . . , zn], which is sometimes useful in theoretical work.

Proposition 4.5. We have

f [z0, z1, . . . , zn] =

n
∑

j=0

f(zj)
∏n

k=0,k 6=j(zj − zk)
. (4.7)

Further, f [z0, . . . , zn] = 0 when f is a polynomial of degree less than n.

Proof. We just equate the coefficients of zn in pn(z) =
∑n

j=0 f(zj)ℓj(z),

using Proposition 4.2. Moreover, if f(z) = zℓ and ℓ < n, then the coefficient
of zn in pn is zero. But this highest degree coefficient is f [z0, . . . , zn]. �
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Exercise 4.3. Show that
n
∑

j=0

zmj
∏n

k=0,k 6=j(zj − zk)
= δmn,

for m = 0, 1, . . . , n.

Recurring equation 4.6, and defining f [z0] = f(z0), yields the explicit
expression

pn(z) = f [z0] + f [z0, z1](z − z0) + f [z0, z1, z2](z − z0)(z − z1) + · · ·
+f [z0, z1, . . . , zn](z − z0)(z − z1) · · · (z − zn−1),

and this is called the Newton form of the interpolating polynomial.
It’s important to understand that f [z0, . . . , zℓ] is the coefficient of highest

degree for the polynomial pℓ ∈ Pℓ interpolating the data {(zk, fk) : 0 ≤ k ≤
ℓ}.

Example 4.3. The Newton form of the quadratic polynomial satisfying
p(0) = f(0), p(1) = f(1) and p(4) = f(4) is

p(z) = f [0] + f [0, 1]z + f [0, 1, 4]z(z − 1).

You’ll see how to calculate the coefficients shortly.

The recursion used to calculate divided difference and justifying the suit-
ability of their name is derived in the following key theorem.

Theorem 4.6. For any distinct complex numbers z0, z1, . . . , zn, zn+1 the
divided differences satisfy

f [z0, . . . , zn+1] =
f [z0, . . . , zn]− f [z1, . . . , zn+1]

z0 − zn+1
. (4.8)

Proof. We introduce two polynomials: (i) p ∈ Pn interpolates {(zk, fk) :
0 ≤ k ≤ n}, and (ii) q ∈ Pn interpolates {(zk, fk) : 1 ≤ k ≤ n + 1}.
Thus the coefficients of highest degree for p and q are f [z0, . . . , zn] and
f [z1, . . . , zn+1], respectively. The key trick is now the observation that the
polynomial r ∈ Pn+1 interpolating at all n+ 1 points satisfies

r(z) =
(z − zn+1)p(z)− (z − z0)q(z)

z0 − zn+1
, (4.9)

because it is unique, by Proposition 4.4, and it is easily checked that the right
hand side of (4.9) interpolates at z0, . . . , zn+1: an exercise for the reader.
Now the coefficient of highest degree in r is f [z0, . . . , zn+1], so equating the
coefficients of highest degree is (4.9) yields (4.8). �

Exercise 4.4. Check that (4.9) holds when n = 1 and xk = k.
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Exercise 4.5. Let f(z) = (α− z)−1. Show that

f [z0, z1, . . . , zn] =
1

(α− z0)(α− z1) · · · (α− zn)
.

Proposition 4.3 is extremely important. It’s the basis of the algorithm for
divided differences and the Newton form of the interpolating polynomial.
We form the lower triangular matrix
















x0 f(x0)
x1 f(x1) f [x0, x1]
x2 f(x2) f [x1, x2] f [x0, x1, x2]
...

...
...

...
. . .

xn−1 f(xn−1) f [xn−2, xn−1] f [xn−3, xn−2, xn−1] . . . f [x0, x1, . . . , xn−1]
xn f(xn) f [xn−1, xn] f [xn−2, xn−1, xn] . . . f [x1, x2, . . . , xn] f [x0, . . . , xn]

















.

In practice, only the first two columns of this lower triangular matrix are
stored. The diagonal elements are those needed for the Newton form of the
interpolating polynomial, so it’s usual for the second column to be over-
written by subsequent columns; that’s O(n) rather than O(n2) numbers to
be stored. At completion, the second column should contain the diagonal
elements of the matrix, that is

[f(x0), f [x0, x1], f [x0, x1, x2], f [x0, x1, x2, x3], . . . , f [x0, x1, . . . , xn−1], f [x0, . . . , xn] ]
T .

A polynomial can be evaluated at any point using Horner’s rule (nested
multiplication), which we state here for completeness.

Algorithm for polynomial evaluation: Let p(z) = a0 + a1z + a2z
2 +

· · · anzn and let α be any complex number. The following algorithm calcu-
lates the value p(α) of the polynomial at z = α.

Set s := an.
For k = n− 1, n− 2, . . . , 1, 0, set

s := s ∗ z + ak.

This is faster than naively evaluating p(α) = a0 + a1 ∗ α+ a2 ∗ α ∗ α+ · · ·+
an ∗ α ∗ · · · ∗ α.

Exercise 4.6. Assume you’re using a computer for which every arithmetic
operation takes the same amount of time. Calculate (i) the number of
operations required to apply Horner’s rule, and (ii) the number of operations
for the naive method.

What about the error in polynomial interpolation?

Theorem 4.7. Let p ∈ Pn interpolate f at n distinct complex numbers
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z0, z1, . . . , zn. Then the error e = f − p satisfies the equation

e(w) = f [z0, z1, . . . , zn, w]
n
∏

k=0

(w − zk), w ∈ C. (4.10)

Proof. If we add a new interpolation point zn+1, then the Newton interpo-
lating polynomial q ∈ Pn+1 is given by

q(z) = p(z) + f [z0, z1, . . . , zn, zn+1]
n
∏

k=0

(z − zk).

Hence

f(zn+1) = p(zn+1) + f [z0, z1, . . . , zn, zn+1]
n
∏

k=0

(z − zk).

Since zn+1 can be any point, we can write w = zn+1, which completes the
proof. �

This result is of little use for error bounds unless we can bound f [z0, z1, . . . , zn, w]
from above in some way. Now the first mean value theorem implies the equa-
tion

f [x0, x1] =
f(x1)− f(x0)

x1 − x0
= f ′(ξ),

for some point ξ ∈ [x0, x1]. There is an important result for divided differ-
ences generalizing this remark that’s essentially a form of the mean value
theorem you’ll meet in real analysis. We shall use this relation to express
the error in terms of the maximum modulus of the (n+1)st derivative of f .

Theorem 4.8. Let f have continuous (n + 1)st derivative and let x0 <
x1 < · · · < xn be real numbers. Then there is a point ξ ∈ [x0, xn] such that

f [x0, x1, . . . , xn] =
fn(ξ)

n!
. (4.11)

Proof. Let pn ∈ Pn interpolate f at x0, . . . , xn. Then the error function
e = f − pn has at least n+ 1 zeros in [x0, xn]. Hence its derivative e′ has at
least n zeros in [x0, xn], and its second derivative e′′ has at least n− 1 zeros.
Continuing in this way, we deduce that e(n) has at last one zero, ξ say, in
[x0, xn]. But then

0 = e(n)(ξ) = f (n)(ξ)− f [x0, . . . , xn]n!,

as required. �

Corollary 4.9. Let f have continuous (n+1)st derivative and let x0, x1, . . . , xn
be different real numbers. If pn ∈ Pn is the interpolating polynomial, then
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the error en = f − pn satisfies

|en(x)| ≤
M
∏n

k=0 |x− xk|
(n+ 1)!

, x ∈ [a, b], (4.12)

where M = max{|f (n+1)(t)| : a ≤ t ≤ b}.
Proof. This is immediate from the last two theorems. �

Example 4.4. Rework the last example for general a and b.

Example 4.5. Let f(x) = cosx. Rework the last example.

Thes examples might suggest that increasing the number of interpolation
points always decreases the error. This is not so, as you may see in exercises.

Example 4.6. Let f(x) = exp(x) and let a = −1/2, b = 1/2. If the
interpolation points are always contained within the interval [−1/2, 1/2],
then the error of interpolation satisfies

|en(x)| ≤
e

(n+ 1)!
, −1/2 ≤ x ≤ 1/2.

In other words, the error is tiny, what ever the choice of interpolation points.
In fact, this is true whenever the function being interpolated is complex
differentiable at every point of the complex plane. It is certainly not true
for general functions, as we shall shortly see.

Equation (4.12) suggests the following problem: Find interpolation points
(xk)

n−1
k=0 minimizing

max
−1≤x≤1

(

n−1
∏

k=0

|x− xk|
)

, (4.13)

which occurs when we want to minimize upper bound (4.12) on the inter-
val [−1, 1]. It is easy to see that equally spaced points are bad; try it on
Mathematica. In fact, the minimum value of (4.13) occurs when

n−1
∏

k=0

x− xk = 21−n cos(n cos−1 x).

This was discovered by the great Russian mathematician Chebyshev.
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5. Gaussian quadrature

Suppose we need to calculate the integral

I =

∫ b

a
w(x)f(x) dx, (5.1)

where the weight function w is positive and continuous. One approach is to
choose different points x0, x1, . . . , xn in the interval [a, b] and to interpolate
f at these points using a polynomial p of degree n. We can then let our
approximation be

Iapprox =

∫ b

a
w(x)p(x) dx. (5.2)

Using the Lagrange polynomials provides a useful formula for Iapprox in
terms of the numbers f(x0), f(x1), . . . , f(xn). We recall that the Lagrange
polynomials are given by

ℓj(x) =
n
∏

k=0,k 6=j

x− xk
xj − xk

, 0 ≤ j ≤ n, (5.3)

and satisfy

ℓj(xk) = δjk, 0 ≤ j, k ≤ n. (5.4)

Proposition 5.1. Let

wk =

∫ b

a
w(x)ℓk(x) dx, 0 ≤ k ≤ n. (5.5)

Then
∫ b

a
w(x)p(x) dx =

n
∑

k=0

wkp(xk) (5.6)

for every polynomial p of degree n.

Proof. An easy exercise. �

The next obvious question is where to choose the interpolation points
x0, x1, . . . , xn. The Runge Phenomenon implies that equally spaced points
can be disastrous for large n if f is a meromorphic function whose poles are
sufficiently close to the interval [a, b]. One approach is to consider the error
I − Iapprox when f is a polynomial of degree exceeding n. Thus f − p is a
polynomial vanishing at the points x0, x1, . . . , xn, and we can write

f(x)− p(x) = q(x)π(x), (5.7)

where q is another polynomial and π(x) =
∏n

k=0(x− xk). Hence

I − Iapprox =

∫ b

a
w(x)

(

f(x)− p(x)
)

dx (5.8)
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=

∫ b

a
w(x)q(x)π(x) dx

= 〈q, π〉,
and this error vanishes if and only if q and π are orthogonal with respect
to the ambient inner product. Therefore, if we can choose x0, . . . , xn so
that π = φn+1, then I = Iapprox when q is a polynomial of degree n,
because φn+1 is orthogonal to every polynomial of degree n. This amounts
to interpolating at the zeros of φn+1. Of course, we do not yet know if these
distinct zeros exist, and this is the subject of the next lemma.

Lemma 5.2. The orthogonal polynomial φn has n different zeros in the
interval [a, b].

Proof. Let σ denote the number of sign changes of φn in the interval [a, b].
If σ < n, then we can choose a polynomial p of degree less than n such
that p(x)φn(x) > 0 except at the (at most n) zeros of φn, as follows: Let
z1, . . . , zσ denote the points at which φn changes sign and define q(x) =
(x−z1) · · · (x−zσ); either q or −q is a suitable choice for p. Hence 〈p, φn〉 =
∫ b
a w(x)p(x)φn(x) dx > 0. Since φn is orthogonal to polynomials of degree
less than n, we conclude that p must have degree n, that is σ = n. Thus we
have shown that φn changes sign at n different points in [a, b]. �

Theorem 5.3. Let x0, . . . , xn be the zeros of φn+1 and let the weights
w0, . . . , wn be chosen as in Proposition 5.1. Then

∫ b

a
w(x)p(x) dx =

n
∑

k=0

wkp(xk)

for every polynomial p of degree 2n+ 1.

Proof. We just follow the argument given before Lemma 5.2. �

An alternative proof is often given whose technique is interesting.

Proof. (Second proof of Theorem 5.3) Let p be any polynomial of
degree 2n+ 1. Polynomial division yields the equation

p(x) = q(x)φn(x) + r(x),

where q and r are polynomials of degree n. Thus

n
∑

k=0

wkp(xk) =
n
∑

k=0

wkq(xk)φn(xk) =
n
∑

k=0

wkr(xk)

and
∫ b

a
w(x)p(x) dx =

∫ b

a
w(x)q(x)φn(x) dx+

∫ b

a
w(x)r(x)
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= 〈q, φn〉+
∫ b

a
w(x)r(x) dx

=

∫ b

a
w(x)r(x) dx.

However,
n
∑

k=0

wkr(xk) =

∫ b

a
w(x)r(x) dx,

by Proposition 5.1, since r has degree n. �

The method described in the statement of Theorem 5.3 is called “Gaus-
sian quadrature”. Quadrature is an old name for numerical integration,
derived from the Latin quadrare, to make square, the idea being that one
can approximate the area under a curve by squares (as in the Riemann sum
approach to integration theory).

Example 5.1. Find points x0, x1 and weights w0, w1 such that
∫ 1

−1
f(x) dx = w0f(x0) + w1f(x1)

when f is a cubic.

Following Theorem 5.3, we set n = 1 and construct the orthogonal poly-
nomial φ2 of degree two. This calculation was the subject of Example 3.1,
where it was shown that φ2(x) = x2 − 1/3. Thus the zeros are x0 = −1/

√
3

and x1 = 1/
√
3. All that remains is to find weights such that
∫ 1

−1
f(x) dx = w0f(−1/

√
3) + w1f(1/

√
3)

for every linear polynomial. There is no need to use the full apparatus of
Proposition 5.1 in such a simple problem. Indeed, setting f(x) = 1 and
f(x) = x swiftly yields the equation w0 = w1 = 1.
Gaussian quadrature is best possible, in the sense that no (5.6) cannot

hold for all polynomials of degree 2n + 2. To see this, just let p(x) =
∏n

k=0(x − xk)
2. Thus p ∈ P2n+2 is strictly positive except at its zeros

x0, . . . , xn. Hence
∫ b

a
w(x)p(x) dx > 0 =

n
∑

k=0

wkp(xk).

Example 5.2. Find weights and nodes such that
∫ 1

−1
p(x) dx = w0p(x0) + w1p(x1) + w2p(x2)
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for every quartic polynomial p.
A simple calculation (left to the reader) shows that φ3(x) = x3 − (3/5)x,

so that the nodes are 0 and ±
√

3/5. To find the weights, we just let p ∈
{1, x, x2}. We find that the Gaussian quadrature rule is then

∫ 1

−1
f(x) dx ≈ 1

9

(

5f(−
√

3/5) + 8f(0) + 5f(
√

3/5)
)

.

It is interesting to compare this with Simpson’s rule
∫ 1

−1
f(x) dx ≈ 1

3

(

f(−1) + 4f(0) + f(1)
)

,

which is only exact for cubics. When f(x) = cosx, we find
∫ 1
−1 cosx dx =

2 sin 1 = 1.6829. The Simpson’s rule approximation is (1/3)(2 cos 1 + 4) =
1.6935, whereas the Gaussian quadrature rule gives (1/9)(10 cos

√

3/5+8) =
1.6830.

Example 5.3. Quadrature rules play an important part in the derivation
of Runge-Kutta methods. Suppose we want to solve y′ = f(t). We know
that

y(tn + h) = y(tn) +

∫ tn+h

tn

f(τ) dτ = y(tn) + h

∫ 1

0
f(tn + hσ) dσ.

Now any quadrature rule provides an approximation of the form
∫ 1

0
g(σ) dσ ≈

m
∑

ℓ=0

wℓg(σℓ).

Thus we obtain the recurrence

y(tn + h) = y(tn) + h
m
∑

ℓ=0

wℓf(tn + hσℓ),

a method of Runge-Kutta type. The Gaussian quadrature rule is an obvious
candidate and yields some useful Runge-Kutta methods. The general theory,
when y′ = f(t, y), is sadly much more involved.

Example 5.4. Suppose we need to estimate the heat energy Q in a metal
rod of length L. Thus

Q = C

∫ L

0
T (x) dx,

where T (x) is the temperature in the rod and C is a constant. In practi-
cal work, Q must be estimated from a finite number of temperature mea-
surements taken along the rod. Since we’re approximating an integral, the
Gaussian quadrature points are appropriate.
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6. Solutions to Exercises

6.1. Applied Linear Algebra

Solution 6.1. For any square matrix C, (C + CT )T = CT + C, because
(CT )T = C. Similarly, (C − CT )T = CT − C = −(C − CT ).
Setting S = (A−AT )/2 and T = (A+AT )/2, we have A = S + T , where

S is skew-symmetric and T is symmetric. The decomposition is unique
because S1 + T1 = S2 + T2 implies S1 − S2 = T2 − T1, and any matrix that
is both symmetric and skew-symmetric is the zero matrix.

Solution 6.2. A column vector is simply an n × 1 matrix, whilst a row
vector is a 1 × n matrix. Applying the definition of matrix multiplication,
we deduce that aTa is a 1 × 1 matrix – a scalar – and aaT is an n × n
matrix. Further, using (1.8) with p = 1 = r and q = n, we obtain

aTa = (aTa)11 =
n
∑

ℓ=1

(aT )1ℓ(a)1ℓ =
n
∑

ℓ=1

a2ℓ .

Similarly, setting p = n = r and q = 1 in (1.8), we find

(aaT )jk =
1
∑

ℓ=1

(a)jℓ(a
T )ℓk = ajak,

as required.

Solution 6.3. For any vector w ∈ R
n, we have

Aw = (uvT )w = u(vTw),

using the associativity of matrix multiplication (see next exercise). We see
that2 A maps every vector in R

n to a multiple of u . Thus u is itself an
eigenvector, with eigenvalue vTw . Moreover, for any vector w orthogonal
to v , we have Aw = 0, an eigenvector with eigenvalue zero. Since the set of
solutions of the equation wTv = 0 forms an (n − 1)-dimensional subspace
of Rn (see M2P1), we can choose any basis of this space to complete our set
of n eigenvectors.

Solution 6.4. Let A ∈ R
p×q, B ∈ R

q×r and A ∈ R
r×s. Then

((AB)C)jk =
r
∑

β=1

(AB)jβCβk =
r
∑

β=1

q
∑

α=1

AjαBαβCβk,

whilst

(A(BC))jk =

q
∑

α=1

Ajα(BC)αk =

q
∑

α=1

r
∑

β=1

AjαBαβCβk,
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and these are equal because the order of summation is a finite sum is irrel-
evant.

Solution 6.5. Method I: Set x = ej and y = ek in Example 1.3.
Method II: By definition of matrix multiplication, and using the Kronecker

delta notation,

(Aek)ℓ =
n
∑

m=1

Aℓm(ek)m =
n
∑

m=1

Aℓmδkm = Aℓk.

Thus

eT
j Aek =

n
∑

ℓ=1

(ej)ℓ(Aek)ℓ =

n
∑

ℓ=1

δjℓAℓk = Ajk.

1.3.

Solution 6.6. You should find that

P1 =

(

1 0
0 0

)

for P2 =

(

0 0
0 1

)

.

Thus P1 (P2) projects onto the first (second) coordinate axis.

Solution 6.7. This exercise applies the fact that (AB)T = BTAT . Indeed,
we have

(wwT )T = (wT )TwT = wwT .

Thus P = P T , using the elementary properties (A + B)T = AT + BT and
(λA)T = λAT , for any matrices A,B for which their sum is defined, and for
any scalar λ.
For any vector v ∈ R

n, we have

Pv =

(

In − wwT

wTw

)

v = v − (wwT )v

wTw
= v − w(wTv)

wTw
,

using associativity of matrix multiplication. Hence

wTPv = wTv − (wTw)(wTv)

wTw
= 0.

Solution 6.8. Here A and B are square matrices of the same order, n×n
say. Now

trace AB =
n
∑

j=1

(AB)jj =
n
∑

j=1

n
∑

k=1

AjkBkj .

Similarly,

trace BA =
n
∑

k=1

(BA)kk =
n
∑

k=1

n
∑

ℓ=1

BkℓAℓk.
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But these are identical, because the order of summation in a finite sum is
immaterial.

Solution 6.9. By definition of matrix multiplication,

(Aej)k =
n
∑

m=1

Akm(ej)m =
n
∑

m=1

Akmδjm = Akj = (aj)k.

Solution 6.10. We have

(AB)jk =

q
∑

ℓ=1

AjℓBℓk =

q
∑

ℓ=1

Ajℓ(bk)ℓ = (Abk)j .

Solution 6.11. Simply note that

(AT )jk = Akj = (aj)k = (aT
j )k.

Solution 6.12. By definition of matrix multiplication,

(AB)jk =

q
∑

ℓ=1

AjℓBℓk =

q
∑

ℓ=1

(aj)ℓ(bk)ℓ = aT
j bk.

Solution 6.13. An easy exercise: just use Examples 1.24 and 1.25.

Solution 6.14. By definition of matrix multiplication,

(PQ)αβ =
m
∑

γ=1

PαγQγβ =
m
∑

γ=1

(pγ)α(qγ)β .

Solution 6.15. Straightforward calculation yields x1 = 7/12, x2 = 11/24
and x3 = −1/6.

Solution 6.16. At the first step of back substitution, we require one op-
eration to form xn = yn/Unn. At the kth step, for k = n− 1, n− 2, . . . , 2, 1,
we require n − k multiplications, n − k additions or subtractions, and one
division. Assuming all operations have equal cost for simplicity, we obtain
2n− 2k + 1 operations. Thus the total cost is given by

C(n) = 1 +
n−1
∑

k=1

(2n− 2k + 1),

and now recall the elementary fact 1 + 2 + · · ·+m = m(m+ 1)/2.

Solution 6.17. The easiest way to do this is to use the fact that detU =
U11U22 · · ·Unn, so that detU 6= 0 if and only if every diagonal element is
nonzero. Here’s another way: If every diagonal element of U is nonzero, then
we can use back substitution to solve Ux = y for every vector y . Hence U
is invertible. Conversely, if we can choose an integer j for which Ujj = 0,
then U maps the j linearly independent vectors e1, . . . , ej on a subspace of
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span {e1, . . . , ej−1}. In particular, the vectors Ue1, . . . , Uej must be linearly
dependent, so that U cannot be invertible.

Solution 6.18. Let L ∈ R
n×n be an invertible lower triangular, so that

every diagonal element is nonzero. To solve Lx = y , we first set x1 = y1/L11,
then, for k = 2, 3, . . . , n, we form

xk =

(

yk −
k−1
∑

ℓ=1

Lkℓxℓ

)

/Lkk.

Solution 6.19. I shall only deal with the upper triangular case, the lower
triangular case being extremely similar. Thus let U = (u1 · · · un ) ∈
R
n×n be any invertible upper triangular matrix – in other words every di-

agonal element is nonzero. Let U−1 = ( v1 · · · vn ). Thus the columns of
the inverse are given by the equations

Uvj = ej , for j = 1, 2, . . . , n.

Applying the back substitution algorithm, we see that xk = 0 for k > j,
which is equivalent to the statement that U−1 is upper triangular.

Solution 6.20. For a matrix-vector, we compute

(Av)j =
n
∑

k=1

Ajkxk, 1 ≤ j ≤ n,

which clearly requires n2 multiplications and (n−1)n additions. For matrix
multiplication, we use Equation (1.5), which requires n multiplications and
n− 1 additions for each of the n2 elements in the matrix product.

Solution 6.21. Easy, but I’ll provide an answer for n = 107. Here the
operation count is 1021/6. Since our computer performs 108 operations
every second, this requires 1013/6 seconds, or 106/9 ≈ 105 years.

Solution 6.22. If we first calculate AB, then this costs O(n3) operations.
However, calculating y = Bx , and then forming Ay , only requires O(n2)
operations. (Consider the saving when n = 100, say.)

Solution 6.23. We have

〈v ,u〉 =
n
∑

k=1

vkuk =
n
∑

k=1

ukvk = 〈u , v〉

and

〈α1u1 + α2u2, v〉 =
n
∑

k=1

(α1(u1)k + α2(u2)k) vk
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= α1

n
∑

k=1

(u1)kvk + α2

n
∑

k=1

(u2)kvk

= α1〈u1, v〉+ α+ 2〈u2, v〉.

The third relation is derived in the same fashion.

Solution 6.24. We have

‖a + b‖2 = 〈a + b,a + b〉
= 〈a ,a〉+ 〈a , b〉+ 〈b,a〉+ 〈b, b〉
= ‖a‖2 + ‖b‖2 + 2〈a , b〉.

Solution 6.25. For j 6= k, we have
∫ π

−π
ej(t)ek(t) dt =

∫ π

−π
ei(j−k)t dt

=

[

ei(j−k)t

i(j − k)

]π

−π

= 0,

because, setting g(t) = exp(i(j−k)t), we note that g(t+2π) = g(t), remem-
bering that exp(2πi) = 1.

Solution 6.26. In an n-dimensional vector space, any collection of m > n
vectors is linearly dependent. Since a set of m nonzero orthogonal vectors is
linearly independent, we must have m ≤ n. To see that nonzero orthogonal
vectors are linearly independent, note that

∑m
k=1 ckak = 0 implies

0 = 〈aj ,

m
∑

k=1

ckak〉 =
m
∑

k=1

ck〈aj ,ak〉 = cj‖aj‖2.

Since each aj is nonzero, we have ‖aj‖ > 0, whence cj = 0; this is true for
every j ∈ {1, 2, . . . , n}.
Solution 6.27. By construction, vk is orthogonal to qj , for 1 ≤ j < k. But
vj and aj are linear combinations of q1, . . . , qj . Applying Gram-Schmidt,

we get q1 = ( 1 0 0 0 )T ,

v2 = a2 − (aT
2 q1)q1 = ( 0 1 0 0 )T ,

whence q2 = v2, and

v3 = a3 − (aT
3 q1)q1 − (aT

3 q2)q2 = ( 0 0 0 −1 )T ,
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so that q3 = v3.

Solution 6.28. By associativity of matrix multiplication, we have

(QR)ek = Q(Rek) = Q

(

k
∑

ℓ=1

rℓkeℓ

)

=
k
∑

ℓ=1

rℓkQeℓ

=
k
∑

ℓ=1

rℓkqℓ,

as required.

Solution 6.29. Method I: Note that the columns are orthonormal.
Method II: By direct computation, QTQ = I.
In both cases, we use the elementary trigonometric identity cos2 θ +

sin2 θ = 1.

Solution 6.30. We have (U1U2)
T (U1U2) = UT

2 (U
T
1 U1)U2 = UT

2 U2 = I,
using Example 1.2.

Solution 6.31. Example 1.2 applied to the n × n matrix vvT yields the
formula (vvT )T = (vT )TvT = vvT . Since vTv is a scalar, we deduce that
ρ is a symmetric matrix. Thus

ρTρ = ρ2

= I − 4
vvT

vTv
+ 4

(vvT )(vvT )

(vTv)2

= I − 4
vvT

vTv
+ 4

v(vTv)vT

(vTv)2

= I − 4
vvT

vTv
+ 4

vvT

vTv
= I,

using associativity of matrix multiplication.
For n = 2 and v = ( 0 1 )T , we obtain

P =

(

1 0
0 −1

)

,

which is reflection in the subspace orthogonal to v . In general, ρ simply
reflects vectors in the (n− 1)-dimensional subspace of Rn orthogonal to the
vector v .
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Solution 6.32. We only have to prove that the columns of Q are orthonor-
mal, and this is obvious.

Solution 6.33. The 2× 2 rotation matrix

Q1 =

(

a/(a2 + c2)1/2 c/(a2 + c2)1/2

−c/(a2 + c2)1/2 a/(a2 + c2)1/2

)

satisfies

Q1

(

a
c

)

=

(

(a2 + c2)1/2

0

)

.

Thus Q = QT
1 and R = Q1A.

Solution 6.34. This is Example 1.17.

Solution 6.35. Apply the Cauchy-Schwarz inequality to the vectors x =
(x1 · · · xn )

T and e = ( 1 · · · 1 )T .

Solution 6.36. The Cauchy-Schwarz inequality implies the bound

−‖a‖‖b‖ ≤ 〈a , b〉 ≤ ‖a‖‖b‖,
so that

‖a‖2 + ‖b‖2 − 2‖a‖‖b‖ ≤ ‖a‖2 + ‖b‖2 +2〈a , b〉 ≤ ‖a‖2 + ‖b‖2 +2‖a‖‖b‖,
and this is the required inequality. Their geometric interpretation is simply
that the sum of the lengths of the two shorter sides of a triangle cannot
exceed the length of the longest side.

Solution 6.37. This is simple, so I’ll only provide an answer for
√
65. We

let f(x) = x1/2, f ′(x) = (1/2)x−1/2 and f ′′(x) = (−1/4)x−3/2. Setting
a = 64 and h = 1 in the first displayed equation of this subsection, we
obtain the linear approximation ℓ(65) = f(64) + f ′(64) = 8 + (1/16) and
the quadratic approximation p(65) = ℓ(65) + (1/2)f ′′(64). The rest is left
to you.

Solution 6.38. We need only note that ∂f/∂xj = δjp, for 1 ≤ j ≤ n.

Solution 6.39. We have

∂f

∂xj
= cosxj

n
∏

ℓ=1,ℓ6=j

sinxℓ

and, for j 6= k,

∂2f

∂xj∂xk
= cosxj cosxk

n
∏

ℓ=1,ℓ6=j,k

sinxℓ,
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whilst
∂2f

∂x2j
= −f(x ).

Solution 6.40. If f(x ) = aTx = a1x1 + · · ·+ anxn, then

(∇f(x ))j =
∂f

∂xj
=

n
∑

k=1

akδjk = aj ,

that is, ∇f(x ) = a .

Solution 6.41. For any two functions u(x ) and v(x ), we have

∇ (u(x ) + v(x )) = ∇u(x ) +∇v(x ),
because of the elementary relation

∂

∂xj
(u+ v) =

∂u

∂xj
+

∂v

∂xj
.

Setting h1(x ) = a + bTx , h2(x ) = xTAx/2, and applying Example 1.10,
we obtain the result.

Solution 6.42. This question does not assume that A is a symmetric ma-
trix. Setting f(x ) = xTAx , we see that

∇h(x ) = h(x )∇f(x ).
Using the technique of Example 1.10, we see that

∇f(x ) =
(

A+AT
)

x .

Solution 6.43. The function f(x ) has a local maximumat x = a if there
is a positive number δ such that

f(a) ≥ f(a + hu)

for every unit vector u ∈ R
n and |h| ≤ δ.

Solution 6.44. One example is a = 0 and f(x ) = ‖x‖4.
Solution 6.45. By direct calculation,
(

x
y

)T (
2 −1
−1 2

)(

x
y

)

= 2(x2 + y2)− 2xy = 2(x− y/2)2 +
3

2
y2 ≥ 0,

with equality if and only if x− y/2 = 0 and y = 0, that is x = y = 0.

Solution 6.46. Suppose A is positive definite. Then a = eT
1 Ae1 > 0.

Following the hint, we obtain
(

x
y

)T (
a b
b c

)(

x
y

)

= cy2+a
[

(x+ by/a)2 − b2y2/a2
]

= a(x+by/a)2+
y2

a
(ac−b2).
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Setting y = a1/2 and x = −by/a, we find

0 <

(

x
y

)T (
a b
b c

)(

x
y

)

= ac− b2.

Conversely, if a > 0 and ac− b2 > 0, then
(

x
y

)T (
a b
b c

)(

x
y

)

≥ 0

with equality if and only if y = 0 and x+ by/a = 0, that is x = y = 0.

Solution 6.47. We find 〈e1, e2〉A = eT
1 Ae2 = −1 and ‖e1‖A = ‖e2‖A =√

2.

Solution 6.48. If A is symmetric positive definite, then Ax = 0 implies
xTAx = 0, which implies x = 0. (A is invertible if and only if Ax = 0
implies x = 0.)

Solution 6.49. We have




x
y
z





T

A





x
y
z



 =

(

x
y

)T (
2 −1
−1 2

)(

x
y

)

+ z2,

with equality if and only if x = y = z = 0. Hence A is positive definite.

Solution 6.50. The matrix P T is invertible because detP T = detP 6= 0.
Hence xTMx = xTPP Tx = ‖P Tx‖2 ≥ 0, with equality if and only if
P Tx = 0. Of course,M is symmetric becauseMT = (PP T )T = (P T )TP T =
PP T =M .

Solution 6.51. If S is any skew-symmetric matrix, that is ST = −S, then
xTSx = 0, because

xTSx =
(

xTSx
)T

= xTSTx = −xTSx ,

which implies xTSx = 0. (Here I’m using the simple fact that every 1 × 1
matrix is symmetric.) Thus, given any symmetric positive definite matrix
A, we have

xT (A+ S)x = xTAx ,

so that A+ S is positive definite, but not symmetric.

Solution 6.52. This exercise has really occurred before, but here’s a direct
solution. We have

eT
k Aek =

n
∑

ℓ=1

(eT
k )ℓ(Aek)ℓ =

n
∑

ℓ=1

δkℓ(Aek)ℓ = (Aek)k =

n
∑

m=1

Akmδkm = Akk.

Since ek 6= 0, we must have Akk = eT
k Aek > 0.
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Solution 6.53. We’ve just found an invertible lower triangular matrix L
for which A = LLT , so that xTAx = ‖LTx‖2 ≥ 0, with equality iff x = 0.

Solution 6.54. The easiest way to do this is to use the next exercise! This
was a deliberate trick to remind you that examination questions, and parts
thereof, need not be attempted in the order set.

Solution 6.55. If the columns of A are linearly independent, then the ma-
trix ATA is positive definite, and therefore invertible (see earlier exercises).
Thus

0 6= detATA = det(RTR) = (detR)2 ,

so that R is invertible also. (Here I’ve used the facts that det(PQ) =
detP detQ, det(P T ) = detP , and detP 6= 0 if and only if P is invertible.)
Conversely, if R is invertible, then, setting A = (a1 · · · an ), we obtain

‖
n
∑

k=1

xkak‖2 = xTATAx = xTRTRx = ‖Rx‖2 ≥ 0,

with equality if and only if x = 0. Hence the columns of A are linearly
independent.


