
Preonditioned Conjugate Gradients,Radial Basis Funtions and ToeplitzMatriesB. J. C. BaxterDepartment of Mathematis, Imperial CollegeLondon SW7 2BZ, Englandb.baxter�i.a.ukwww.ma.i.a.uk/�baxterRadial basis funtions provide highly useful and exible interpolants to mul-tivariate funtions. Further, they are beginning to be used in the numerialsolution of partial di�erential equations. Unfortunately, their onstrutionrequires the solution of a dense linear system. Therefore muh attention hasbeen given to iterative methods. In this paper, we present a highly eÆientpreonditioner for the onjugate gradient solution of the interpolation equa-tions generated by gridded data. Thus our method applies to the orrespond-ing Toeplitz matries. The number of iterations required to ahieve a giventolerane is independent of the number of variables.1. IntrodutionA radial basis funtion approximation has the forms(x) = nXj=1 yj '(kx� xjk); x 2 Rd ;where ': [0;1) ! R is some given funtion, (yj)n1 are real oeÆients, andthe entres (xj)n1 are points in Rd ; the norm k�k will be Eulidean throughoutthis study. For a wide lass of funtions ', it is known that the interpolationmatrix A = ('(kxj � xkk))nj;k=1is invertible. This matrix is typially full, whih fat has enouraged thestudy of iterative methods. For example, highly promising results havebeen published in the use of radial basis funtions in olloation and Galer-kin methods for the numerial solution of partial di�erential equations (seeFranke and Shabak (1998) and Wendland (1999)), but diret solution lim-its their appliability to fairly small problems. The use of the preondi-tioned onjugate gradient algorithm was pioneered by Dyn, Levin and Rippa(1986), and some stunning results for sattered data were presented reently



2 B. J. C. Baxterin Faul and Powell (1999), although the rapid onvergene desribed thereis not fully understood. Therefore we study the highly strutured ase whenthe data form a �nite regular grid. The onjugate gradient algorithm hasbeen applied to Toeplitz matries with some suess; see, for instane, Chanand Strang (1989). However, sine our matries are usually not positivede�nite and often possess elements that grow away from the diagonal, thepreonditioners of Chan and Strang (1989) are not suitable. However, thematries have the property that their inverses tratable more tratable. Spe-i�ally, the detailed study of the spetra of the assoiated Toeplitz operat-ors presented in Baxter (1992) and Baxter (1994) allows us to reate highlyeÆient preonditioners by inverting relatively small �nite setions of thebi-in�nite symmetri Toeplitz operator, and this onstrut is also easily un-derstood via Toeplitz theory.Let n be a positive integer and let An be the symmetri Toeplitz matrixgiven by An = ('(j � k))nj;k=�n ; (1.1)where ':R ! R is either a Gaussian ('(x) = exp(��x2) for some positiveonstant �) or a multiquadri ('(x) = (x2 + 2)1=2 for some real onstant). In this paper we onstrut eÆient preonditioners for the onjugategradient solution of the linear systemAnx = f; f 2 R2n+1 ; (1.2)when ' is a Gaussian, or the augmented linear systemAnx+ ey = f; (1.3)eTx = 0; (1.4)when ' is a multiquadri. Here e = [1; 1; : : : ; 1℄T 2 R2n+1 and y 2 R. Setion2 desribes the onstrution for the Gaussian and Setion 3 deals with themultiquadri. Of ourse, we exploit the Toeplitz struture of An to performa matrix-vetor multipliation in O(n logn) operations whilst storing O(n)real numbers. Further, we shall see numerially that the number of iterationsrequired to ahieve a solution of (1.2) or (1.4) to within a given toleraneis independent of n. The Matlab software used an be obtained from myhomepage.Our method applies to many other radial basis funtions, suh as the in-verse multiquadri ('(x) = (x2 + 2)�1=2) and the thin plate spline ('(x) =x2 log jxj). However, we onentrate on the Gaussian and the multiquadribeause they exhibit most of the important features of our approah in aonrete setting. Similarly we treat the one-dimensional problem merely toavoid ompliation; the multidimensional ase is a rather slight generaliza-



Preonditioned CG and RBFs 3tion of this work. Let us remark that the analogue of (1.1) is the operatorA(d)n = ('(j � k))j;k2[�n;n℄d ; (1.5)and we shall still all A(d)n a Toeplitz matrix. Moreover the matrix-vetormultipliation A(d)n x = 0� Xk2[�n;n℄d '(kj � kk)xk1Aj2[�n;n℄d ; (1.6)where k � k is the Eulidean norm and x = (xj)j2[�n;n℄d, an still be al-ulated in O(N logN) operations, where N = (2n + 1)d, requiring O(N)real numbers to be stored. This trik is a simple extension of the Toeplitzmatrix-vetor multipliation method when d = 1.2. The GaussianIt is well-known that the Gaussian generates a positive de�nite interpolationmatrix, and its funtional deay is so rapid that preonditioning the onjug-ate gradient algorithm is not neessary. However, it provides a useful modelproblem that we shall desribe here before developing the ideas further inthe following setion.Our treatment of the preonditioned onjugate gradient (PCG) methodfollows Setion 10.3 of Golub and Van Loan (1989), and we begin witha general desription. We let n be a positive integer and A 2 Rn�n be anarbitrary symmetri positive de�nite matrix. For any nonsingular symmetrimatrix P 2 Rn�n and b 2 Rn we an use the following iteration to solve thelinear system PAPx = Pb.Algorithm 2.1. Choose any x0 in Rn . Set r0 = Pb�PAPx0 and d0 = r0.For k = 0; 1; 2; : : : do beginak = rTk rk=dTk PAPdkxk+1 = xk + akdkrk+1 = rk � akPAPdkbk = rTk+1rk+1=rTk rkdk+1 = rk+1 + bkdkStop if krk+1k or kdk+1k is suÆiently small.end.In order to simplify Algorithm 2.1 de�neC = P 2; �k = Pxk; rk = P�k and Æk = Pdk: (2.1)Substituting in Algorithm 2.1 we obtain the following method.Algorithm 2.2. Choose any �0 in Rn . Set �0 = b�A�0, Æ0 = C�0.



4 B. J. C. BaxterFor k = 0; 1; 2; : : : do beginak = �TkC�k=ÆTk AÆk�k+1 = �k + akÆk�k+1 = �k � akAÆkbk = �Tk+1C�k+1=�TkC�kÆk+1 = C�k+1 + bkÆkStop if k�k+1k or kÆk+1k is suÆiently small.end.It is Algorithm 2.2 that we shall onsider as our PCG method in thissetion, and we shall all C the preonditioner. We see that the only re-strition on C is that it must be a symmetri positive de�nite matrix, butwe observe that the spetrum of CA should onsist of a small number oflusters, preferably one luster onentrated at one. At this point, we alsomention that the ondition number of CA is not a reliable guide to the ef-�ay of our preonditioner. For example, onsider the two ases when (i)CA has only two di�erent eigenvalues, say 1 and 100; 000, and (ii) when CAhas eigenvalues uniformly distributed in the interval [1; 100℄. The formerhas the larger ondition number but, in exat arithmeti, the answer will beahieved in two steps, whereas the number of steps an be as high as n inthe latter ase. Thus the term \preonditioner" is sometimes inappropriate,although its usage has beome standard.In this paper we onentrate on preonditioners for the Toeplitz matriesgenerated by radial basis funtion interpolation on a (�nite) regular grid.Aordingly, we let A be the matrix An of (1.1) and let '(x) = exp(�x2).Thus An is positive de�nite and an be embedded in the bi-in�nite symmet-ri Toeplitz matrix A1 = ('(j � k))j;k2Z : (2.2)The lassial theory of Toeplitz operators (see, for instane, Grenander andSzeg}o (1984)) and the work of Baxter (1994) provide the relationsSp An � Sp A1 = [�(�); �(0)℄ � (0;1); (2.3)where � is the symbol funtion�(�) = Xk2Z '̂(� + 2�k); � 2 R; (2.4)and Sp A1 denotes the spetrum of the operator A1. Further, Theorem 9of Buhmann and Mihelli (1991) allows us to onlude that, for any �xedintegers j and k, we have limn!1(A�1n )j;k = (A�11 )j;k: (2.5)It was equations (2.3) and (2.5) whih led us to investigate the possibility



Preonditioned CG and RBFs 5of using some of the elements of A�1n for a relatively small value of n toonstrut preonditioners for AN , where N may be muh larger than n.Spei�ally, let us hoose integers 0 < m � n and de�ne the sequenej = (A�1n )j0; j = �m; : : : ;m: (2.6)We now let CN be the (2N + 1) � (2N + 1) banded symmetri Toeplitzmatrix CN = 0BBBBBBB�
0 : : : m... . . . . . .m . . . m...m : : : 0

1CCCCCCCA : (2.7)We laim that, for suÆiently large m and n, CN provides an exellentpreonditioner when A = AN in Algorithm 2.2. Before disussing any the-oretial motivation for this hoie of preonditioner, we present an example.We let n = 64, m = 9 and N = 32; 768. Construting An and alulatingthe elements f(A�1n )j0 : j = 0; 1; : : : ;mg we �nd that0BB� 01...91CCA =
0BBBBBBBBBBBBB�

1:4301 � 100�5:9563 � 10�12:2265 � 10�1�8:2083 � 10�23:0205 � 10�2�1:1112 � 10�24:0880 � 10�3�1:5039 � 10�35:5325 � 10�4�2:0353 � 10�4
1CCCCCCCCCCCCCA : (2.8)

Now CN an be embedded in the bi-in�nite Toeplitz matrix C1 de�nedby (C1)jk = � j�k; jj � kj � m;0; jj � kj > m; (2.9)and the symbol for this operator is the trigonometri polynomial�C1(�) = mXj=�m jeij�; � 2 R: (2.10)In Figure 2.1 we display a graph of �C1 for 0 � � � 2�, and it is learlya positive funtion. Thus the relationsSp CN � Sp C1 = f�C1(�) : � 2 [0; 2�℄g � (0;1) (2.11)
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0 1 2 3 4 5 6 7Fig. 2.1. The symbol funtion for C1.imply that CN is positive de�nite. Hene it is suitable to use CN as thepreonditioner in Algorithm 2.2. Our aim in this example is to ompare thishoie of preonditioner with the use of the identity matrix as the preondi-tioner. To this end, we let the elements of the vetor b of Algorithm 2.2 berandom real numbers uniformly distributed in the interval [�1; 1℄. ApplyingAlgorithm 2.2 using the identity matrix as the preonditioner provides theresults of Table 2.1. Table 2.2 ontains the analogous results using (2.7) and(2.8). In both ases the iterations were stopped when the residual vetorsatis�ed the bound krk+1k=kbk < 10�13. The behaviour shown in the tablesis typial; we �nd that the number of steps required is independent of Nand b.Why should (2.7) and (2.8) provide a good preonditioner? Let us onsiderthe bi-in�nite Toeplitz matrix C1A1. The spetrum of this operator isgiven by Sp C1A1 = f�C1(�)�(�) : � 2 [0; 2�℄g; (2.12)where � is given by (2.4) and �C1 by (2.10). Therefore in order to onen-



Preonditioned CG and RBFs 7Table 2.1. No preonditioningIteration Error1 2:797904� 10110 1:214777� 10�220 1:886333� 10�630 2:945903� 10�1033 2:144110� 10�1134 8:935534� 10�12Table 2.2. Using (2.7) and (2.8) as the preonditionerIteration Error1 2:315776� 10�12 1:915017� 10�33 1:514617� 10�74 1:365228� 10�115 1:716123� 10�15trate Sp C1A1 at unity we must have�C1(�)�(�) � 1; � 2 [0; 2�℄: (2.13)In other words, we want �C1 to be a trigonometri polynomial approxim-ating the ontinuous funtion 1=�. Now if the Fourier series of 1=� is givenby ��1(�) =Xj2Z jeij�; � 2 R; (2.14)then its Fourier oeÆients (j)j2Z are the oeÆients of the ardinal fun-tion � for the integer grid, that is�(x) =Xj2Z j'(x� j); x 2 R; (2.15)and �(k) = Æ0k; k 2 Z: (2.16)(See, for instane, Buhmann (1990).) Realling (2.5), we dedue that oneway to alulate approximate values of the oeÆients (j)j2Z is to solve



8 B. J. C. Baxterthe linear system An(n) = e0; (2.17)where e0 = (Æj0)nj=�n 2 R2n+1 . We now setj = (n)j ; 0 � j � m; (2.18)and we observe that the symbol funtion � for the Gaussian is a theta fun-tion (see Baxter (1994), Setion 2). Thus � is a positive ontinuous funtionwhose Fourier series is absolutely onvergent. Hene 1=� is a positive on-tinuous funtion and Wiener's lemma (Rudin (1973)) implies the absoluteonvergene, and therefore the uniform onvergene, of its Fourier series.We dedue that the symbol funtion �C1 an be hosen to approximate 1=�to within any required auray. More formally we have theLemma 2.1. Given any � > 0, there are positive integers m and n0 suhthat ����(�) mXj=�m (n)j eij� � 1��� � �; � 2 [0; 2�℄; (2.19)for every n � n0, where (n) = ((n)j )nj=�n is given by (2.17).Proof. The uniform onvergene of the Fourier series for ��1 implies thatwe an hoose m suh that����(�) mXj=�m jeij� � 1��� � �; � 2 [0; 2�℄: (2.20)By (2.5), we an also hoose n0 suh that maxfjj�(n)j j : j = �m; : : : ;mg ��, when n � n0. Then we have����(�) mXj=�m (n)j eij� � 1���� ����(�) mXj=�m jeij� � 1���+ ����(�) mXj=�m(j � (n)j )eij����� �[1 + (2m+ 1)k�k1℄: (2.21)Sine � is arbitrary the proof is omplete. �3. The MultiquadriThe multiquadri interpolation matrixA = �'(kxj � xkk)�nj;k=1; (3.1)



Preonditioned CG and RBFs 9where '(r) = (r2 + 2)1=2 and (xj)nj=1 are points in Rd , is not positivede�nite. In Mihelli (1986), it was shown to be almost negative de�nite,that is for any real numbers (yj)nj=1 satisfying P yj = 0 we havenXj;k=1 yjyk'(kxj � xkk) � 0: (3.2)Furthermore, inequality (3.2) is strit when n � 2, the points (xj)nj=1 areall di�erent, and P jyj j > 0. In other words, A is negative de�nite on thesubspae hei?, where e = [1; 1; : : : ; 1℄T 2 Rn .Of ourse we annot apply Algorithms 2.1 and 2.2 in this ase. However,we an use the almost negative de�niteness of A to solve a losely relatedlinearly onstrained quadrati programming problem:minimize 12�TA� � bT �subjet to eT � = 0; (3.3)where b an be any element of Rn . Standard theory of Lagrange multipliersguarantees the existene of a unique pair of vetors �� 2 Rn and �� 2 Rmsatisfying the equations A�� + e�� = b;eT �� = 0; (3.4)where �� is the Lagrange multiplier vetor for the onstrained optimizationproblem (3.3). We do not go into further detail on this point beause thenonsingularity of the matrix � A eeT 0� (3.5)is well-known (see, for instane, Powell (1990)). Instead we observe that oneway to solve (3.4) is to apply the following modi�ation of Algorithm 2.1 to(3.3).Algorithm 3.1. Let P be any symmetri n�n matrix suh that kerP =hei.Set x0 = 0, r0 = Pb� PAPx0, d0 = r0.For k = 0; 1; 2; : : : do beginak = rTk rk=dTk PAPdkxk+1 = xk + akdkrk+1 = rk � akPAPdkbk = rTk+1rk+1=rTk rkdk+1 = rk+1 + bkdk



10 B. J. C. BaxterStop if krk+1k or kdk+1k is suÆiently small.end.We observe that Algorithm 3.1 solves the linearly onstrained optimizationproblem minimize 12xTPAPx� bTPxsubjet to eTx = 0: (3.6)Moreover, the following elementary lemma implies that the solutions ��of(3.4) and x� of (3.6) are related by the equations �� = Px�.Lemma 3.1. Let S be any symmetri n � n matrix and let K = kerS.Then S : K? ! K? is a bijetion. In other words, given any b 2 K? thereis preisely one a 2 K? suh thatSa = b: (3.7)Proof. For any n� n matrix M we have the equationRn = kerM � Im MT :Consequently the symmetri matrix S satis�esRn = kerS � Im S;whene Im S = K?. Hene for every b 2 K? there exists � 2 Rn suhthat S� = b. Now we an write � = a + �, where a 2 K? and � 2 K areuniquely determined by �. Thus Sa = S� = b, and (3.7) has a solution. Ifa0 2 K? also sati�es (3.7), then their di�erene a�a0 lies in the intersetionK \K? = f0g, whih settles the uniqueness of a. �Setting P = S and K = hei in Lemma 3.1 we dedue that there is exatlyone x� 2 hei? suh that PAPx� = Pb;and PAP is negative de�nite when restrited to the subspae hei?. Follow-ing the development of Setion 2, we de�neC = P 2; �k = Pxk; and Æk = Pdk; (3.8)as in equation (2.1). However, we annot de�ne �k by (2.1) beause P issingular. One solution, advoated by Dyn, Levin and Rippa (1986), is touse the reurrene for (�k) embodied in Algorithm 2.1 without further ado.Algorithm 3.2. Choose any �0 in hei?. Set �0 = b�A�0 and Æ0 = C�0.



Preonditioned CG and RBFs 11For k = 0; 1; 2; : : : do beginak = �TkC�k=ÆTk AÆk�k+1 = �k + akÆk�k+1 = �k � akAÆkbk = �Tk+1C�k+1=�TkC�kÆk+1 = C�k+1 + bkÆkStop if k�k+1k or kÆk+1k is suÆiently small.end.However this algorithm is unstable in �nite preision arithmeti, as weshall see in our main example below. One modi�ation that suessfullyavoids instability is to fore the ondition�k 2 hei? (3.9)to hold for all k. Now Lemma 3.1 implies the existene of exatly one vetor�k 2 hei? for whih P�k = rk. Therefore, de�ning Q to be the orthogonalprojetion onto hei?, that is Q : x 7! x� e(eTx)=(eT e), we obtainAlgorithm 3.3. Choose any �0 in hei?. Set �0 = Q(b�A�0), Æ0 = C�0.For k = 0; 1; 2; : : : do beginak = �TkC�k=ÆTk AÆk�k+1 = �k + akÆk�k+1 = Q(�k � akAÆk)bk = �Tk+1C�k+1=�TkC�kÆk+1 = C�k+1 + bkÆkStop if k�k+1k or kÆk+1k is suÆiently small.end.We see that the only restrition on C is that it must be a non-negativede�nite symmetri matrix suh that kerC = hei. It is easy to onstrutsuh a matrix given a positive de�nite symmetri matrix D by a rank onemodi�ation: C = D � (De)(De)TeTDe : (3.10)The Cauhy-Shwarz inequality implies that xTCx � 0 with equality ifand only if x 2 hei. Of ourse we do not need to form C expliitly, sineC : x 7! Dx � (eTDx=eTDe)De. Before onstruting D we onsider thespetral properties of A1 = ('(j � k))j;k2Z in more detail.A minor modi�ation to Proposition 5.2.2 of Baxter (1992) yields thefollowing useful result. Let us say that a omplex sequene (yj)Z is zero-summing if it is �nitely supported and satis�es P yj = 0. The symbolfuntion �(�) = Xk2Z '̂(� + 2�k); � 2 R; (3.11)



12 B. J. C. Baxternow requires the distributional Fourier transform of the multiquadri. Inthe univariate ase, this is given by'̂(�) = �(2=j�j)K1(j�j); � 2 R n f0g; (3.12)where K1 is a modi�ed Bessel funtion. The symbol funtion is studiedextensively in Baxter (1994).
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0 1 2 3 4 5 6 7Fig. 3.2. The reiproal symbol funtion 1=� for the multiquadri.
Proposition 3.2. For every � 2 (0; 2�) we an �nd a set f(y(n)j )j2Z : n =1; 2; : : :g of zero-summing sequenes suh thatlimn!1 Xj;k2Z y(n)j y(n)k '(j � k).Xj2Z jy(n)j j2 = �(�): (3.13)Proof. We adopt the proof tehnique of Proposition 5.2.2 of Baxter (1992).



Preonditioned CG and RBFs 13For eah positive integer n we de�ne the trigonometri polynomialLn(�) = n�1=2 n�1Xk=0 eik�; � 2 R;and we reall from Setion 2 of Baxter (1994) thatKn(�) = sin2 n�=2n sin2 �=2 = jLn(�)j2 ; (3.14)where Kn is the nth degree Fej�er kernel. We now hoose (y(n)j )j2Z to be theFourier oeÆients of the trigonometri polynomial � 7! Ln(� � �) sin �=2,whih implies the relation���Xj2Z y(n)j eij����2 = sin2 �=2 Kn(� � �);and we see that (y(n)j )j2Z is a zero-summing sequene. By the Parsevalrelation we haveXj2Z jy(n)j j2 = (2�)�1 Z 2�0 sin2 �=2 Kn(� � �) d� (3.15)and the approximate identity property of the Fej�er kernel (Zygmund (1988),p. 86) implies thatsin2 �=2 = limn!1(2�)�1 Z 2�0 sin2 �=2 Kn(� � �) d� = limn!1Xj2Z jy(n)j j2:Further, beause � is ontinuous on (0; 2�) (Baxter (1994), Setion 4.4), wehave sin2 �=2 �(�) = limn!1(2�)�1 Z 2�0 sin2 �=2 Kn(� � �)�(�) d�= limn!1 Xj;k2Z y(n)j y(n)k '(j � k): �Thus we have shown that, just as in the lassial theory of Toeplitz op-erators (Grenander and Szeg}o (1984)), everything depends on the range ofvalues of the symbol funtion �. Beause � inherits the double pole that '̂enjoys at zero, we have �: (0; 2�) 7! (�(�);1). In Figure 3.2 we display thefuntion ��1.Now let m be a positive integer and let (dj)mj=�m be an even sequeneof real numbers. We de�ne a bi-in�nite banded symmetri Toeplitz matrix



14 B. J. C. BaxterD1 by the equations(D1)jk = � dj�k; jj � kj � m;0; otherwise : (3.16)Thus (D1A1)jk =  (j � k) where  (x) =Pml=�m dl'(x� l). FurtherXj;k2Z yjyk (j � k) = (2�)�1 Z 2�0 ���Xj2Z yjeij����2�D1(�)�(�) d�; (3.17)where the symbol funtion �D1 for the Toeplitz operator D1 is given by�D1(�) = mXj=�m djeij�; � 2 R: (3.18)Now the funtion ��D1 is ontinuous for � 2 (0; 2�), so the argument ofProposition 3.2 also shows that, for every � 2 (0; 2�), we an �nd a setf(y(n)j )j2Z : n = 1; 2; : : : g of zero-summing sequenes suh thatlimn!1Pj;k2Z y(n)j y(n)k  (j � k)Pj2Z jy(n)j j2 = �D1(�)�(�): (3.19)A good preonditioner must ensure that f�D1(�)�(�) : � 2 (0; 2�)g is abounded set. Beause of the form of �D1 we have the equationmXj=�m dj = 0: (3.20)Moreover, as in Setion 2, we want the approximation�D1(�)�(�) � 1; � 2 (0; 2�); (3.21)and we need �D1 to be a non-negative trigonometri polynomial whih ispositive almost everywhere, whih ensures that every one of its prinipalminors is positive de�nite.Let us de�ne (n)j = � �A�1n �j0 ; j = �m; : : : ;m; (3.22)and ��1(�) =Xj2Z jeij�; � 2 R: (3.23)Then Theorem 9 of Buhmann and Mihelli (1991) states thatlimn!1 (n)j = j ; (3.24)for any given �xed integer j. We shall use this fat to onstrut a suitable



Preonditioned CG and RBFs 15Table 3.3. Preonditioned CG { m = 9, n = 64, N = 2; 048Iteration Error1 3:975553� 1042 8:703344� 10�13 2:463390� 10�24 8:741920� 10�35 3:650521� 10�46 5:029770� 10�67 1:204610� 10�58 1:141872� 10�79 1:872273� 10�910 1:197310� 10�911 3:103685� 10�11Table 3.4. Preonditioned CG { m = 9, n = 64, N = 32; 768Iteration Error1 2:103778� 1052 4:287497� 1003 5:163441� 10�14 1:010665� 10�15 1:845113� 10�36 3:404016� 10�37 3:341912� 10�58 6:523212� 10�79 1:677274� 10�510 1:035225� 10�811 1:900395� 10�10�D1 . First we subtrat a multiple of the vetor [1; : : : ; 1℄T 2 R2m+1 from((n)j )mj=�m to form a new vetor (dj)mj=�m satisfying P dj = 0, and weobserve that, by (3.24), �D1(�) is one-signed for all suÆiently large valuesof n. For the numerial experiments here, we have hosen n = 64 andm = 9.Thus, given AN = �'(j � k)�Nj;k=�Nfor any N � n, we let DN be any (2N + 1)� (2N + 1) prinipal submatrix



16 B. J. C. BaxterTable 3.5. Preonditioned CG { m = 1, n = 64, N = 8; 192Iteration Error1 2:645008� 10410 8:632419� 10020 9:210298� 10�130 7:695337� 10�140 3:187051� 10�550 5:061053� 10�760 7:596739� 10�970 1:200700� 10�1073 3:539988� 10�1174 1:992376� 10�11of D1 and de�ne the preonditioner CN by the equationCN = DN � (DNe)(DN e)TeTDNe ; (3.25)where e = [1; : : : ; 1℄T 2 R2N+1 . We reiterate that we atually ompute thematrix-vetor produt CNx by the operations x 7! DNx�(eTDNx=eTDNe)erather than by storing the elements of CN in memory.CN provides an exellent preonditioner. Tables 3.3 and 3.4 illustrate itsuse when Algorithm 3.3 is applied to the linear systemANx+ ey = b;eTx = 0; (3.26)whenN = 2; 048 andN = 32; 768 respetively. Here y 2 R, e = [1; : : : ; 1℄T 2R2N+1 and b 2 R2N+1 onsists of pseudo-random real numbers uniformlydistributed in the interval [�1; 1℄. Again, this behaviour is typial and allour numerial experiments indiate that the number of steps is independentof N . We remind the reader that the error shown is k�k+1k, but that theiterations are stopped when either k�k+1k or kÆk+1k is less than 10�13kbk,where we are using the notation of Algorithm 3.3.It is interesting to ompare Table 3.3 with Table 3.5. Here we have hosenm = 1, and the preonditioner is essentially a multiple of the seond divideddi�erene preonditioner advoated by Dyn, Levin and Rippa (1986). In-deed, we �nd that d0 = 7:8538 and d1 = d�1 = �3:9269. We see thatits behaviour is learly inferior to the preonditioner generated by hoosingm = 9. Furthermore, this is to be expeted, beause we are hoosing asmaller �nite setion to approximate the reiproal of the symbol funtion.
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Fig. 3.3. The spetrum of CnAn for m = 1 and n = 64.However, beause �D1(�) is a multiple of sin2 �=2, this preonditioner stillpossesses the property that f�D1(�)�(�) : � 2 (0; 2�)g is a bounded set ofreal numbers.It is also interesting to ompare the spetra of CnAn for n = 64 andm = 1 and m = 9. Aordingly, Figures 3.3 and 3.4 display all but thelargest nonzero eigenvalues of CnAn for m = 1 and m = 6 respetively. Thelargest eigenvalues are 502:6097 and 288:1872, respetively, and these wereomitted from the plots in order to reveal detail at smaller sales. We seethat the lustering of the spetrum when m = 9 is exellent.The �nal topi in this setion demonstrates the instability of Algorithm3.2 when ompared with Algorithm 3.3. We refer the reader to Table 3.6,where we have hosen m = 9, n = N = 64, and setting b = [1; 4; 9; : : : ; N2℄T .The iterations for Algorithm 3.3, displayed in Table 3.6, were stopped atiteration 108. For Algorithm 3.2, iterations were stopped when either k�k+1kor kÆk+1k beame smaller than 10�13kbk. It is useful to display the normof kÆkk rather than k�kk in this ase. We see that the two algorithmsalmost agree on the early interations, but that Algorithm 3.2 soon begins
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Fig. 3.4. The spetrum of CnAn for m = 9 and n = 64.yling, and no onvergene seems to our. Thus when �k an leave therequired subspae due to �nite preision arithmeti, it is possible to attainnon-desent diretions.REFERENCESB. J. C. Baxter (1992a), \On the asymptoti behaviour of the span of translates ofthe multiquadri '(r) = (r2 + 2)1=2 as ! 1", Comput. Math. Appli. 24,1{6.B. J. C. Baxter (1992b), The Interpolation Theory of Radial Basis Funtions, PhDthesis, University of Cambridge.B. J. C. Baxter (1994), \Norm estimates for inverses of Toeplitz distane matries",J. Approx. Theory 79, 222{242.M. D. Buhmann and C. A. Mihelli (1991), \Multiply monotone funtions forardinal interpolation", Advanes in Applied Mathematis 12, 358{386.R. Chan and G. Strang (1989), \Toeplitz equations by onjugate gradients withirulant preonditioner", SIAM J. Si. Stat. Comp. 10, 104{119.N. D. Dyn, D. Levin and S. Rippa (1986), \Numerial proedures for surfae �ttingof sattered data by radial funtions", SIAM J. Si. Stat. Comput. 7, 639{659.



Preonditioned CG and RBFs 19Table 3.6. Algorithms 3.3a & b { m = 1, n = 64, N = 64,b = [1; 4; : : : ; N2℄T .Iteration kÆkk { 3.3a kÆkk { 3.3b1 4:436896� 104 4:436896� 1042 2:083079� 102 2:083079� 1023 2:339595� 100 2:339595� 1004 1:206045� 10�1 1:206041� 10�15 1:698965� 10�3 1:597317� 10�36 6:537466� 10�2 6:512586� 10�27 1:879294� 10�4 9:254943� 10�68 2:767714� 10�2 1:984033� 10�79 3:453789� 10�410 1:914126� 10�320 4:628447� 10�130 3:696474� 10�040 8:061922� 10+350 2:155310� 100100 3:374467� 10�1A. C. Faul and M. J. D. Powell, \Krylov subspae methods for radial basis funtioninterpolation", DAMTP Report 1999/NA11, University of Cambridge.C. Franke and R. Shabak (1998), \Solving partial di�erential equations by ol-loation using radial basis funtions", Appl. Math. Comp. 93, 73{82.G. H. Golub and C. F. Van Loan (1989), Matrix Computations , The John HopkinsUniversity Press (Baltimore).U. Grenander and G. Szeg}o (1984), Toeplitz Forms, Chelsea (New York).M. J. D. Powell (1992), \The theory of radial basis funtion approximation in 1990",in Advanes in Numerial Analysis II: Wavelets, Subdivision Algorithms andRadial Funtions , ed. W. A. Light, Oxford University Press (Oxford), 105{210.W. Rudin (1973), Funtional Analysis , MGraw Hill (New York).H. Wendland (1999),Meshless Galerkin methods using radial basis funtions ,Math.Comp. 68, 1521{1531.A. Zygmund (1979), Trigonometri Series , Volumes I and II, Cambridge UniversityPress (Cambridge).


