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A function f : [0,00) — R for which the quadratic form

D> ajanf(|lz; — )

j=1 k=1
is non-negative, for any positive integers n and d and all points zi,...,z,
lying in R?, where || - || denotes the Euclidean norm, is said to be positive

definite on Hilbert space. In Schoenberg (1938), it was shown that a function
is positive definite on Hilbert space if and only if it is completely monotonic.
Unfortunately, Schoenberg’s proof was rather complicated. In this paper, we
present a short geometric proof of this beautiful fact.

1. Introduction

Let f:]0,00) — R be a function for which the quadratic form

Z Z ajarf(||lz; — mkHQ)

j=1k=1
is non-negative, for any positive integers n and d and all points z1,...,z,
lying in R?, where | - || denotes the Euclidean norm. In other words, if H is

any Hilbert space that is isomorphic to #2(Z), then f : [0,00) — R has the
property that every matrix

n

(£Uls = ml®)” (1.1)

J,k=1
is non-negative definite, for any positive integer n and any points z1,...,z, €
H. Accordingly, we say that f is positive definite on Hilbert space, al-
though we remark that much of the literature prefers the more cumbersome
term “positive definite on every R4”. Such functions were characterized
by I. J. Schoenberg in a remarkable series of seminal papers collected in
Schoenberg (1988), wherein he was able to show that the class of functions
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positive definite on Hilbert space is precisely the set of completely monotonic
functions. We recall that f : (0, 00) — R is completely monotonic provided
that

(—1)kf(k)(zp) >0, for every k =0,1,... and for 0 < z < co.

The theory of positive definite functions on Hilbert space has had great
impact in many fields; see Micchelli (1986) and the survey of metric geometry
in Schoenberg (1988).

Unfortunately, Schoenberg’s proof was rather complicated. Specifically,
he first derived an integral representation for radially symmetric positive
definite functions on R?. A careful limiting argument, similar in flavour
to the Central Limit Theorem, was then used to prove that positive defin-
ite functions on Hilbert space are Laplace transforms of finite positive Borel
measures defined on the half-line [0, o0). Such Laplace transforms are known
to be the completely monotonic functions, by a celebrated theorem of Bern-
stein (see, for instance, Widder (1946)). In this paper, we present a short
direct proof that postive definite functions on Hilbert space are completely
monotonic. Further, our proof is based on a geometric construction first
used in Baxter (1991).

2. Positive Definite Functions on Hilbert Space

In this note, H can be any Hilbert space isomorphic to £2(Z).

Definition 2.1. A function f:[0,00) — R will be called positive definite
on Hilbert space (HPD) if the matrix

(Flzg = 2l®)” (2.1)

7,k=1

is non-negative definite for every positive integer n and any points z,...,z, €
H. We shall call any matrix of the form (2.1) a distance matriz.

The classical theory of positive definite functions provides the well-known
inequality

f@)] < £(0),

but a stronger bound holds for HPD functions.
Proposition 2.1. FEvery HPD function is non-negative.

Proof. Let eq,eq,... be any orthonormal sequence in H and choose any
nonzero real number \. Using the relation f(||\e; — Aex||?) = f(2A?), for
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j # k, we find
1\ 7" 1
1 N 1 1 )
0< || (FUne=2el?)” || =nfO)+5nmn-1)f(23%). (22)
. 7,k=1 : 2
1 1
Hence, for n > 2, we have
2
F(222) + nf__(Oi > 0. (2.3)

Letting n — oo, we conclude f(2)?) > 0 for every nonzero real number \.

OJ

In fact, HPD functions satisfy a much stronger property. We recall that,
for any h > 0, the forward difference operator Ay, is defined by the equation

Apf(t):==f(t+h) = f@t), t>0, (2.4)
so that Apf:[0,00) — R. Of course, AT f := Ap(A) 1 f).

Theorem 2.2. If f:[0,00) — R is HPD, then (—1)"A}" f is also HPD, for
every h > 0 and positive integer m.

Proof. Tt is sufficient to prove that — Ay, f is HPD. To this end, let z1, ..., z,
be any vectors in H, and choose any unit vector y € H that is orthogonal
to z1,...,x,. We now let A denote the 2n x 2n distance matrix generated
by the points

Tlyeey Ty, T1 +h1/2y,...,$n + h1/2y.
It is easily checked that

B C
(2 5)
where the n x n matrices B and C are given by the equations
Bjk:f(ij_kaQ)a 1 S]akgn:

and
Cir = flzj = (xx + WPY)1°) = f(loj — 2l + 1), 1<jk<n.
Now, given any vector ¢ € R”, and since f is HPD, we have

T
0§<a> A( a>=2aT(B—C)a52aTDa,

—a

where
Dj, = —Apf(llzj — ze]?), 1<jk<n.
Hence —Ay f is HPD. 0]
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A standard limiting argument then allows us to deduce that f is com-
pletely monotonic. The slick construction of Theorem 2.2 was, in fact, dis-
tilled from a more elaborate geometric artifice to be found in Section 3 of
Baxter (1991), described below.

We first choose any points zy,...,z, € H and let ai,...,a, be real
numbers. We now pick a positive integer m and any set of orthonormal
vectors eq,...,e, € H that are orthogonal to z1,...,x,. The vertices of
the cube generated by the closed convex hull of ey,..., e, will be denoted
Y1,Y2,. .., Yom, their order being irrelevant. We shall also write

m
ye =Y ye(er, 1<k <2™
/=1

Let us now introduce the new configuration of points
{xj—l—h1/2yk:1§j§n, 1gkg2"1}. (2.5)
The coeflicient associated with the point z; + hl/Qyj will be
a(j, k) = aj (1O tum) - < i<n 1<k < 2™ (2.6)
Thus

n 2m n 2m
0<Q:=Y_ > >3 alii.k)al, k) f(ll(z),+h" 2y, )= (25, +h 2y, |I?),

J1=1k1=172=1ko=1
(2.7)
because f is HPD. However, by construction,

H(le + h1/2yk1) - (x]é + hl/Zyka)HZ = ijl - xj2||2 + thkl - yk2H2: (28)

and the squared distances {||lyx, — Yk, | : 1 < k1,ks < n} take the values
0,1,2,...,m, the distance £ occuring with frequency (?) Further, if ||yg, —
Yk, ||* = £, then

(—1)¥k (1)++~4yx, (m) (—1)¥k (1) 44y, (m) _ (_1)3,

so that
0 < @
_ n n . | m _1f m o 2 hﬁ
S 3 g S0 ) S, wal? + o)
j1=1ja=1 £=0

= 3 aj a5 (-0)mAP F(llzjo1 — 24, (2.9)

j1=1j2=1
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Finally, we recall the elementary formula (see, for example, Davis (1975))

amags) = v (7 ) #e+ ),

=0
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