
Data Mining Coursework

Brad Baxter

December 23, 2003

My apologies for the late appearance of this coursework. I have reduced the quantity of work
in consequence. It is due at the end of January and should be given in at our General Office
on the seventh floor. Alternatively, you can use the wooden box outside the General Office.

1. We have seen in lectures that

r =

∫ ∞

0

(

1 − e−r2t
)

w(t) dt, r ≥ 0,

where w(t) = (4π)−1/2t−3/2. Hence derive

(s2 + c2)1/2 =

∫ ∞

0

(

1 − e−(s2+c2)t
)

w(t) dt, s ≥ 0,

and show that

(s2 + c2)1/2 = c +

∫ ∞

0

(

1 − e−s2t
)

α(t) dt, s ≥ 0,

where α(t) is to be determined. Use this integral relation to prove that

n
∑

j=1

n
∑

k=1

yjyk

√

‖xj − xk‖2 + c2 ≤ 0

when
∑n

`=1 y` = 0, for any vectors x1, . . . ,xn in R
d.

2. The Frobenius norm of an n × n matrix A is defined by

‖A‖F =
(

n
∑

j=1

n
∑

k=1

A2
jk

)1/2

.

In other words, if we think of A as a long vector with n2 elements, then ‖A‖F is just the
Euclidean norm of that vector. You can compute the Frobenius norm in Matlab using
the command norm(A, ’fro’).

Several applications, such as robotics and aircraft control systems, present the following
problem: the system attempts to maintain an orthogonal matrix Q(t) that describes its

1



orientation at each time t (the columns of the matrix are orthonormal vectors fixed in
the system). Unfortunately, measurement errors occur which cause the measured Q(t)
to lose orthogonality, i.e. we no longer have Q(t)T Q(t) = I. Therefore there is a need
to calculate an orthogonal matrix U that is closest to the observed matrix Q(t) in some
sense. If we decide to choose U to minimize the Frobenius norm ‖Q(t)−U‖F , then there
is a clever algorithm for calculating U : we choose V0 = Q(t) and then set

V`+1 =
1

2

(

V` + (V −1
` )T

)

, ` ≥ 0.

It can be shown that ‖V` − U‖F → 0 as ` → ∞, and you will see that convergence is
fast (in most cases 4 steps will be enough). Write a short Matlab script to generate the
matrices of this iteration and investigate the speed of convergence (for 3 × 3 matrices)
by plotting log ‖U − V`‖F . You will need to generate random orthogonal matrices, for
which the following Matlab code is suitable.

A = randn(3);

[Q, R] = qr(A);

You can assume that Q is a suitable random orthogonal matrix. You can then slightly
perturb Q by setting

V = Q + delta*randn(3);

Of course, a large delta is a large perturbation. I suggest starting with delta = 0.1,
but try larger values also. Does the algorithm ever fail? Generate some histograms
displaying the average behaviour for fixed delta and many random initial perturbed
orthogonal matrices. [This problem is closely related to the Procrustes’ problem, which
may have been mentioned in one of our other courses. You can enhance your Christmas
by discovering Procrustes’ sadistic practices via Google.]

3. One way to use radial basis functions in regression methods is as follows. We are given
sequences of points b1, . . . ,bm and c1, . . . , cn lying in R

d and, given function values
f1, . . . , fn, we seek real coefficients a1, . . . , am minimizing the sum of squares

n
∑

`=1

(f` − s(c`))
2
,

where

s(x) =
n
∑

k=1

akφ(x − bk),

for some radially symmetric function φ : R
d → R. One solution to this problem, as for

any least squares problem, is to solve the normal equations, which are given by

AT Aa = AT
f ,

Page 2



where a = (a1, . . . , am)T , f = (f1, . . . , fn)T and

A`k = φ(c` − bk), 1 ≤ k ≤ m, 1 ≤ ` ≤ n.

Show that

(AT A)jk =
n
∑

`=1

φ(c` − bj)φ(c` − bk), 1 ≤ j, k ≤ m,

and hence derive

v
T AT Av =

n
∑

`=1

(

m
∑

k=1

vkφ(c` − bk)

)2

≥ 0.

Now suppose that φ(x) = e−λ‖x‖2

, for x ∈ R
d, λ being a positive constant. Further,

suppose that b
T
k c` = 0, for all k and `. Prove that there is a nonzero vector v for which

v
T AT Av = 0. Thus the matrix for the normal equations can be singular in some special

cases (I discovered this new result last summer).

Page 3


