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A radial basis function approximation has the form

s(x) =
n

∑

j=1

yj ϕ(‖x − xj‖2), x ∈ Rd,

where ϕ: [0,∞) → R is some given function, (yj)
n
1 are real coefficients, and the centres (xj)

n
1

are points in Rd. For a wide class of functions ϕ, it is known that the interpolation matrix

A = (ϕ(‖xj − xk‖2))
n
j,k=1 is invertible. Further, several recent papers have provided upper bounds

on ‖A−1‖2, where the points (xj)
n
1 satisfy the condition ‖xj − xk‖2 ≥ δ, j 6= k, for some positive

constant δ. In this paper, we provide the least upper bound on ‖A−1‖2 when the points (xj)
n
1 form

any subset of the integer lattice Zd, and when ϕ is a conditionally negative definite function of

order 1, a large set of functions which includes the multiquadric. Specifically, for any set of points

(xj)
n
1 ⊂ Zd, we provide the inequality

‖A−1‖2 ≤
(

∑

k∈Zd

|ϕ̂(‖πe + 2πk‖2)|
)−1

,

where e = [1, . . . , 1]T ∈ Rd and where ϕ̂ is the generalized Fourier transform of ϕ. We provide a

constructive proof that no smaller bound is valid and comment on the relevance of the method of

analysis to the problem of estimating all the eigenvalues of such an interpolation matrix.
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1. Introduction

The multivariate interpolation problem is as follows: given points (xj)
n
j=1 in Rd and real numbers

(fj)
n
j=1, construct a function s:Rd → R such that s(xk) = fk, for k = 1, . . . , n. The radial basis

function approach is to choose a univariate function ϕ: [0,∞) → R, a norm ‖ . ‖ on Rd, and to let

s take the form

s(x) =
n

∑

j=1

yjϕ(‖x − xj‖). (1.1)

The norm ‖ . ‖ will be the Euclidean norm throughout this paper. We see that the radial basis

function interpolation problem has a unique solution for any given scalars (fj)
n
j=1 if and only if

the matrix (ϕ(‖xj − xk‖))
n
j,k=1 is invertible. Such a matrix will be called a distance matrix in this

paper. These functions provide a useful and flexible form for multivariate approximation, but their

approximation power as a space of functions is not addressed in this paper.

A powerful and elegant theory was developed by I. J. Schoenberg and others some fifty years

ago which may be used to analyse the singularity of distance matrices. Indeed, in Schoenberg (1938)

it was shown that a Euclidean distance matrix, which arises when ϕ(r) = r, is invertible if n ≥ 2

and the points (xj)
n
j=1 are distinct. Further, extensions of this work by Micchelli [6] proved that

the distance matrix is invertible for several classes of functions, including the Hardy multiquadric,

the only restrictions on the points (xj)
n
j=1 being that they are distinct and that n ≥ 2. Thus

the singularity of the distance matrix has been successfully investigated for many useful radial

basis functions. In this paper, we bound the eigenvalue of smallest modulus for certain distance

matrices. Specifically, we provide the greatest lower bound on the moduli of the eigenvalues in the

case when the points (xj)
n
j=1 form a subset of the integers Zd, our method of analysis applying

to a wide class of functions which includes the multiquadric. More precisely, let N be any finite

subset of the integers Zd and let λN
min be the smallest eigenvalue in modulus of the distance matrix

(ϕ(‖j − k‖))j,k∈N . Then the results of Sections 3 and 4 provide the inequality

|λN
min| ≥ Cϕ, (1.2)

where Cϕ is a positive constant for which an elegant formula is derived. We also provide a con-

structive proof that Cϕ cannot be replaced by any larger number, and it is for this reason that we

shall describe inequality (1.2) as an optimal lower bound. Similarly, we shall say that an upper

bound is optimal if none of the constants appearing in the inequality can be replaced by smaller

numbers.
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It is crucial to our analysis that the distance matrix (ϕ(‖j − k‖))j,k∈N may be embedded in

the bi-infinite matrix (ϕ(‖j − k‖))j,k∈Zd . Such a bi-infinite matrix is called a Toeplitz matrix if

d = 1. We shall use this name for all values of d, since we use the multivariate form of the Fourier

analysis of Toeplitz forms (see Grenander and Szegő [5]).

Of course, inequality (1.2) also provides an upper bound on the norm of the inverse of the

distance matrices generated by finite subsets of the integers Zd. This is not the first paper to

address the problem of bounding the norms of inverses of distance matrices and we acknowledge

the papers of Ball [2] and Narcowich and Ward [7, 8], which first interested the author in such

estimates. Their results are not limited to the case when the data points are a subset of the

integers. Instead, they apply when the points satisfy the condition ‖xj − xk‖ ≥ ε for j 6= k, where

ε is a positive constant, and they provide lower bounds on the smallest modulus of an eigenvalue

for several functions ϕ, including the multiquadric. We will find that these bounds are not optimal,

except in the special case of the Euclidean norm in the univariate case. Further, our bounds apply

to all the conditionally negative definite functions of order 1. The definition of this class of functions

may be found in Section 3.

We shall often use the theory of generalized Fourier transforms in this paper, for which our

principal reference will be the excellent book of Jones [4]. These transforms are precisely the

Fourier transforms of tempered distributions constructed in Schwartz [10]. First, however, Section 2

presents several theorems which require only the classical theory of the Fourier transform. These

results will be necessary in Section 3.

2. Toeplitz forms and Theta functions

We require several properties of the Fejér kernel, which is defined as follows. For each positive

integer n, the nth univariate Fejér kernel is the positive trigonometric polynomial

Kn(t) =

n
∑

k=−n

(1 − |k|/n) exp(ikt)

=
sin2 nt/2

n sin2 t/2
.

(2.1)

Further, the nth multivariate Fejér kernel is defined by the product

Kn(t1, . . . , td) = Kn(t1)Kn(t2) · · ·Kn(td), t = (t1, . . . , td) ∈ Rd. (2.2)

Lemma 2.1. The univariate kernel enjoys the following property: for any continuous 2π-periodic

function f :R → R and for all x ∈ R we have

lim
n→∞

(2π)−1

∫ 2π

0

Kn(t − x)f(t) dt = f(x).
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Moreover, this kernel satisfies the equations

(2π)−1

∫ 2π

0

Kn(t) dt = 1 (2.3)

and

Kn(t) =
∣

∣

∣
n−1/2

n−1
∑

k=0

exp(ikt)
∣

∣

∣

2

. (2.4)

Proof. Most text-books on harmonic analysis contain the first property and (2.3). For example, see

pages 89ff of volume I of Zygmund [13]. It is elementary to deduce (2.4) from (2.1).

Lemma 2.2. For every continuous [0, 2π]d-periodic function f :Rd → R, the multivariate Fejér

kernel gives the convergence property

lim
n→∞

(2π)−d

∫

[0,2π]d
Kn(t − x)f(t) dt = f(x)

for every x ∈ Rd. Further, Kn is the square of the modulus of a trigonometric polynomial with real

coefficients and

(2π)−d

∫

[0,2π]d
Kn(t) dt = 1.

Proof. The first property is Theorem 1.20 of chapter 17 of Zygmund [13]. The last part of the lemma

is an immediate consequence of (2.3), (2.4) and the definition of the multivariate Fejér kernel.

All sequences will be real sequences in this paper. Further, we shall say that a sequence

(aj)Zd := {aj}j∈Zd is finitely supported if it contains only finitely many nonzero terms. The scalar

product of two vectors x and y in Rd will be denoted by xy.

Proposition 2.3. Let f :Rd → R be an absolutely integrable continuous function whose Fourier

transform f̂ is also absolutely integrable. Then for any finitely supported sequence (aj)Zd , and for

any choice of points (xj)Zd in Rd, we have the identity

∑

j,k∈Zd

ajakf(xj − xk) = (2π)−d

∫

Rd

∣

∣

∣

∑

j∈Zd

aj exp(ixjξ)
∣

∣

∣

2

f̂(ξ) dξ.

Proof. The function Rd 3 x 7→
∑

j,k ajakf(x + xj − xk) is absolutely integrable. Its Fourier

transform is given by

[

∑

j,k∈Zd

ajakf(· + xj − xk)
]∧

(ξ) =
∑

j,k∈Zd

ajak exp(i(xj − xk)ξ)f̂(ξ)

=
∣

∣

∣

∑

j∈Zd

aj exp(ixjξ)
∣

∣

∣

2

f̂(ξ), ξ ∈ Rd,
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and is therefore absolutely integrable. Applying the Fourier inversion theorem we have

∑

j,k∈Zd

ajakf(x + xj − xk) = (2π)−d

∫

Rd

∣

∣

∣

∑

j∈Zd

aj exp(ixjξ)
∣

∣

∣

2

f̂(ξ) exp(ixξ) dξ.

Setting x = 0 produces the stated equation.

In this paper, a key rôle will be played by the symbol function

σ(ξ) =
∑

k∈Zd

f̂(ξ + 2πk), ξ ∈ Rd. (2.5)

If f̂ ∈ L1(Rd), then σ is an absolutely integrable function on [0, 2π]d and its defining series is

absolutely convergent almost everywhere. These facts are consequences of the relations

∞ >

∫

Rd

|f̂(ξ)| dξ =
∑

k∈Zd

∫

[0,2π]d
|f̂(ξ + 2πk)| dξ =

∫

[0,2π]d

∑

k∈Zd

|f̂(ξ + 2πk)| dξ,

the exchange of integration and summation being a consequence of Fubini’s theorem. If the

points (xj)Zd are integers, then we readily deduce the following bounds on the quadratic form
∑

j,k∈Zd ajakf(j − k).

Proposition 2.4. Let f satisfy the conditions of Proposition 2.3 and let (aj)Zd be a finitely

supported sequence. Then we have the identity

∑

j,k∈Zd

ajakf(j − k) = (2π)−d

∫

[0,2π]d

∣

∣

∣

∑

j∈Zd

aj exp(ijξ)
∣

∣

∣

2

σ(ξ) dξ. (2.6)

Further, letting m = inf{σ(ξ) : ξ ∈ [0, 2π]d} and M = sup{σ(ξ) : ξ ∈ [0, 2π]d}, we have the bounds

m
∑

j∈Zd

a2
j ≤

∑

j,k∈Zd

ajakf(j − k) ≤ M
∑

j∈Zd

a2
j .

Proof. Proposition 2.3 implies the equation

∑

j,k∈Zd

ajakf(j − k) =
∑

k∈Zd

(2π)−d

∫

[0,2π]d

∣

∣

∣

∑

j∈Zd

aj exp(ijξ)
∣

∣

∣

2

f̂(ξ + 2πk) dξ

= (2π)−d

∫

[0,2π]d

∣

∣

∣

∑

j∈Zd

aj exp(ijξ)
∣

∣

∣

2

σ(ξ) dξ,

the exchange of integration and summation being justified by Fubini’s theorem. For the upper

bound, the Parseval theorem yields the expressions

∑

j,k∈Zd

ajakf(j − k) = (2π)−d

∫

[0,2π]d

∣

∣

∣

∑

j∈Zd

aj exp(ijξ)
∣

∣

∣

2

σ(ξ) dξ

≤ M
∑

j∈Zd

a2
j .

The lower bound follows similarly and the proof is complete.

The inequalities of the last proposition enjoy the following optimality property.
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Proposition 2.5. Let f satisfy the conditions of Proposition 2.3 and suppose that the symbol

function is continuous. Then the inequalities of Proposition 2.4 are optimal lower and upper bounds.

Proof. Let ξM ∈ [0, 2π]d be a point such that σ(ξM ) = M , which exists by continuity of the symbol

function. We shall construct a set {(a
(n)
j )j∈Zd : n = 1, 2, . . . } of finitely supported sequences such

that
∑

j∈Zd |a
(n)
j |2 = 1, for all n, and

lim
n→∞

∑

j,k∈Zd

a
(n)
j a

(n)∗
k f(j − k) = M. (2.7)

We recall from Lemma 2.2 that the multivariate Fejér kernel is the square of the modulus of a

trigonometric polynomial with real coefficients. Therefore there exists a finitely supported sequence

(a
(n)
j )Zd satisfying the relation

∣

∣

∣

∑

j∈Zd

a
(n)
j exp(ijξ)

∣

∣

∣

2

= Kn(ξ − ξM ), ξ ∈ Rd. (2.8)

Further, the Parseval theorem and Lemma 2.2 provide the equations

∑

j∈Zd

|a
(n)
j |2 = (2π)−d

∫

[0,2π]d
Kn(ξ − ξM ) dξ = 1

and

lim
n→∞

(2π)−d

∫

[0,2π]d
Kn(ξ − ξM )σ(ξ) dξ = σ(ξM ) = M.

Now it follows from (2.6) and (2.8) that the limit (2.7) holds. The lower bound of Proposition 2.4

is dealt with in the same fashion.

The set of functions satisfying the conditions of Proposition 2.5 is nonvoid. For example,

suppose that we have f̂(ξ) = O(‖ξ‖−d−δ), for large ‖ξ‖, where δ is a positive constant. Then

the series defining the symbol function σ converges uniformly, by the Weierstrass M-test, and σ is

continuous, being a uniformly convergent sum of continuous functions. These remarks apply when

f is a Gaussian, which is the subject of the rest of this section. We shall see that the analysis of

the Gaussian provides the key to all the results of this paper.

Proposition 2.6. Let λ be a positive constant and let f(x) = exp(−λ‖x‖2), for x ∈ Rd. Then f

satisfies the conditions of Proposition 2.5.

Proof. The Fourier transform of f is the function f̂(ξ) = (π/λ)d/2 exp(−‖ξ‖2/4λ), which is a

standard calculation of the classical theory of the Fourier transform. It is clear that f satisfies the

conditions of Proposition 2.3, and that the symbol function is the expression

σ(ξ) = (π/λ)d/2
∑

k∈Zd

exp(−‖ξ + 2πk‖2/4λ), ξ ∈ Rd. (2.9)
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Finally, the decay of the Gaussian ensures that σ is continuous, being a uniformly convergent sum

of continuous functions.

This result is of little use unless we know the minimum and maximum values of the symbol

function for the Gaussian. Therefore we show next that explicit expressions for these numbers may

be calculated from properties of Theta functions. Lemmata 2.7 and 2.8 address the cases when

d = 1 and d ≥ 1 respectively.

Lemma 2.7. Let λ be a positive constant and let E1:R → R be the 2π-periodic function

E1(t) =
∞
∑

k=−∞

exp
(

−λ(t + 2kπ)2
)

.

Then E1(0) ≥ E1(t) ≥ E1(π) for all t ∈ R.

Proof. An application of the Poisson summation formula provides the relation

E1(t) = (4πλ)−1/2
∞
∑

k=−∞

e−k2/4λeikt

= (4πλ)−1/2

(

1 + 2
∞
∑

k=1

e−k2/4λ cos(kt)

)

.

This is a Theta function. Indeed, using the notation of Whittaker and Watson [11], Section 21.11,

it is a Theta function of Jacobi type

ϑ3(z, q) = 1 + 2

∞
∑

k=1

qk2

cos(2kz),

where q ∈ C and |q| < 1. Choosing q = e−1/4λ we obtain the relation

E1(t) = (4πλ)−1/2ϑ3(t/2, q).

The useful product formula

ϑ3(z, q) = G
∞
∏

k=1

(1 + 2q2k−1 cos 2z + q4k−2),

where G =
∏∞

k=1(1 − q2k), is given in Whittaker and Watson [11], Sections 21.3 and 21.42. Thus

E1(t) = (4πλ)−1/2G

∞
∏

k=1

(1 + 2q2k−1 cos t + q4k−2), t ∈ R.

Now each term of the infinite product is a decreasing function on the interval [0, π], which implies

that E1 is a decreasing function on [0, π]. Since E1 is an even 2π-periodic function, we deduce that

E1 attains its global minimum at t = π and its maximum at t = 0.
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Lemma 2.8. Let λ be a positive constant and let Ed:R
d → Rd be the [0, 2π]d-periodic function

given by

Ed(x) =
∑

k∈Zd

exp(−λ‖t + 2kπ‖2), t = (t1, . . . , td) ∈ Rd.

Then Ed(0) ≥ Ed(t) ≥ Ed(πe), where e = [1, 1, . . . , 1]T .

Proof. The key observation is the equation

Ed(t) =
d

∏

k=1

E1(tk).

Thus Ed(0) =
∏d

k=1 E1(0) ≥
∏d

k=1 E1(tk) = Ed(t) ≥
∏d

k=1 E1(π) = Ed(πe), using the previous

lemma.

These lemmata imply that in the Gaussian case the maximum and minimum values of the

symbol function occur at t = 0 and t = πe respectively, where e = [1, . . . , 1]T . Therefore we deduce

from formula (2.9) that the constants of Proposition 2.4 are the expressions

m = (π/λ)d/2
∑

k∈Zd

exp(−‖πe + 2πk‖2/4λ) and

M = (π/λ)d/2
∑

k∈Zd

exp(−‖πk‖2/λ).
(2.10)

3. Conditionally negative definite functions of order 1

In this section we derive the optimal lower bound on the eigenvalue moduli of the distance matrices

generated by the integers for a class of functions including the Hardy multiquadric.

Definition 3.1. A real sequence (yj)Zd is said to be zero-summing if it is finitely supported and
∑

j∈Zd yj = 0.

Let ϕ: [0,∞) → R be a continuous function of algebraic growth. Thus it is meaningful to

speak of the generalized Fourier transform of the radially symmetric function {ϕ(‖x‖) : x ∈ Rd}.

We denote this transform by {ϕ̂(‖ξ‖) : ξ ∈ Rd}, so emphasizing that it is a radially symmetric

distribution, but we note that ϕ̂ depends on d. We shall restrict attention to the collection of

functions described below.

Definition 3.2. A function ϕ: [0,∞) → R will be termed admissible if it is a continuous function

of algebraic growth which satisfies the following conditions:
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1. ϕ̂ is a continuous function on Rd \ {0}.

2. The limit lim ‖ξ‖→0 ‖ξ‖
d+1ϕ̂(‖ξ‖) exists.

3. The integral
∫

{‖ξ‖≥1}
|ϕ̂(‖ξ‖)| dξ exists.

We now address the analogue of Proposition 2.3 for an admissible function.

Proposition 3.3. Let ϕ: [0,∞) → R be an admissible function and let (yj)Zd be a zero-summing

sequence. Then for any choice of points (xj)Zd in Rd we have the identity

∑

j,k∈Zd

yjykϕ(‖xj − xk‖) = (2π)−d

∫

Rd

∣

∣

∣

∑

j∈Zd

yj exp(ixjξ)
∣

∣

∣

2

ϕ̂(‖ξ‖) dξ. (3.1)

Proof. Let ĝ:Rd → R be the function defined by

ĝ(ξ) =
∣

∣

∣

∑

j∈Zd

yj exp(ixjξ)
∣

∣

∣

2

ϕ̂(‖ξ‖).

Then ĝ is an absolutely integrable function on Rd, because of the conditions on ϕ and because (yj)Zd

is a zero-summing sequence. Thus ĝ is the generalized transform of
∑

j,k yjykϕ(‖ ·+xj − xk‖), and

by standard properties of generalized Fourier transforms we deduce that

∑

j,k

yjykϕ(‖x + xj − xk‖) = (2π)−d

∫

Rd

∣

∣

∣

∑

j∈Zd

yj exp(ixjξ)
∣

∣

∣

2

ϕ̂(‖ξ‖) exp(ixξ) dξ.

The proof is completed by setting x = 0.

We come now to the subject that is given in the title of this section.

Definition 3.4. Let ϕ: [0,∞) → R be a continuous function. We shall say that ϕ is conditionally

negative definite of order 1 on every Rd, hereafter shortened to CND1, if we have the inequality

∑

j,k∈Zd

yjykϕ(‖xj − xk‖) ≤ 0,

for every positive integer d, for every zero-summing sequence (yj)Zd and for any choice of points

(xj)Zd in Rd.

Such functions were completely characterized by I. J. Schoenberg [9].

Theorem 3.5. A continuous function ϕ: [0,∞) → R is CND1 if and only if there exists a nonde-

creasing function α: [0,∞) → R such that

ϕ(r) = ϕ(0) +

∫ ∞

0

[1 − exp(−tr2)]t−1dα(t), for r > 0,

and the integral
∫ ∞

1
t−1 dα(t) exists.

9
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Proof. This is Theorem 6 of Schoenberg [9].

Thus dα is a positive Borel measure such that
∫ 1

0

dα(t) < ∞ and

∫ ∞

1

t−1 dα(t) < ∞.

Further, it is a consequence of this theorem that there exist constants A and B such that ϕ(r) ≤

Ar2 + B, where A and B are constants. In order to prove this assertion we note the elementary

inequalities
∫ ∞

1

[1 − exp(−tr2)]t−1 dα(t) ≤

∫ ∞

1

t−1 dα(t) < ∞,

and
∫ 1

0

[1 − exp(−tr2)]t−1 dα(t) ≤ r2

∫ 1

0

dα(t).

Thus A = r2(α(1) − α(0)) and B = ϕ(0) +
∫ ∞

1
t−1 dα(t) suffice. Therefore we may regard a CND1

function as a tempered distribution and it possesses a generalized Fourier transform. The following

relation between the transform and the integral representation of Theorem 3.5 will be essential to

our needs.

Theorem 3.6. Let ϕ: [0,∞) → R be an admissible CND1 function. For ξ ∈ Rd \ {0}, we have the

formula

ϕ̂(‖ξ‖) = −

∫ ∞

0

exp(−‖ξ‖2/4t)(π/t)d/2t−1 dα(t). (3.2)

Before embarking on the proof of this theorem, we require some groundwork. We shall say that

a function f :Rd \ {0} → R is symmetric if f(−x) = f(x), for every x ∈ Rd \ {0}.

Lemma 3.7. Let α: [0,∞) → R be a nondecreasing function such that the integral
∫ ∞

1
t−1 dα(t)

exists. Then the function

ψ(ξ) = −

∫ ∞

0

exp(−‖ξ‖2/4t)(π/t)d/2t−1 dα(t), ξ ∈ Rd \ {0}, (3.3)

is a symmetric smooth function, that is every derivative exists.

Proof. For every nonzero ξ, the limit

lim
t→0

exp(−‖ξ‖2/4t)(π/t)d/2t−1 = 0

implies that the integrand of expression (3.3) is a continuous function on [0,∞). Therefore it follows

from the inequality
∫ ∞

1

exp(−‖ξ‖2/4t)(π/t)d/2t−1 dα(t) ≤ πd/2

∫ ∞

1

t−1 dα(t) < ∞

that the integral is well-defined. Further, a similar argument for nonzero ξ shows that every deriva-

tive of the integrand with respect to ξ is also absolutely integrable for t ∈ [0,∞), which implies

that every derivative of ψ exists. The proof is complete, the symmetry of ψ being obvious.
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Lemma 3.8. Let f :Rd → R be a symmetric absolutely integrable function such that

∫

Rd

∣

∣

∣

∑

j∈Zd

aj exp(ixjt)
∣

∣

∣

2

f(t) dt = 0,

for every finitely supported sequence (aj)Zd and for any choice of points (xj)Zd . Then f must vanish

almost everywhere.

Proof. The given conditions on f imply that the Fourier transform f̂ is a symmetric function that

satisfies the equation
∑

j,k∈Zd

ajakf̂(xj − xk) = 0,

for every finitely supported sequence (aj)Zd and for all points (xj)Zd in Rd. Let l and m be

different integers and let al and am be the only nonzero elements of (aj)Zd . We now choose any

point ξ ∈ Rd \ {0} and set xl = 0, xm = ξ, which provides the equation

(

al

am

)T (

f̂(0) f̂(ξ)

f̂(ξ) f̂(0)

)(

al

am

)

= 0, for all al, am ∈ R.

Therefore f̂(0) = f̂(ξ) = 0, and since ξ was arbitrary, f̂ can only be the zero function. Consequently

f must vanish almost everywhere.

Corollary 3.9. Let g:Rd \ {0} → R be a symmetric continuous function such that

∫

Rd

∣

∣

∣

∑

j∈Zd

yj exp(ixjξ)
∣

∣

∣

2

|g(ξ)| dξ < ∞ (3.4)

and
∫

Rd

∣

∣

∣

∑

j∈Zd

yj exp(ixjξ)
∣

∣

∣

2

g(ξ) dξ = 0, (3.5)

for every zero-summing sequence (yj)Zd and for any choice of points (xj)Zd . Then g(ξ) = 0 for

every ξ ∈ Rd \ {0}.

Proof. For any integer k ∈ {1, . . . , d} and for any positive real number λ, let h be the symmetric

function

h(ξ) = g(ξ) sin2 λξk, ξ ∈ Rd \ {0}.

The relation

h(ξ) = g(ξ)
∣

∣

∣

1

2
exp(iλξk) −

1

2
exp(−iλξk)

∣

∣

∣

2

and condition (3.4) imply that h is absolutely integrable.

11
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Let (aj)Zd be any real finitely supported sequence and let (bj)Zd be any sequence of points in

Rd. We define a real sequence (yj)Zd and points (xj)Zd in Rd by the equation

∑

j∈Zd

yj exp(ixjξ) = sin λξk

∑

j∈Zd

aj exp(ibjξ).

Thus (yj)Zd is a sequence of finite support. Further, setting ξ = 0, we deduce that
∑

j∈Zd yj = 0,

so (yj)Zd is a zero-summing sequence. By condition (3.5), we have

0 =

∫

Rd

∣

∣

∣

∑

j∈Zd

yj exp(ixjξ)
∣

∣

∣

2

g(ξ) dξ =

∫

Rd

∣

∣

∣

∑

j∈Zd

aj exp(ibjξ)
∣

∣

∣

2

h(ξ) dξ.

Therefore we can apply Lemma 3.8 to h, finding that it vanishes almost everywhere. Hence the

continuity of g for nonzero argument implies that g(ξ) sin2 λξk = 0 for ξ 6= 0. But for every nonzero

ξ there exist k ∈ {1, . . . , d} and λ > 0 such that sin λξk 6= 0. Consequently g vanishes on Rd \ {0}.

We now complete the proof of Theorem 3.6.

Proof of Theorem 3.6. Let (yj)Zd be a zero-summing sequence and let (xj)Zd be any set of points

in Rd. Then Theorem 3.5 provides the expression

∑

j,k∈Zd

yjykϕ(‖xj − xk‖) = −

∫ ∞

0

(

∑

j,k∈Zd

yjyk exp(−t‖xj − xk‖
2)

)

t−1 dα(t),

this integral being well-defined because of the condition
∑

j∈Zd yj = 0. Therefore, using Proposition

2.3 with f(·) = exp(−t‖ · ‖2) in order to restate the Gaussian quadratic form in the integrand, we

find the equation

∑

j,k∈Zd

yjykϕ(‖xj − xk‖)

= −

∫ ∞

0

[

(2π)−d

∫

Rd

∣

∣

∣

∑

j∈Zd

yj exp(ixjξ)
∣

∣

∣

2

(π/t)d/2 exp(−‖ξ‖2/4t) dξ
]

t−1 dα(t)

= (2π)−d

∫

Rd

∣

∣

∣

∑

j∈Zd

yj exp(ixjξ)
∣

∣

∣

2

ψ(ξ) dξ,

where we have used Fubini’s theorem to exchange the order of integration and where ψ is the

function defined in (3.3). By comparing this equation with the assertion of Proposition 3.3, we see

that the difference g(ξ) = ϕ̂(‖ξ‖) − ψ(ξ) satisfies the conditions of Corollary 3.9. Hence ϕ̂(‖ξ‖) =

ψ(ξ) for all ξ ∈ Rd \ {0}. The proof is complete.

Remark. An immediate consequence of this theorem is that the generalized Fourier transform of

an admissible CND1 function cannot change sign.

The appearance of the Gaussian quadratic form in the proof of Theorem 3.6 enables us to use

the bounds of Lemma 2.8, which gives the following result.

12
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Theorem 3.10. Let ϕ: [0,∞) → R be an admissible CND1 function and let (yj)Zd be a zero-

summing sequence. Then we have the inequality

∣

∣

∣

∑

j,k∈Zd

yjykϕ(‖j − k‖)
∣

∣

∣
≥ |σ(πe)|

∑

j∈Zd

y2
j ,

where e = [1, . . . , 1]T .

Proof. Applying (3.1) and dissecting Rd into integer translates of the cube [0, 2π]d, we obtain the

equations
∣

∣

∣

∑

j,k∈Zd

yjykϕ(‖j − k‖)
∣

∣

∣
= (2π)−d

∫

Rd

∣

∣

∣

∑

j∈Zd

yj exp(ijξ)
∣

∣

∣

2

|ϕ̂(‖ξ‖)| dξ

= (2π)−d

∫

[0,2π]d

∣

∣

∣

∑

j∈Zd

yj exp(ijξ)
∣

∣

∣

2

|σ(ξ)| dξ,

(3.6)

where the interchange of summation and integration is justified by Fubini’s theorem, and where we

have used the fact that ϕ̂ does not change sign. Here the symbol function has the usual form (2.5).

Further, using (3.2), we again apply Fubini’s theorem to deduce the formula

|σ(ξ)| =
∑

k∈Zd

|ϕ̂(‖ξ + 2πk‖)|

=

∫ ∞

0

(

∑

k∈Zd

exp(−‖ξ + 2πk‖2/4t)
)

(π/t)d/2t−1dα(t).

Then it follows from Lemma 2.8 that we have the bound

|σ(ξ)| ≥

∫ ∞

0

(

∑

k∈Zd

exp(−‖πe + 2πk‖2/4t)
)

(π/t)d/2t−1dα(t)

= |σ(πe)|.

(3.7)

The required inequality is now a consequence of (3.6) and the Parseval relation

(2π)−d

∫

[0,2π]d

∣

∣

∣

∑

j∈Zd

yj exp(ijξ)
∣

∣

∣

2

dξ =
∑

j∈Zd

y2
j .

When the symbol function is continuous on Rd\2πZd, we can show that the previous inequality

is optimal using a modification of the proof of Proposition 2.5. Specifically, we construct a set

{(y
(n)
j )Zd : n = 1, 2, . . .} of zero-summing sequences such that limn→∞

∑

j∈Zd(y
(n)
j )2 = 1 and

lim
n→∞

∣

∣

∣

∑

j,k∈Zd

y
(n)
j y

(n)
k ϕ(‖j − k‖)

∣

∣

∣
= |σ(πe)|,

which implies that we cannot replace |σ(πe)| by any larger number in Theorem 3.10.

13
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Corollary 3.11. Let ϕ: [0,∞) → R satisfy the conditions of Theorem 3.10 and let the symbol

function be continuous in the set Rd \ 2πZd. Then the bound of Theorem 3.10 is optimal.

Proof. Let m be an integer such that 4m ≥ d + 1 and let Sm be the trigonometric polynomial

Sm(ξ) = [d−1
d

∑

j=1

sin2(ξj/2)]2m, ξ ∈ Rd.

Recalling from Lemma 2.2 that the multivariate Fejér kernel is the square of the modulus of a

trigonometric polynomial with real coefficients, we choose a finitely supported sequence (y
(n)
j )Zd

satisfying the equations

∣

∣

∣

∑

j∈Zd

y
(n)
j exp(ijξ)

∣

∣

∣

2

= Kn(ξ − πe)Sm(ξ), ξ ∈ Rd. (3.8)

Further, setting ξ = 0 we see that (y
(n)
j )Zd is a zero-summing sequence. Applying (3.6), we find the

relation
∣

∣

∣

∑

j,k∈Zd

y
(n)
j y

(n)
k ϕ(‖j − k‖)

∣

∣

∣
= (2π)−d

∫

[0,2π]d
Kn(ξ − πe)Sm(ξ) |σ(ξ)| dξ. (3.9)

Moreover, because the second condition of Definition 3.2 implies that Sm|σ| is a continuous function,

Lemma 2.2 provides the equations

lim
n→∞

(2π)−d

∫

[0,2π]d
Kn(ξ − πe)Sm(ξ) |σ(ξ)| dξ = Sm(πe) |σ(πe)| = |σ(πe)|.

It follows from (3.9) that we have the limit

lim
n→∞

∣

∣

∣

∑

j,k∈Zd

y
(n)
j y

(n)
k ϕ(‖j − k‖)

∣

∣

∣
= |σ(πe)|.

Finally, since Sm is a continuous function, another application of Lemma 2.2 yields the equation

lim
n→∞

(2π)−d

∫

[0,2π]d
Kn(ξ − πe)Sm(ξ) dξ = Sm(πe) = 1.

By substituting expression (3.8) into the left hand side and employing the Parseval relation

(2π)−d

∫

[0,2π]d

∣

∣

∣

∑

j∈Zd

y
(n)
j exp(ijξ)

∣

∣

∣

2

dξ =
∑

j∈Zd

(y
(n)
j )2

we find the relation limn→∞

∑

j∈Zd(y
(n)
j )2 = 1.
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4. Applications

This section relates the optimal inequality given in Theorem 3.10 to the spectrum of the distance

matrix, using an approach due to Ball [2]. We apply the following theorem.

Theorem 4.1. Let A ∈ Rn×n be a symmetric matrix with eigenvalues λ1 ≥ · · · ≥ λn. Let E be

any subspace of Rn of dimension m. Then we have the inequality

max{xT Ax : xT x = 1, x ⊥ E} ≥ λm+1.

Proof. This is the Courant-Fischer minimax theorem. See Wilkinson [12], pages 99ff.

For any finite subset N of Zd, let AN be the distance matrix (ϕ(‖j − k‖))j,k∈N . Further, let

the eigenvalues of AN be λ1 ≥ · · · ≥ λ|N |, where |N | is the cardinality of N , and let λN
min be the

smallest eigenvalue in modulus.

Proposition 4.2. Let ϕ: [0,∞) → R be a CND1 function that is not identically zero. Let ϕ(0) ≥ 0

and let µ be a positive constant such that

∑

j,k∈Zd

yjykϕ(‖j − k‖) ≤ −µ
∑

j∈Zd

y2
j , (4.1)

for every zero-summing sequence (yj)Zd . Then for every finite subset N of Zd we have the bound

|λN
min| ≥ µ.

Proof. Equation (4.1) implies that

yTANy ≤ −µ yT y,

for every vector (yj)j∈N such that
∑

j∈N yj = 0. Thus Theorem 4.1 implies that the eigenvalues of

AN satisfy −µ ≥ λ2 ≥ · · · ≥ λ|N |, where the subspace E of that theorem is simply the span of the

vector [1, 1, . . . , 1]T ∈ RN . In particular, 0 > λ2 ≥ · · · ≥ λ|N |. This observation and the condition

ϕ(0) ≥ 0 provide the expressions

0 ≤ traceAN = λ1 +

|N |
∑

j=2

λj = λ1 −

|N |
∑

j=2

|λj |.

Hence we have the relations λN
min = λ2 ≤ −µ. The proof is complete.

We now turn to the case of the multiquadric ϕc(r) = (r2 + c2)1/2, in order to furnish a

practical example of the above theory. This is a non-negative CND1 function (see Micchelli [6]) and

its generalized Fourier transform is the expression

ϕ̂c(‖ξ‖) = −π−1(2πc/‖ξ‖)(d+1)/2K(d+1)/2(c‖ξ‖),

15
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for nonzero ξ, which may be found in Jones [4]. Here {Kν(r) : r > 0} is a modified Bessel function

which is positive and smooth in R+, has a pole at the origin, and decays exponentially (Abramowitz

and Stegun [1]). Consequently, ϕc is a non-negative admissible CND1 function. Further, the expo-

nential decay of ϕ̂c ensures that the symbol function

σc(ξ) =
∑

k∈Zd

ϕ̂c(‖ξ + 2πk‖) (4.2)

is continuous for ξ ∈ Rd \ 2πZd. Therefore, given any finite subset N of Zd, Theorem 3.10 and

Proposition 4.2 imply that the distance matrix AN has every eigenvalue bounded away from zero

by at least

µc =
∑

k∈Zd

|ϕ̂c(‖πe + 2πk‖)|, (4.3)

where e = [1, 1, . . . , 1]T ∈ Rd. Moreover, Corollary 3.11 shows that this bound is optimal.

It follows from (4.3) that µc → 0 as c → ∞, because of the exponential decay of the modified

Bessel functions for large argument. For example, in the univariate case we have the formula

µc = (4c/π)
[

K1(cπ) + K1(3cπ)/3 + K1(5cπ)/5 + · · ·
]

,

and Table I displays some values of µc. Of course, a practical implication of this result is that we

cannot expect accurate direct solution of the interpolation equations for even quite modest values

of c, at least without using some special technique.

c Optimal bound

1.0 4.319455 × 10−2

2.0 2.513366 × 10−3

3.0 1.306969 × 10−4

4.0 6.462443 × 10−6

5.0 3.104941 × 10−7

10.0 6.542373 × 10−14

15.0 2.089078 × 10−20

Table I: The optimal bound on the smallest eigenvalue as c → ∞
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The optimal bound is achieved only when the number of centres is infinite. Therefore it is

interesting to investigate how rapidly |λN
min| converges to the optimal lower bound as |N | increases.

Table II displays |λN
min| = µc(n), say, for the distance matrix (ϕc(‖j−k‖))n−1

j,k=0 for several values of

n when c = 1. The third column lists close estimates of µc(n) obtained using a theorem of Szegő (see

Section 5.2 of Grenander and Szegő [5]). Specifically, Szegő’s theorem provides the approximation

µc(n) ≈ σc(π + π/n),

where σc is the function defined in (4.2). This theorem of Szegő requires the fact that the minimum

value of the symbol function is attained at π, which is inequality (3.7). Further, it provides the

estimates

λk+1 ≈ σc(π + kπ/n), k = 1, . . . , n − 1,

for all the negative eigenvalues of the distance matrix. Figure I displays the numbers {−1/λk :

k = 2, . . . , n} and their estimates {−1/σ(π + kπ/n) : k = 1, . . . , n − 1} in the case when n = 100.

We see that the agreement is excellent. Furthermore, this modification of the classical theory of

Toeplitz forms also provides an interesting and useful perspective on the construction of efficient

preconditioners for the conjugate gradient solution of the interpolation equations. We include no

further information on these topics, this last paragraph being presented as an apéritif to the paper

of Baxter [3].

n µ1(n) σ1(π + π/n)

100 4.324685 × 10−2 4.324653 × 10−2

150 4.321774 × 10−2 4.321765 × 10−2

200 4.320758 × 10−2 4.320754 × 10−2

250 4.320288 × 10−2 4.320286 × 10−2

300 4.320033 × 10−2 4.320032 × 10−2

350 4.319880 × 10−2 4.319879 × 10−2

Table II: Some calculated and estimated values of λN
min when c = 1
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Fig. I. Spectral estimates for a distance matrix of order 100
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