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tions provide highly useful and 
exible interpolants to mul-tivariate fun
tions. Further, they are beginning to be used in the numeri
alsolution of partial di�erential equations. Unfortunately, their 
onstru
tionrequires the solution of a dense linear system. Therefore mu
h attention hasbeen given to iterative methods. In this paper, we present a highly eÆ
ientpre
onditioner for the 
onjugate gradient solution of the interpolation equa-tions generated by gridded data. Thus our method applies to the 
orrespond-ing Toeplitz matri
es. The number of iterations required to a
hieve a giventoleran
e is independent of the number of variables.1. Introdu
tionA radial basis fun
tion approximation has the forms(x) = nXj=1 yj '(kx� xjk); x 2 Rd ;where ': [0;1) ! R is some given fun
tion, (yj)n1 are real 
oeÆ
ients, andthe 
entres (xj)n1 are points in Rd ; the norm k�k will be Eu
lidean throughoutthis study. For a wide 
lass of fun
tions ', it is known that the interpolationmatrix A = ('(kxj � xkk))nj;k=1is invertible. This matrix is typi
ally full, whi
h fa
t has en
ouraged thestudy of iterative methods. For example, highly promising results havebeen published in the use of radial basis fun
tions in 
ollo
ation and Galer-kin methods for the numeri
al solution of partial di�erential equations (seeFranke and S
haba
k (1998) and Wendland (1999)), but dire
t solution lim-its their appli
ability to fairly small problems. The use of the pre
ondi-tioned 
onjugate gradient algorithm was pioneered by Dyn, Levin and Rippa(1986), and some stunning results for s
attered data were presented re
ently



2 B. J. C. Baxterin Faul and Powell (1999), although the rapid 
onvergen
e des
ribed thereis not fully understood. Therefore we study the highly stru
tured 
ase whenthe data form a �nite regular grid. The 
onjugate gradient algorithm hasbeen applied to Toeplitz matri
es with some su

ess; see, for instan
e, Chanand Strang (1989). However, sin
e our matri
es are usually not positivede�nite and often possess elements that grow away from the diagonal, thepre
onditioners of Chan and Strang (1989) are not suitable. However, thematri
es have the property that their inverses tra
table more tra
table. Spe-
i�
ally, the detailed study of the spe
tra of the asso
iated Toeplitz operat-ors presented in Baxter (1992) and Baxter (1994) allows us to 
reate highlyeÆ
ient pre
onditioners by inverting relatively small �nite se
tions of thebi-in�nite symmetri
 Toeplitz operator, and this 
onstru
t is also easily un-derstood via Toeplitz theory.Let n be a positive integer and let An be the symmetri
 Toeplitz matrixgiven by An = ('(j � k))nj;k=�n ; (1.1)where ':R ! R is either a Gaussian ('(x) = exp(��x2) for some positive
onstant �) or a multiquadri
 ('(x) = (x2 + 
2)1=2 for some real 
onstant
). In this paper we 
onstru
t eÆ
ient pre
onditioners for the 
onjugategradient solution of the linear systemAnx = f; f 2 R2n+1 ; (1.2)when ' is a Gaussian, or the augmented linear systemAnx+ ey = f; (1.3)eTx = 0; (1.4)when ' is a multiquadri
. Here e = [1; 1; : : : ; 1℄T 2 R2n+1 and y 2 R. Se
tion2 des
ribes the 
onstru
tion for the Gaussian and Se
tion 3 deals with themultiquadri
. Of 
ourse, we exploit the Toeplitz stru
ture of An to performa matrix-ve
tor multipli
ation in O(n logn) operations whilst storing O(n)real numbers. Further, we shall see numeri
ally that the number of iterationsrequired to a
hieve a solution of (1.2) or (1.4) to within a given toleran
eis independent of n. The Matlab software used 
an be obtained from myhomepage.Our method applies to many other radial basis fun
tions, su
h as the in-verse multiquadri
 ('(x) = (x2 + 
2)�1=2) and the thin plate spline ('(x) =x2 log jxj). However, we 
on
entrate on the Gaussian and the multiquadri
be
ause they exhibit most of the important features of our approa
h in a
on
rete setting. Similarly we treat the one-dimensional problem merely toavoid 
ompli
ation; the multidimensional 
ase is a rather slight generaliza-



Pre
onditioned CG and RBFs 3tion of this work. Let us remark that the analogue of (1.1) is the operatorA(d)n = ('(j � k))j;k2[�n;n℄d ; (1.5)and we shall still 
all A(d)n a Toeplitz matrix. Moreover the matrix-ve
tormultipli
ation A(d)n x = 0� Xk2[�n;n℄d '(kj � kk)xk1Aj2[�n;n℄d ; (1.6)where k � k is the Eu
lidean norm and x = (xj)j2[�n;n℄d, 
an still be 
al-
ulated in O(N logN) operations, where N = (2n + 1)d, requiring O(N)real numbers to be stored. This tri
k is a simple extension of the Toeplitzmatrix-ve
tor multipli
ation method when d = 1.2. The GaussianIt is well-known that the Gaussian generates a positive de�nite interpolationmatrix, and its fun
tional de
ay is so rapid that pre
onditioning the 
onjug-ate gradient algorithm is not ne
essary. However, it provides a useful modelproblem that we shall des
ribe here before developing the ideas further inthe following se
tion.Our treatment of the pre
onditioned 
onjugate gradient (PCG) methodfollows Se
tion 10.3 of Golub and Van Loan (1989), and we begin witha general des
ription. We let n be a positive integer and A 2 Rn�n be anarbitrary symmetri
 positive de�nite matrix. For any nonsingular symmetri
matrix P 2 Rn�n and b 2 Rn we 
an use the following iteration to solve thelinear system PAPx = Pb.Algorithm 2.1. Choose any x0 in Rn . Set r0 = Pb�PAPx0 and d0 = r0.For k = 0; 1; 2; : : : do beginak = rTk rk=dTk PAPdkxk+1 = xk + akdkrk+1 = rk � akPAPdkbk = rTk+1rk+1=rTk rkdk+1 = rk+1 + bkdkStop if krk+1k or kdk+1k is suÆ
iently small.end.In order to simplify Algorithm 2.1 de�neC = P 2; �k = Pxk; rk = P�k and Æk = Pdk: (2.1)Substituting in Algorithm 2.1 we obtain the following method.Algorithm 2.2. Choose any �0 in Rn . Set �0 = b�A�0, Æ0 = C�0.



4 B. J. C. BaxterFor k = 0; 1; 2; : : : do beginak = �TkC�k=ÆTk AÆk�k+1 = �k + akÆk�k+1 = �k � akAÆkbk = �Tk+1C�k+1=�TkC�kÆk+1 = C�k+1 + bkÆkStop if k�k+1k or kÆk+1k is suÆ
iently small.end.It is Algorithm 2.2 that we shall 
onsider as our PCG method in thisse
tion, and we shall 
all C the pre
onditioner. We see that the only re-stri
tion on C is that it must be a symmetri
 positive de�nite matrix, butwe observe that the spe
trum of CA should 
onsist of a small number of
lusters, preferably one 
luster 
on
entrated at one. At this point, we alsomention that the 
ondition number of CA is not a reliable guide to the ef-�
a
y of our pre
onditioner. For example, 
onsider the two 
ases when (i)CA has only two di�erent eigenvalues, say 1 and 100; 000, and (ii) when CAhas eigenvalues uniformly distributed in the interval [1; 100℄. The formerhas the larger 
ondition number but, in exa
t arithmeti
, the answer will bea
hieved in two steps, whereas the number of steps 
an be as high as n inthe latter 
ase. Thus the term \pre
onditioner" is sometimes inappropriate,although its usage has be
ome standard.In this paper we 
on
entrate on pre
onditioners for the Toeplitz matri
esgenerated by radial basis fun
tion interpolation on a (�nite) regular grid.A

ordingly, we let A be the matrix An of (1.1) and let '(x) = exp(�x2).Thus An is positive de�nite and 
an be embedded in the bi-in�nite symmet-ri
 Toeplitz matrix A1 = ('(j � k))j;k2Z : (2.2)The 
lassi
al theory of Toeplitz operators (see, for instan
e, Grenander andSzeg}o (1984)) and the work of Baxter (1994) provide the relationsSp An � Sp A1 = [�(�); �(0)℄ � (0;1); (2.3)where � is the symbol fun
tion�(�) = Xk2Z '̂(� + 2�k); � 2 R; (2.4)and Sp A1 denotes the spe
trum of the operator A1. Further, Theorem 9of Buhmann and Mi

helli (1991) allows us to 
on
lude that, for any �xedintegers j and k, we have limn!1(A�1n )j;k = (A�11 )j;k: (2.5)It was equations (2.3) and (2.5) whi
h led us to investigate the possibility
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onditioned CG and RBFs 5of using some of the elements of A�1n for a relatively small value of n to
onstru
t pre
onditioners for AN , where N may be mu
h larger than n.Spe
i�
ally, let us 
hoose integers 0 < m � n and de�ne the sequen
e
j = (A�1n )j0; j = �m; : : : ;m: (2.6)We now let CN be the (2N + 1) � (2N + 1) banded symmetri
 Toeplitzmatrix CN = 0BBBBBBB�

0 : : : 
m... . . . . . .
m . . . 
m...
m : : : 
0

1CCCCCCCA : (2.7)We 
laim that, for suÆ
iently large m and n, CN provides an ex
ellentpre
onditioner when A = AN in Algorithm 2.2. Before dis
ussing any the-oreti
al motivation for this 
hoi
e of pre
onditioner, we present an example.We let n = 64, m = 9 and N = 32; 768. Constru
ting An and 
al
ulatingthe elements f(A�1n )j0 : j = 0; 1; : : : ;mg we �nd that0BB� 
0
1...
91CCA =
0BBBBBBBBBBBBB�

1:4301 � 100�5:9563 � 10�12:2265 � 10�1�8:2083 � 10�23:0205 � 10�2�1:1112 � 10�24:0880 � 10�3�1:5039 � 10�35:5325 � 10�4�2:0353 � 10�4
1CCCCCCCCCCCCCA : (2.8)

Now CN 
an be embedded in the bi-in�nite Toeplitz matrix C1 de�nedby (C1)jk = � 
j�k; jj � kj � m;0; jj � kj > m; (2.9)and the symbol for this operator is the trigonometri
 polynomial�C1(�) = mXj=�m 
jeij�; � 2 R: (2.10)In Figure 2.1 we display a graph of �C1 for 0 � � � 2�, and it is 
learlya positive fun
tion. Thus the relationsSp CN � Sp C1 = f�C1(�) : � 2 [0; 2�℄g � (0;1) (2.11)
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tion for C1.imply that CN is positive de�nite. Hen
e it is suitable to use CN as thepre
onditioner in Algorithm 2.2. Our aim in this example is to 
ompare this
hoi
e of pre
onditioner with the use of the identity matrix as the pre
ondi-tioner. To this end, we let the elements of the ve
tor b of Algorithm 2.2 berandom real numbers uniformly distributed in the interval [�1; 1℄. ApplyingAlgorithm 2.2 using the identity matrix as the pre
onditioner provides theresults of Table 2.1. Table 2.2 
ontains the analogous results using (2.7) and(2.8). In both 
ases the iterations were stopped when the residual ve
torsatis�ed the bound krk+1k=kbk < 10�13. The behaviour shown in the tablesis typi
al; we �nd that the number of steps required is independent of Nand b.Why should (2.7) and (2.8) provide a good pre
onditioner? Let us 
onsiderthe bi-in�nite Toeplitz matrix C1A1. The spe
trum of this operator isgiven by Sp C1A1 = f�C1(�)�(�) : � 2 [0; 2�℄g; (2.12)where � is given by (2.4) and �C1 by (2.10). Therefore in order to 
on
en-



Pre
onditioned CG and RBFs 7Table 2.1. No pre
onditioningIteration Error1 2:797904� 10110 1:214777� 10�220 1:886333� 10�630 2:945903� 10�1033 2:144110� 10�1134 8:935534� 10�12Table 2.2. Using (2.7) and (2.8) as the pre
onditionerIteration Error1 2:315776� 10�12 1:915017� 10�33 1:514617� 10�74 1:365228� 10�115 1:716123� 10�15trate Sp C1A1 at unity we must have�C1(�)�(�) � 1; � 2 [0; 2�℄: (2.13)In other words, we want �C1 to be a trigonometri
 polynomial approxim-ating the 
ontinuous fun
tion 1=�. Now if the Fourier series of 1=� is givenby ��1(�) =Xj2Z 
jeij�; � 2 R; (2.14)then its Fourier 
oeÆ
ients (
j)j2Z are the 
oeÆ
ients of the 
ardinal fun
-tion � for the integer grid, that is�(x) =Xj2Z 
j'(x� j); x 2 R; (2.15)and �(k) = Æ0k; k 2 Z: (2.16)(See, for instan
e, Buhmann (1990).) Re
alling (2.5), we dedu
e that oneway to 
al
ulate approximate values of the 
oeÆ
ients (
j)j2Z is to solve



8 B. J. C. Baxterthe linear system An
(n) = e0; (2.17)where e0 = (Æj0)nj=�n 2 R2n+1 . We now set
j = 
(n)j ; 0 � j � m; (2.18)and we observe that the symbol fun
tion � for the Gaussian is a theta fun
-tion (see Baxter (1994), Se
tion 2). Thus � is a positive 
ontinuous fun
tionwhose Fourier series is absolutely 
onvergent. Hen
e 1=� is a positive 
on-tinuous fun
tion and Wiener's lemma (Rudin (1973)) implies the absolute
onvergen
e, and therefore the uniform 
onvergen
e, of its Fourier series.We dedu
e that the symbol fun
tion �C1 
an be 
hosen to approximate 1=�to within any required a

ura
y. More formally we have theLemma 2.1. Given any � > 0, there are positive integers m and n0 su
hthat ����(�) mXj=�m 
(n)j eij� � 1��� � �; � 2 [0; 2�℄; (2.19)for every n � n0, where 
(n) = (
(n)j )nj=�n is given by (2.17).Proof. The uniform 
onvergen
e of the Fourier series for ��1 implies thatwe 
an 
hoose m su
h that����(�) mXj=�m 
jeij� � 1��� � �; � 2 [0; 2�℄: (2.20)By (2.5), we 
an also 
hoose n0 su
h that maxfj
j�
(n)j j : j = �m; : : : ;mg ��, when n � n0. Then we have����(�) mXj=�m 
(n)j eij� � 1���� ����(�) mXj=�m 
jeij� � 1���+ ����(�) mXj=�m(
j � 
(n)j )eij����� �[1 + (2m+ 1)k�k1℄: (2.21)Sin
e � is arbitrary the proof is 
omplete. �3. The Multiquadri
The multiquadri
 interpolation matrixA = �'(kxj � xkk)�nj;k=1; (3.1)



Pre
onditioned CG and RBFs 9where '(r) = (r2 + 
2)1=2 and (xj)nj=1 are points in Rd , is not positivede�nite. In Mi

helli (1986), it was shown to be almost negative de�nite,that is for any real numbers (yj)nj=1 satisfying P yj = 0 we havenXj;k=1 yjyk'(kxj � xkk) � 0: (3.2)Furthermore, inequality (3.2) is stri
t when n � 2, the points (xj)nj=1 areall di�erent, and P jyj j > 0. In other words, A is negative de�nite on thesubspa
e hei?, where e = [1; 1; : : : ; 1℄T 2 Rn .Of 
ourse we 
annot apply Algorithms 2.1 and 2.2 in this 
ase. However,we 
an use the almost negative de�niteness of A to solve a 
losely relatedlinearly 
onstrained quadrati
 programming problem:minimize 12�TA� � bT �subje
t to eT � = 0; (3.3)where b 
an be any element of Rn . Standard theory of Lagrange multipliersguarantees the existen
e of a unique pair of ve
tors �� 2 Rn and �� 2 Rmsatisfying the equations A�� + e�� = b;eT �� = 0; (3.4)where �� is the Lagrange multiplier ve
tor for the 
onstrained optimizationproblem (3.3). We do not go into further detail on this point be
ause thenonsingularity of the matrix � A eeT 0� (3.5)is well-known (see, for instan
e, Powell (1990)). Instead we observe that oneway to solve (3.4) is to apply the following modi�
ation of Algorithm 2.1 to(3.3).Algorithm 3.1. Let P be any symmetri
 n�n matrix su
h that kerP =hei.Set x0 = 0, r0 = Pb� PAPx0, d0 = r0.For k = 0; 1; 2; : : : do beginak = rTk rk=dTk PAPdkxk+1 = xk + akdkrk+1 = rk � akPAPdkbk = rTk+1rk+1=rTk rkdk+1 = rk+1 + bkdk



10 B. J. C. BaxterStop if krk+1k or kdk+1k is suÆ
iently small.end.We observe that Algorithm 3.1 solves the linearly 
onstrained optimizationproblem minimize 12xTPAPx� bTPxsubje
t to eTx = 0: (3.6)Moreover, the following elementary lemma implies that the solutions ��of(3.4) and x� of (3.6) are related by the equations �� = Px�.Lemma 3.1. Let S be any symmetri
 n � n matrix and let K = kerS.Then S : K? ! K? is a bije
tion. In other words, given any b 2 K? thereis pre
isely one a 2 K? su
h thatSa = b: (3.7)Proof. For any n� n matrix M we have the equationRn = kerM � Im MT :Consequently the symmetri
 matrix S satis�esRn = kerS � Im S;when
e Im S = K?. Hen
e for every b 2 K? there exists � 2 Rn su
hthat S� = b. Now we 
an write � = a + �, where a 2 K? and � 2 K areuniquely determined by �. Thus Sa = S� = b, and (3.7) has a solution. Ifa0 2 K? also sati�es (3.7), then their di�eren
e a�a0 lies in the interse
tionK \K? = f0g, whi
h settles the uniqueness of a. �Setting P = S and K = hei in Lemma 3.1 we dedu
e that there is exa
tlyone x� 2 hei? su
h that PAPx� = Pb;and PAP is negative de�nite when restri
ted to the subspa
e hei?. Follow-ing the development of Se
tion 2, we de�neC = P 2; �k = Pxk; and Æk = Pdk; (3.8)as in equation (2.1). However, we 
annot de�ne �k by (2.1) be
ause P issingular. One solution, advo
ated by Dyn, Levin and Rippa (1986), is touse the re
urren
e for (�k) embodied in Algorithm 2.1 without further ado.Algorithm 3.2. Choose any �0 in hei?. Set �0 = b�A�0 and Æ0 = C�0.



Pre
onditioned CG and RBFs 11For k = 0; 1; 2; : : : do beginak = �TkC�k=ÆTk AÆk�k+1 = �k + akÆk�k+1 = �k � akAÆkbk = �Tk+1C�k+1=�TkC�kÆk+1 = C�k+1 + bkÆkStop if k�k+1k or kÆk+1k is suÆ
iently small.end.However this algorithm is unstable in �nite pre
ision arithmeti
, as weshall see in our main example below. One modi�
ation that su

essfullyavoids instability is to for
e the 
ondition�k 2 hei? (3.9)to hold for all k. Now Lemma 3.1 implies the existen
e of exa
tly one ve
tor�k 2 hei? for whi
h P�k = rk. Therefore, de�ning Q to be the orthogonalproje
tion onto hei?, that is Q : x 7! x� e(eTx)=(eT e), we obtainAlgorithm 3.3. Choose any �0 in hei?. Set �0 = Q(b�A�0), Æ0 = C�0.For k = 0; 1; 2; : : : do beginak = �TkC�k=ÆTk AÆk�k+1 = �k + akÆk�k+1 = Q(�k � akAÆk)bk = �Tk+1C�k+1=�TkC�kÆk+1 = C�k+1 + bkÆkStop if k�k+1k or kÆk+1k is suÆ
iently small.end.We see that the only restri
tion on C is that it must be a non-negativede�nite symmetri
 matrix su
h that kerC = hei. It is easy to 
onstru
tsu
h a matrix given a positive de�nite symmetri
 matrix D by a rank onemodi�
ation: C = D � (De)(De)TeTDe : (3.10)The Cau
hy-S
hwarz inequality implies that xTCx � 0 with equality ifand only if x 2 hei. Of 
ourse we do not need to form C expli
itly, sin
eC : x 7! Dx � (eTDx=eTDe)De. Before 
onstru
ting D we 
onsider thespe
tral properties of A1 = ('(j � k))j;k2Z in more detail.A minor modi�
ation to Proposition 5.2.2 of Baxter (1992) yields thefollowing useful result. Let us say that a 
omplex sequen
e (yj)Z is zero-summing if it is �nitely supported and satis�es P yj = 0. The symbolfun
tion �(�) = Xk2Z '̂(� + 2�k); � 2 R; (3.11)



12 B. J. C. Baxternow requires the distributional Fourier transform of the multiquadri
. Inthe univariate 
ase, this is given by'̂(�) = �(2
=j�j)K1(
j�j); � 2 R n f0g; (3.12)where K1 is a modi�ed Bessel fun
tion. The symbol fun
tion is studiedextensively in Baxter (1994).
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0 1 2 3 4 5 6 7Fig. 3.2. The re
ipro
al symbol fun
tion 1=� for the multiquadri
.
Proposition 3.2. For every � 2 (0; 2�) we 
an �nd a set f(y(n)j )j2Z : n =1; 2; : : :g of zero-summing sequen
es su
h thatlimn!1 Xj;k2Z y(n)j y(n)k '(j � k).Xj2Z jy(n)j j2 = �(�): (3.13)Proof. We adopt the proof te
hnique of Proposition 5.2.2 of Baxter (1992).



Pre
onditioned CG and RBFs 13For ea
h positive integer n we de�ne the trigonometri
 polynomialLn(�) = n�1=2 n�1Xk=0 eik�; � 2 R;and we re
all from Se
tion 2 of Baxter (1994) thatKn(�) = sin2 n�=2n sin2 �=2 = jLn(�)j2 ; (3.14)where Kn is the nth degree Fej�er kernel. We now 
hoose (y(n)j )j2Z to be theFourier 
oeÆ
ients of the trigonometri
 polynomial � 7! Ln(� � �) sin �=2,whi
h implies the relation���Xj2Z y(n)j eij����2 = sin2 �=2 Kn(� � �);and we see that (y(n)j )j2Z is a zero-summing sequen
e. By the Parsevalrelation we haveXj2Z jy(n)j j2 = (2�)�1 Z 2�0 sin2 �=2 Kn(� � �) d� (3.15)and the approximate identity property of the Fej�er kernel (Zygmund (1988),p. 86) implies thatsin2 �=2 = limn!1(2�)�1 Z 2�0 sin2 �=2 Kn(� � �) d� = limn!1Xj2Z jy(n)j j2:Further, be
ause � is 
ontinuous on (0; 2�) (Baxter (1994), Se
tion 4.4), wehave sin2 �=2 �(�) = limn!1(2�)�1 Z 2�0 sin2 �=2 Kn(� � �)�(�) d�= limn!1 Xj;k2Z y(n)j y(n)k '(j � k): �Thus we have shown that, just as in the 
lassi
al theory of Toeplitz op-erators (Grenander and Szeg}o (1984)), everything depends on the range ofvalues of the symbol fun
tion �. Be
ause � inherits the double pole that '̂enjoys at zero, we have �: (0; 2�) 7! (�(�);1). In Figure 3.2 we display thefun
tion ��1.Now let m be a positive integer and let (dj)mj=�m be an even sequen
eof real numbers. We de�ne a bi-in�nite banded symmetri
 Toeplitz matrix



14 B. J. C. BaxterD1 by the equations(D1)jk = � dj�k; jj � kj � m;0; otherwise : (3.16)Thus (D1A1)jk =  (j � k) where  (x) =Pml=�m dl'(x� l). FurtherXj;k2Z yjyk (j � k) = (2�)�1 Z 2�0 ���Xj2Z yjeij����2�D1(�)�(�) d�; (3.17)where the symbol fun
tion �D1 for the Toeplitz operator D1 is given by�D1(�) = mXj=�m djeij�; � 2 R: (3.18)Now the fun
tion ��D1 is 
ontinuous for � 2 (0; 2�), so the argument ofProposition 3.2 also shows that, for every � 2 (0; 2�), we 
an �nd a setf(y(n)j )j2Z : n = 1; 2; : : : g of zero-summing sequen
es su
h thatlimn!1Pj;k2Z y(n)j y(n)k  (j � k)Pj2Z jy(n)j j2 = �D1(�)�(�): (3.19)A good pre
onditioner must ensure that f�D1(�)�(�) : � 2 (0; 2�)g is abounded set. Be
ause of the form of �D1 we have the equationmXj=�m dj = 0: (3.20)Moreover, as in Se
tion 2, we want the approximation�D1(�)�(�) � 1; � 2 (0; 2�); (3.21)and we need �D1 to be a non-negative trigonometri
 polynomial whi
h ispositive almost everywhere, whi
h ensures that every one of its prin
ipalminors is positive de�nite.Let us de�ne 
(n)j = � �A�1n �j0 ; j = �m; : : : ;m; (3.22)and ��1(�) =Xj2Z 
jeij�; � 2 R: (3.23)Then Theorem 9 of Buhmann and Mi

helli (1991) states thatlimn!1 
(n)j = 
j ; (3.24)for any given �xed integer j. We shall use this fa
t to 
onstru
t a suitable
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onditioned CG { m = 9, n = 64, N = 2; 048Iteration Error1 3:975553� 1042 8:703344� 10�13 2:463390� 10�24 8:741920� 10�35 3:650521� 10�46 5:029770� 10�67 1:204610� 10�58 1:141872� 10�79 1:872273� 10�910 1:197310� 10�911 3:103685� 10�11Table 3.4. Pre
onditioned CG { m = 9, n = 64, N = 32; 768Iteration Error1 2:103778� 1052 4:287497� 1003 5:163441� 10�14 1:010665� 10�15 1:845113� 10�36 3:404016� 10�37 3:341912� 10�58 6:523212� 10�79 1:677274� 10�510 1:035225� 10�811 1:900395� 10�10�D1 . First we subtra
t a multiple of the ve
tor [1; : : : ; 1℄T 2 R2m+1 from(
(n)j )mj=�m to form a new ve
tor (dj)mj=�m satisfying P dj = 0, and weobserve that, by (3.24), �D1(�) is one-signed for all suÆ
iently large valuesof n. For the numeri
al experiments here, we have 
hosen n = 64 andm = 9.Thus, given AN = �'(j � k)�Nj;k=�Nfor any N � n, we let DN be any (2N + 1)� (2N + 1) prin
ipal submatrix



16 B. J. C. BaxterTable 3.5. Pre
onditioned CG { m = 1, n = 64, N = 8; 192Iteration Error1 2:645008� 10410 8:632419� 10020 9:210298� 10�130 7:695337� 10�140 3:187051� 10�550 5:061053� 10�760 7:596739� 10�970 1:200700� 10�1073 3:539988� 10�1174 1:992376� 10�11of D1 and de�ne the pre
onditioner CN by the equationCN = DN � (DNe)(DN e)TeTDNe ; (3.25)where e = [1; : : : ; 1℄T 2 R2N+1 . We reiterate that we a
tually 
ompute thematrix-ve
tor produ
t CNx by the operations x 7! DNx�(eTDNx=eTDNe)erather than by storing the elements of CN in memory.CN provides an ex
ellent pre
onditioner. Tables 3.3 and 3.4 illustrate itsuse when Algorithm 3.3 is applied to the linear systemANx+ ey = b;eTx = 0; (3.26)whenN = 2; 048 andN = 32; 768 respe
tively. Here y 2 R, e = [1; : : : ; 1℄T 2R2N+1 and b 2 R2N+1 
onsists of pseudo-random real numbers uniformlydistributed in the interval [�1; 1℄. Again, this behaviour is typi
al and allour numeri
al experiments indi
ate that the number of steps is independentof N . We remind the reader that the error shown is k�k+1k, but that theiterations are stopped when either k�k+1k or kÆk+1k is less than 10�13kbk,where we are using the notation of Algorithm 3.3.It is interesting to 
ompare Table 3.3 with Table 3.5. Here we have 
hosenm = 1, and the pre
onditioner is essentially a multiple of the se
ond divideddi�eren
e pre
onditioner advo
ated by Dyn, Levin and Rippa (1986). In-deed, we �nd that d0 = 7:8538 and d1 = d�1 = �3:9269. We see thatits behaviour is 
learly inferior to the pre
onditioner generated by 
hoosingm = 9. Furthermore, this is to be expe
ted, be
ause we are 
hoosing asmaller �nite se
tion to approximate the re
ipro
al of the symbol fun
tion.
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Fig. 3.3. The spe
trum of CnAn for m = 1 and n = 64.However, be
ause �D1(�) is a multiple of sin2 �=2, this pre
onditioner stillpossesses the property that f�D1(�)�(�) : � 2 (0; 2�)g is a bounded set ofreal numbers.It is also interesting to 
ompare the spe
tra of CnAn for n = 64 andm = 1 and m = 9. A

ordingly, Figures 3.3 and 3.4 display all but thelargest nonzero eigenvalues of CnAn for m = 1 and m = 6 respe
tively. Thelargest eigenvalues are 502:6097 and 288:1872, respe
tively, and these wereomitted from the plots in order to reveal detail at smaller s
ales. We seethat the 
lustering of the spe
trum when m = 9 is ex
ellent.The �nal topi
 in this se
tion demonstrates the instability of Algorithm3.2 when 
ompared with Algorithm 3.3. We refer the reader to Table 3.6,where we have 
hosen m = 9, n = N = 64, and setting b = [1; 4; 9; : : : ; N2℄T .The iterations for Algorithm 3.3, displayed in Table 3.6, were stopped atiteration 108. For Algorithm 3.2, iterations were stopped when either k�k+1kor kÆk+1k be
ame smaller than 10�13kbk. It is useful to display the normof kÆkk rather than k�kk in this 
ase. We see that the two algorithmsalmost agree on the early interations, but that Algorithm 3.2 soon begins
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Fig. 3.4. The spe
trum of CnAn for m = 9 and n = 64.
y
ling, and no 
onvergen
e seems to o

ur. Thus when �k 
an leave therequired subspa
e due to �nite pre
ision arithmeti
, it is possible to attainnon-des
ent dire
tions.REFERENCESB. J. C. Baxter (1992a), \On the asymptoti
 behaviour of the span of translates ofthe multiquadri
 '(r) = (r2 + 
2)1=2 as 
! 1", Comput. Math. Appli
. 24,1{6.B. J. C. Baxter (1992b), The Interpolation Theory of Radial Basis Fun
tions, PhDthesis, University of Cambridge.B. J. C. Baxter (1994), \Norm estimates for inverses of Toeplitz distan
e matri
es",J. Approx. Theory 79, 222{242.M. D. Buhmann and C. A. Mi

helli (1991), \Multiply monotone fun
tions for
ardinal interpolation", Advan
es in Applied Mathemati
s 12, 358{386.R. Chan and G. Strang (1989), \Toeplitz equations by 
onjugate gradients with
ir
ulant pre
onditioner", SIAM J. S
i. Stat. Comp. 10, 104{119.N. D. Dyn, D. Levin and S. Rippa (1986), \Numeri
al pro
edures for surfa
e �ttingof s
attered data by radial fun
tions", SIAM J. S
i. Stat. Comput. 7, 639{659.
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onditioned CG and RBFs 19Table 3.6. Algorithms 3.3a & b { m = 1, n = 64, N = 64,b = [1; 4; : : : ; N2℄T .Iteration kÆkk { 3.3a kÆkk { 3.3b1 4:436896� 104 4:436896� 1042 2:083079� 102 2:083079� 1023 2:339595� 100 2:339595� 1004 1:206045� 10�1 1:206041� 10�15 1:698965� 10�3 1:597317� 10�36 6:537466� 10�2 6:512586� 10�27 1:879294� 10�4 9:254943� 10�68 2:767714� 10�2 1:984033� 10�79 3:453789� 10�410 1:914126� 10�320 4:628447� 10�130 3:696474� 10�040 8:061922� 10+350 2:155310� 100100 3:374467� 10�1A. C. Faul and M. J. D. Powell, \Krylov subspa
e methods for radial basis fun
tioninterpolation", DAMTP Report 1999/NA11, University of Cambridge.C. Franke and R. S
haba
k (1998), \Solving partial di�erential equations by 
ol-lo
ation using radial basis fun
tions", Appl. Math. Comp. 93, 73{82.G. H. Golub and C. F. Van Loan (1989), Matrix Computations , The John HopkinsUniversity Press (Baltimore).U. Grenander and G. Szeg}o (1984), Toeplitz Forms, Chelsea (New York).M. J. D. Powell (1992), \The theory of radial basis fun
tion approximation in 1990",in Advan
es in Numeri
al Analysis II: Wavelets, Subdivision Algorithms andRadial Fun
tions , ed. W. A. Light, Oxford University Press (Oxford), 105{210.W. Rudin (1973), Fun
tional Analysis , M
Graw Hill (New York).H. Wendland (1999),Meshless Galerkin methods using radial basis fun
tions ,Math.Comp. 68, 1521{1531.A. Zygmund (1979), Trigonometri
 Series , Volumes I and II, Cambridge UniversityPress (Cambridge).


