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A radial basis function approximation has the form

s(x) =
∑

j∈Zd

yj ϕ(‖x − xj‖2), x ∈ Rd,

where ϕ: [0,∞) → R is some given function, (yj)j∈Zd are real coefficients, and the centres (xj)j∈Zd

are points in Rd. It is known that radial basis function approximations using the multiquadric

ϕ(r) = (r2 +c2)1/2 possess many useful and interesting properties when the centres form an infinite

regular lattice. We analyse the limiting case as c → ∞ and identify a class of functions that arise as

uniform limits of the multiquadric interpolants. In the univariate case, we observe that the cardinal

function for the multiquadric becomes the sinc function as c → ∞. The limit of the multivariate

cardinal function is also identified.
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1. Introduction

The radial basis function approach to interpolating a function f :Rd → R on the integer lattice Zd

is as follows. Given a continuous univariate function ϕ: [0,∞) → R, we seek a cardinal function

χ(x) =
∑

j∈Zd

ajϕ(‖x − j‖), x ∈ Rd, (1.1)

that satisfies

χ(k) = δ0,k, k ∈ Zd.

Therefore

If(x) =
∑

j∈Zd

f(j)χ(x − j), x ∈ Rd, (1.2)

is an interpolant to f on the integer lattice whenever (1.2) is well defined. Here ‖·‖ is the Euclidean

norm on Rd. This approach provides a useful and flexible family of approximants for many choices

of ϕ, but here we concentrate on the Hardy multiquadric ϕc(r) = (r2 + c2)1/2. For this function,

Buhmann (1990) has shown that a cardinal function χc exists and its Fourier tranform is given by

the equation

χ̂c(ξ) =
ϕ̂c(‖ξ‖)∑

k∈Zd ϕ̂c(‖ξ + 2πk‖)
, ξ ∈ Rd, (1.3)

where {ϕ̂c(‖ξ‖) : ξ ∈ Rd} is the generalized Fourier transform of {ϕc(‖x‖) : x ∈ Rd}. Further,

χc possesses a classical Fourier transform (see Jones (1982) or Schwartz (1966)). In this paper, we

prove that χ̂c enjoys the following property:

lim
c→∞

χ̂c(ξ) =

{
1, ξ ∈ (−π, π)d,
0, ξ /∈ [−π, π]d,

(1.4)

which sheds new light on the approximation properties of the multiquadric as c → ∞. For example,

in the case d = 1, (1.4) implies that limc→∞ χc(x) = sinc(x), providing a perhaps unexpected link

with sampling theory and the classical theory of the Whittaker cardinal spline. Further, our

work has links with the error analysis of Buhmann and Dyn (1991) and illuminates the explicit

calculation of Section 4 of Powell (1991). It may also be compared with the results of Madych and

Nelson (1990) and Madych (1990), because these papers present analogous results for polyharmonic

cardinal splines.

2. Some properties of the multiquadric

The generalized Fourier transform of ϕc is given by

ϕ̂c(‖ξ‖) = −π−1(2πc/‖ξ‖)(d+1)/2K(d+1)/2(c‖ξ‖), (2.1)
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for nonzero ξ ∈ Rd (see Jones (1982)). Here {Kν(r) : r > 0} are the modified Bessel functions,

which are positive and smooth in R+, have a pole at the origin, and decay exponentially (see

Abramowitz and Stegun (1970)). There is an integral representation for these modified Bessel

functions (Abramowitz and Stegun (1970), equation 9.6.23) which transforms (2.1) into a highly

useful formula for ϕ̂c:

ϕ̂c(‖ξ‖) = −λdc
d+1

∫ ∞

1

exp(−cx‖ξ‖)(x2 − 1)d/2 dx, (2.2)

where λd = πd/2/Γ(1 + d/2). A simple consequence of (2.2) is the following lemma, which bounds

the exponential decay of ϕ̂c.

Lemma 2.1. If ‖ξ‖ > ‖η‖ > 0, then

|ϕ̂c(‖ξ‖)| ≤ exp[−c(‖ξ‖ − ‖η‖)] |ϕ̂c(‖η‖)|.

Proof. Applying (2.2), we obtain

|ϕ̂c(‖ξ‖)| = λdc
d+1

∫ ∞

1

exp[−cx(‖ξ‖ − ‖η‖)] exp(−cx‖η‖) (x2 − 1)d/2 dx

≤ exp(−c(‖ξ‖ − ‖η‖)) |ϕ̂c(‖η‖)|,

providing the desired bound.

We now prove our main result. We let I:Rd → R be the characteristic function of the cube

[−π, π]d, that is

I(ξ) =

{
1, ξ ∈ [−π, π]d,
0, ξ /∈ [−π, π]d.

Proposition 2.2. Let ξ be any fixed point of Rd. We have

lim
c→∞

χ̂c(ξ) = I(ξ),

if ‖ξ‖∞ 6= π, that is ξ does not lie in the boundary of [−π, π]d.

Proof. First, suppose that ξ /∈ [−π, π]d. Then there exists a nonzero integer k0 such that ‖ξ +

2πk0‖ < ‖ξ‖, and Lemma 2.1 provides the bounds

|ϕ̂c(‖ξ‖)| ≤ exp[−c(‖ξ‖ − ‖ξ + 2πk0‖)]|ϕ̂c(‖ξ + 2πk0‖)|

≤ exp[−c(‖ξ‖ − ‖ξ + 2πk0‖)]
∑

k∈Zd

|ϕ̂c(‖ξ + 2πk‖)|.

Thus, applying (1.3) and remembering that ϕ̂c does not change sign, we have

0 ≤ χ̂c(ξ) ≤ exp[−c(‖ξ‖ − ‖ξ + 2πk0‖)], ξ /∈ [−π, π]d. (2.3)
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The upper bound of (2.3) converges to zero as c → ∞, which completes the proof for this range of

ξ.

Suppose now that ξ ∈ (−π, π)d. Further, we shall assume that ξ is nonzero, because we know

that χ̂c(0) = 1 for all values of c. Then ‖ξ + 2πk‖ > ‖ξ‖, for every nonzero integer k ∈ Zd. Now

(1.3) provides the expression

χ̂c(ξ) =
(
1 +

∑

k∈Zd\{0}

∣∣∣ ϕ̂c(‖ξ + 2πk‖)

ϕ̂c(‖ξ‖)

∣∣∣
)−1

. (2.4)

We shall show that

lim
c→∞

∑

k∈Zd\{0}

∣∣∣∣
ϕ̂c(‖ξ + 2πk‖)

ϕ̂c(‖ξ‖)

∣∣∣∣ = 0, ξ ∈ (−π, π)d, (2.5)

which, together with (2.4), implies that limc→∞ χ̂c(ξ) = 1.

Now Lemma 2.1 implies that

∑

k∈Zd\{0}

∣∣∣∣
ϕ̂c(‖ξ + 2πk‖)

ϕ̂c(‖ξ‖)

∣∣∣∣ ≤
∑

k∈Zd\{0}

exp[−c(‖ξ + 2πk‖ − ‖ξ‖)], (2.6)

and each term of the series on the right converges to zero as c → ∞, since ‖ξ + 2πk‖ > ‖ξ‖ for

every nonzero integer k. Therefore we need only deal with the tail of the series. Specifically, we

derive the equation

lim
c→∞

∑

‖k‖≥2‖e‖

exp[−c(‖ξ + 2πk‖ − ‖ξ‖)] = 0, (2.7)

where e = [1, 1, . . . , 1]T . Now, if ‖k‖ ≥ 2‖e‖, then

‖ξ + 2πk‖ − ‖ξ‖ ≥ 2π(‖k‖ − ‖e‖) ≥ π‖k‖,

remembering that we have ‖ξ‖ ≤ π‖e‖. Hence

∑

‖k‖≥2‖e‖

exp[−c(‖ξ + 2πk‖ − ‖ξ‖)] ≤
∑

‖k‖≥2‖e‖

exp(−πc‖k‖). (2.8)

It is a simple exercise to prove that the series
∑

‖k‖≥2‖e‖ exp(−π‖k‖) is convergent. Therefore,

given any ε > 0, there exists a positive number R ≥ 1 such that

∑

‖k‖≥2R‖e‖

exp(−π‖k‖) ≤ ε.

Consequently, when c ≥ dRe we have the inequality

∑

‖k‖≥2‖e‖

exp(−πc‖k‖) ≤
∑

‖k‖≥2R‖e‖

exp(−π‖k‖) ≤ ε,

which establishes (2.5). The proof is complete.
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3. Multiquadrics and entire functions of exponential type π

Definition 3.1. Let f ∈ L2(Rd). We shall say that f is a function of exponential type A if its

Fourier transform f̂ is supported by the cube [−A, A]d. We shall denote the set of all functions of

exponential type A by EA(Rd).

We remark that the Paley-Wiener theorem implies that f may be extended to an entire function

on Cd satisfying a certain growth condition at infinity (see Stein and Weiss (1971), pages 108ff).

However, we do not use the Paley-Wiener theorem in this paper.

Lemma 3.2. Let f ∈ Eπ(Rd) ∩ L2(Rd) be a continuous function. Then we have the equation

∑

k∈Zd

f̂(ξ + 2πk) =
∑

k∈Zd

f(k) exp(−ikξ), (3.1)

the second series being convergent in L2(Rd).

Proof. Let

g(ξ) =
∑

k∈Zd

f̂(ξ + 2πk), ξ ∈ Rd.

At any point ξ ∈ Rd, this series contains at most one nonzero term, because of the condition on

the support of f̂ . Hence g is well defined. Further, we have the relations

∫

[−π,π]d
|g(ξ)|2 dξ =

∫

Rd

|f̂(ξ)|2 dξ < ∞,

since the Parseval theorem implies that f̂ is an element of L2(Rd). Thus g ∈ L2([−π, π]d) and its

Fourier series

g(ξ) =
∑

k∈Zd

gk exp(ikξ),

is convergent in L2([−π, π]d). The Fourier coefficients are given by the expressions

gk = (2π)−d

∫

[−π,π]d
f̂(ξ) exp(−ikξ) dξ = (2π)−d

∫

Rd

f̂(ξ) exp(−ikξ) dξ = f(−k),

where the final equation uses the Fourier inversion theorem for L2(Rd). The proof is complete.

We observe that an immediate consequence of the lemma is the convergence of the series
∑

k∈Zd [f(k)]2, by the Parseval theorem.

For the following results, we shall need the fact that χc ∈ L2(Rd), which is a consequence of

the analysis of Buhmann (1990).
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Lemma 3.3. Let f ∈ Eπ(Rd) ∩ L2(Rd) be a continuous function. For each positive integer n, we

define the function

Ŝn
c f(ξ) =


 ∑

‖k‖1≤n

f(k) exp(−ikξ)


 χ̂c(ξ), ξ ∈ Rd. (3.2)

Then {Sn
c f : n = 1, 2, . . .} forms a Cauchy sequence in L2(Rd).

Proof. Let Qn:Rd → R be the trigonometric polynomial

Qn(ξ) =
∑

‖k‖1≤n

f(k) exp(−ikξ), (3.3)

so that Ŝn
c f(ξ) = Qn(ξ)χ̂c(ξ). It is a consequence of Lemma 3.2 that this sequence of functions

forms a Cauchy sequence in L2([−π, π]d). Indeed, we shall prove that for m ≥ n we have

‖Ŝm
c f − Ŝn

c f‖L2(Rd) ≤ ‖Qm − Qn‖L2([−π,π]d), (3.4)

so that the sequence of functions {Ŝn
c f : n = 1, 2, . . .} is a Cauchy sequence in L2(Rd).

Now Fubini’s theorem provides the relation

‖Ŝm
c f − Ŝn

c f‖2
L2(Rd) =

∫

Rd

|Qm(ξ) − Qn(ξ)|
2
χ̂2

c(ξ) dξ

=

∫

[−π,π]d
|Qm(ξ) − Qn(ξ)|

2


 ∑

l∈Zd

χ̂2
c(ξ + 2πl)


 dξ.

(3.5)

However, (1.3) gives the bound
∑

l∈Zd

χ̂2
c(ξ + 2πl) =

∑

l∈Zd

ϕ̂2
c(‖ξ + 2πl‖)

/
(

∑

k∈Zd

ϕ̂c(‖ξ + 2πk‖))2

≤ 1,

which, together with (3.5), yields inequality (3.4).

Thus we may define

Ŝcf(ξ) = χ̂c(ξ)
∑

k∈Zd

f(k) exp(−ikξ), (3.7)

and the series is convergent in L2(Rd). Applying the inverse Fourier transform term by term, we

obtain the useful equation

Scf(x) =
∑

k∈Zd

f(k)χc(x − k), x ∈ Rd.

Theorem 3.4. Let f ∈ Eπ(Rd) ∩ L2(Rd) be a continuous function. We have

lim
c→∞

Scf(x) = f(x),

and the convergence is uniform on Rd.
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Proof. We have the equation

Scf(x) − f(x) = (2π)−d

∫

Rd

∑

k∈Zd

f̂(ξ + 2πk) (χ̂c(ξ) − I(ξ)) exp(ixξ) dξ.

Thus we deduce the bound

|Scf(x) − f(x)|

≤ (2π)−d

∫

[−π,π]d
|f̂(ξ)|

∑

k∈Zd

∣∣∣χ̂c(ξ + 2πk) − I(ξ + 2πk)
∣∣∣ dξ

= (2π)−d

∫

[−π,π]d
|f̂(ξ)|


1 − χ̂c(ξ) +

∑

k∈Zd\{0}

χ̂c(ξ + 2πk)


 dξ,

(3.8)

using the fact that χ̂c is non-negative, and we observe that this upper bound is independent of x.

Therefore we prove that the upper bound converges to zero as c → ∞.

Applying (1.3), we obtain the relation

∑

k∈Zd\{0}

χ̂c(ξ + 2πk) = 1 − χ̂c(ξ), (3.9)

whence

|Scf(x) − f(x)| ≤ 2(2π)−d

∫

[−π,π]d
|f̂(ξ)|(1 − χ̂c(ξ)) dξ. (3.10)

Now f̂ ∈ L2([−π, π]d) implies f̂ ∈ L1([−π, π]d), by the Cauchy-Schwartz inequality. Further,

Proposition 2.2 gives the limit limc→∞ χ̂c(ξ) = 1, for ξ ∈ (−π, π)d, and we have 0 ≤ 1− χ̂c(ξ) ≤ 1,

by (1.3). Therefore the dominated convergence theorem implies that

lim
c→∞

(2π)−d

∫

[−π,π]d
|f̂(ξ)|(1 − χ̂c(ξ)) dξ = 0.

The proof is complete.

Conclusions

Section 4 of Powell (1991) provides an explicit calculation that is analogous to the proof of Theorem

3.4 when f(x) = x2. Of course, this function does not satisfy the conditions of Theorem 3.4.

Therefore extensions of this result are necessary, but the final form of the theorem is not clear at

present.

Theorem 3.4 encourages the use of large c for certain functions. Indeed, it suggests that large

c will provide high accuracy interpolants for univariate functions that are well approximated by
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integer translates of the sinc function. Thus, in exact arithmetic, a large value of c should be useful

whenever the function is well approximated by the Whittaker cardinal series. However, we remark

that the linear systems arising when c is large can be rather ill-conditioned. Indeed, Baxter (1991)

proves that the smallest eigenvalue of the interpolation matrix generated by a finite regular grid

converges to zero exponentially quickly as c → ∞. We refer the reader to Table I of Baxter (1991)

for further information. Therefore special techniques are required for the effective use of large c.
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