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Abstract. A radial basis function approximation is typically a linear com-

bination of shifts of a radially symmetric function, possibly augmented by a

polynomial of suitable degree, that is, it takes the form

s(x) =

nX

k=1

ckφ(‖x − xk‖) + p(x), x ∈ R
d.

In the mid 1980s, Micchelli, building on pioneering work of Schoenberg in the

1930s and 1940s, provided simple sufficient conditions on φ that imply radial

basis functions can interpolate scattered data. However, when the data density

varies locally, several authors, such as Hon and Kansa [5], have suggested

scaling the translates. In other words, it can be advantageous to replace the

Euclidean norm by some more general distance functional ∆(·, ·), that is

s(x) =
nX

k=1

ckφ(∆(x, xk)) + p(x), x ∈ R
d.

This distance functional ∆ need not be a metric, but we shall require that
∆ be symmetric and satisfy ∆(x, x) = 0, for all x ∈ R

d. Unfortunately, the

Micchelli-Schoenberg theory does not obviously apply in this more general
setting, but some papers have observed that interpolation is well-defined if

the distance functional is a sufficiently small perturbation of the Euclidean
norm. However, in this study we follow a different approach which returns to
the roots of Schoenberg’s work. Specifically, we use Schoenberg’s classification
of Euclidean distance matrices to provide a simple technique which, given a

suggested distance functional ∆, calculates a perturbed distance functional b∆
for which the underlying interpolation matrix is invertible, when the function

φ is strictly positive definite (i.e. a Mercer kernel) or strictly conditionally
positive (or negative) definite of order one. As a simple by-product of this

method, we can also apply the Narcowich-Ward [10] norm estimate results
easily, since the minimum distance between points is now under our control

via b∆.

1. Introduction

A radial basis function is typically an approximation of the form

(1.1) s(x) =

n∑

k=1

ckφ(‖x − xk‖) + p(x), x ∈ Rd,

where φ : [0,∞) → R, c1, . . . , cn are real numbers, p is a polynomial, and ‖ · ‖
denotes the Euclidean norm. Such functions have proved themselves to be of great
practical and theoretical importance since C. A. Micchelli established rather mild
conditions under which they provide interpolants to multivariate scattered data; see,
for instance, the useful book of Buhmann [7], and, of course, Micchelli’s seminal
paper [9]. Specifically, let m be a non-negative integer and let p1, . . . , pM be any
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basis for the M -dimensional vector space Pm(Rd) of polynomials of degree m on
Rd. Micchelli derived conditions for which the augmented interpolation matrix

(1.2) AP =

(
A P
PT 0

)
∈ R(n+M)×(n+M)

is invertible, where

(1.3) Ajk = φ(‖xj − xk‖), 1 ≤ j, k ≤ n,

and

(1.4) Pjk = pk(xj), 1 ≤ j ≤ n, 1 ≤ k ≤ N.

Thus a necessary condition for nonsingularity of AP is that the matrix P be of full
rank, which imposes a geometric constraint on the points x1, . . . , xn: if P is of full
rank, then we say that the data x1, . . . , xn are Pm(Rd) unisolvent; in other words,
no nontrivial polynomial of degree m can vanish at every data point x1, . . . , xn.
The sufficient condition is that yT Ay ≥ 0 when P T y = 0, with equality if and only
if y = 0; we say that φ is strictly conditionally positive definite of order m if this
property obtains.

We now require some of the details of Micchelli’s analysis. To this end, we re-
mind the reader that a function f : [0,∞) → R is completely monotonic if it is
infinitely differentiable and satisfies (−1)kf (k)(t) ≥ 0, for all t > 0 and any non-
negative integer k. [The celebrated Bernstein–Hausdorff–Widder theorem charac-
terizes completely monotonic functions as Laplace transforms of positive measures
on the half-line [0,∞).]

Theorem 1.1. Let m be a non-negative integer, let f : [0,∞) → R be any function
for which (−1)mf (m) is a nonconstant completely monotonic function, and define
φ(r) = f(r2), for r ≥ 0. Then, for any positive integers n and d, the augmented
interpolation matrix AP defined by (1.2) is invertible if the points x1, . . . , xn form
a Pm(Rd) unisolvent set.

Proof. This is Theorem 2.1 in [9]. �

The power of this theorem lies in the beautiful fact that we can use φ to inter-
polate in any ambient dimension d, and that it is easy to construct such functions.
For example, it is easily checked that f(t) = (t + c2)−1/2 is completely monotonic,
so that φ(r) = (r2 + c2)−1/2 is the inverse multiquadric and Theorem 1.1 implies
that the matrix A defined by

Ajk = f(‖xj − xk‖2), 1 ≤ j, k ≤ n,

is positive definite (a Mercer kernel, to use the historically precise terminology of
Learning Theory) for any distinct points x1, . . . , xn lying in any Rd – we say that
f is a positive definite function on Hilbert space. The author has recently provided
[2] a geometric proof of the fact that positive definite functions on Hilbert space
are completely monotonic.

As a second illustration of Theorem 1.1, we let f(t) = −(t + c2)1/2, so that
−f ′(t) = (1/2)(t + c2)−1/2 and we deduce that the Hardy multiquadric φ(r) =
(r2 + c2)1/2 is strictly conditionally negative definite of order one.

It is not obvious that Theorem 1.1 tells us anything when our norm is not
the Euclidean norm. However, this is not so. For example, the author extended
Micchelli’s results as follows.
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Theorem 1.2. Let the norm ‖.‖ of (1.2) be replaced by any p-norm, for 1 ≤ p ≤ 2,
that is

‖x‖p =

(
d∑

k=1

|xk|p
)1/p

, x ∈ Rd.

Then the p-norm interpolation matrix A ∈ Rn×n, defined by

Ajk = ‖xj − xk‖p, 1 ≤ j, k ≤ n,

is nonsingular when n ≥ 2 and the points x1, . . . , xn are distinct. Further yT Ay ≤ 0
when the components of the vector y ∈ Rn sum to zero, with equality if and only if
y is the zero vector.

Proof. This is Theorem 2.11 of [1]. �

In other words, we can replace radial basis functions by p-norm radial basis
functions, that is we can interpolate scattered multivariate data using functions of
the form

s(x) =

n∑

k=1

ckφ(‖x − xk‖p), x ∈ Rd,

when the conditions of Theorem 1.2 are satisfied. [The reader might be intrigued to
learn that we cannot use p-norms for p > 2; see Section 3 of [1].] Now, this paper is
certainly not suggesting that p-norm radial basis functions provide useful practical
alternatives to radial basis functions (although no numerical experiments have been
published, to the author’s knowledge). Instead, the kernel of the proof of Theorem
1.2 suggested the idea of the present paper. Specifically, the author demonstrated
in [1] that the p-norm distance matrix was a Euclidean distance matrix, that is,
there exist vectors z1, . . . , zn ∈ Rn for which

‖xj − xk‖p = ‖zj − zk‖2, 1 ≤ j, k ≤ n,

and details are provided in the next section. Once this is established, we can shift
attention to the vectors z1, . . . , zn ∈ Rn and apply Theorem 1.1, because the change
in ambient dimension from d to n is permissible. This suggests the possibility that
some alternative distance functionals can be used. Indeed, if we are sufficiently
fortunate that the distance functional matrix D ∈ Rn×n, defined by

Djk = ∆(xj , xk), 1 ≤ j, k ≤ n,

is a Euclidean distance matrix, then Theorem 1.1 implies the invertibility of the
augmented interpolation matrix. Of course, it is rather unlikely that D will be a
Euclidean distance matrix, so it is natural to consider methods for perturbing the
distance functional. We describe a simple technique which provides a new functional

∆̂ for which the corresponding distance functional matrix D̂ is a Euclidean distance
matrix.

Theorem 1.3. Let ∆ : Rd × Rd → R be any symmetric distance function, that is,
∆(x, y) = ∆(y, x), for all x, y ∈ Rd, which satisfies ∆(x, x) = 0, for all x ∈ Rd. Let
µ be any positive constant exceeding

max
1≤j≤n−1


−2Djn +

n∑

k=1,k 6=j

|Djn + Dkn − Djk|


 .
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Then the distance functional ∆̂ : Rd × Rd → R defined by

∆̂(x, xn) = ∆(x, xn) + µ/2, x ∈ Rd \ {xn},
and

∆̂(x, y) = ∆(x, y) + µ,

for any distinct points x, y ∈ Rd \ {xn}, generates a new distance functional matrix

D̂ which is a Euclidean distance matrix

This theorem is proved in the following section. However, note that the point xn

could be replaced by any one of x1, . . . , xn−1, although it is likely that the numerical
properties of the method are sensitive to the choice of xn.

Given Theorem 1.3, we obtain a simple interpolation result for positive definite
functions.

Theorem 1.4. Let f : [0,∞) → R be any non-constant completely monotonic func-
tions and define φ(r) = f(r2), for r ≥ 0. If the distance functional ∆ is perturbed

to form ∆̂, as described in Theorem 1.3, then the unaugmented interpolation matrix
A defined by (1.3) is invertible.

Proof. The construction of the modified distance functional ∆̂ implies that

(1.5) ∆̂(xj , xk) = ‖zj − zk‖2 > 0, when j 6= k,

so that Theorem 1.1 implies the invertibility of (1.3). �

This is a new technique and many points remain for future study. Nevertheless,
it enables us to construct nonsingular interpolation matrices in a rather simple way.
Further, the minimum distance between the vectors z1, . . . , zn can be used in the
Narcowich–Ward invertibility theorems [10] , if needed. However, the extension
to conditionally positive definite functions of higher orders remains unclear. For
example, if φ were a strictly conditionally negative definite function of order m,
for m > 1, then the new points z1, . . . , zn defined by (1.5) might no longer be
unisolvent, although this seems unlikely. Fortunately, this problem does not occur
in the important special case of conditionally negative definite functions of order
one.

Theorem 1.5. Let f : [0,∞) → R be any function for which f ′ is a nonconstant
completely monotonic function and f(0) ≥ 0. If the distance functional ∆ is per-

turbed to form ∆̂, as described in Theorem 1.3, then the unaugmented interpolation
matrix A defined by (1.3) and the augmented interpolation matrix AP defined by
(1.2) are both invertible.

Proof. The construction of the modified distance functional ∆̂ implies that

(1.6) ∆̂(xj , xk) = ‖zj − zk‖2 > 0, when j 6= k.

Further the locations of the points z1, . . . , zn ∈ Rn play no part in the definition of
P1(R

n)-unisolvent, which simply requires that the vector y ∈ Rn has components
summing to zero. Thus the augmented interpolation matrix AP is invertible. The
unaugmented interpolation matrix A satisfies yT Ay < 0, when y ∈ Rn is any
nonzero vector whose components sum to zero, and the set of such zero-summing
vectors forms a vector space of dimension n − 1. Hence, following Micchelli [9],
A must have at least n − 1 negative eigenvalues. Since f(0) ≥ 0, the trace of
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the matrix A, which is the sum of its eigenvalues, must be non-negative, so the
remaining eigenvalue is positive. Hence A is invertible. �

One significant disadvantage of the perturbed distance functional ∆̂ is that it is
not a continuous function. Therefore the author is considering alternative modifi-
cations that preserve continuity, and intends to report on these soon.

2. Euclidean Distance Matrices

The classical theory of radial basis function interpolation is a series of footnotes
to Schoenberg’s brilliant analysis of the isometric embedding problems, evolved in
a series of papers [11, 12, 13]. These have been collected in [14], edited by Carl
de Boor, together with highly useful commentary. We now delve into Schoenberg’s
rich legacy.

Definition 2.1. We shall say that a matrix M ∈ Rn×n is a Euclidean distance
matrix if there exist vectors z1, . . . zn ∈ Rn for which

Mjk = ‖zj − zk‖2, 1 ≤ j, k ≤ n.

We let En denote the set of all n × n Euclidean distance matrices.

It transpires that n× n Euclidean distance matrices are really (n− 1)× (n− 1)
non-negative definite symmetric matrices in disguise, as revealed by an important
characterization theorem due to Schoenberg, which is our next topic. Now, it is
clearly necessary that a Euclidean distance matrix must be symmetric and have
zero diagonal elements, and this larger class of matrices will be useful in its own
right.

Definition 2.2. We shall say that a symmetric matrix D ∈ Rn×n is almost Eu-
clidean if D is a symmetric matrix whose diagonal elements vanish. The set of
n × n almost Euclidean matrices will be denoted by Æn.

Let Symmk denote the linear space of symmetric matrices in Rk×k and let Pk

denote the convex cone of non-negative definite matrices in Symmk. We can now
state the fundamental geometric characterization of Schoenberg, providing proofs
in the modern idiom for the convenience of the reader.

Theorem 2.3. Define τ : Æn → Symmn−1 by

(2.1) τ(A)jk = Ajn + Akn − Ajk, 1 ≤ j, k ≤ n − 1.

Then τ is a linear bijection between Æn and Symmn−1. Further, given M ∈
Symmn−1, we have

(2.2) τ−1(M)jk =





1
2Mjj , 1 ≤ j ≤ n − 1, k = n
1
2Mkk, j = n, 1 ≤ k ≤ n − 1
1
2 (Mjj + Mkk − 2Mjk) , 1 ≤ j, k ≤ n − 1,

0 j = k = n.

Proof. The map τ is clearly linear. Since the dimensions of Æn and Symmn−1

are both equal to 1 + 2 + · · · + n − 1, we need only prove that τ is injective. To
this end, suppose τ(A) = 0 and set j = k in (2.1). Since the diagonal elements
almost Euclidean matrices vanish, by definition, we deduce that Ajn = 0, for j =
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1, . . . , n − 1. If we now choose j 6= k in (2.1), we see that Ajk = 0. Hence τ is a
linear bijection. An almost identical calculation yields (2.2). �

Theorem 2.4. Let A ∈ Æn. Then A ∈ En if and only if τ(A) ∈ Pn−1.

Proof. If A ∈ En, that is,

Ajk = ‖xj − xk‖2, 1 ≤ j, k ≤ n.

We may shift the points x1, . . . , xn without changing their mutual distances, so we
can, and do, assume xn = 0. Thus

τ(A)jk = ‖xj‖2 + ‖xk‖2 − ‖xj − xk‖2 = 2xT
j xk, 1 ≤ j, k ≤ n − 1,

and thus we have shown that τ(A) is non-negative definite, being a Gram matrix.
Conversely, if M = τ(A) ∈ Pn−1, then we can write

Mjk = 2vT
j vk, 1 ≤ j, k ≤ n − 1.

Hence, if we define vn = 0, then (2.2) implies

τ−1(M)jk = ‖vj − vk‖2, 1 ≤ j, k ≤ n.

�

As a simple corollary, we mention the calculation of x1, . . . , xn given A ∈ En.

Corollary 2.5. Let A ∈ En. Let r1, . . . , rn−1 ∈ Rn be any vectors generating the
matrix τ(A) ∈ Pn−1, that is,

rT
j rk = τ(A)jk, 1 ≤ j, k ≤ n − 1.

Then Ajk = ‖xj − xk‖2, for 1 ≤ j, k ≤ n − 1, where xn = 0 and xj = rj/
√

2, for
1 ≤ j ≤ n − 1.

For example, if we compute the Cholesky factorization τ(A) = RT R, where
R ∈ R(n−1)×(n−1), then we simply take each column of R, embed it in Rn by
defining its nth component to be zero, and apply the theorem. We also observe
that the rank of R is the minimal dimension of Euclidean space in which the simplex
formed by x1, . . . , xn can be embedded.

We have already mentioned that En is a convex cone, and this follows from
the relation En = τ−1(Pn−1). If we now use the inner product on Rn×n matrices
induced by the Frobenius norm, that is

(2.3) 〈C,D〉F =
n∑

k=1

n∑

`=1

CklDkl

and

(2.4) ‖C‖F =

(
n∑

k=1

n∑

`=1

C2
kl

)1/2

,

then a well-known classical result of Hilbert space theory implies that, given any
element D ∈ Æn, there exists a unique closest Euclidean distance matrix D̂ ∈ En.
There are some applications for which it is important to find D̂; see, for instance
Higham [4], Gower [3]. However, we are not required to use the Frobenius norm on
Æn. Instead, we can let our inner product on Æn be the so-called pull-back inner
product. Specifically, we may define

(2.5) 〈D1, D2〉 = 〈τ(D1), τ(D2)〉F , for D1, D2 ∈ Æn,
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so that

(2.6) ‖D1 − D2‖ = ‖τ(D1) − τ(D2)‖F , for D1, D2 ∈ Æn.

This was suggested by Gower [3] and Mathar [8], because of the excellent reason
that matrix nearness problems involving Symmn−1 are well-understood, and is of
some importance in computational chemistry and multivariate data analysis (see,
for instance, [6]). Specifically, given the spectral decomposition

M = QMΛMQT
M , M ∈ Symmn−1,

where QM is orthogonal and ΛM = diag(λ1, . . . , λn) is the diagonal matrix formed

by the eigenvalues of M , the closest element M̂ ∈ Pn−1 is given by

M̂ = QM Λ̂MQT
M ,

where
Λ̂M = diag (max{λ1, 0}, . . . ,max{λn, 0}) .

Thus, given any almost Euclidean distance matrix A ∈ Æn, we calculate τ−1
(
τ̂(A)

)
,

the computational cost being O(n3). This cost is, of course, rather high, though no
more so than Gaussian elimination. This would be a particularly interesting way
to perturb our distance functional matrix, for the scalings embodied in ∆ might re-
flect physical dimensions in the problem which it is desirable to perturb as little as
possible. However, the computational expense, as well as the difficulty of extending

the perturbed distance functional ∆̂ so that it is defined for any points x, y ∈ Rd,

seems to limit this rather natural choice. [We might even interpolate

√
∆̂(x, y) at

the n(n − 1)/2 points {(xj , xk) : j 6= k} in Rd × Rd, using a second radial basis
function interpolant, but this would incur an O(n6) overhead.]

Fortunately, there is no particular need to go to the trouble of computing the
nearest Euclidean distance matrix, in any sense, if the scalings chosen are only
rough estimates. In this case, we can use the fact that, given any symmetric matrix
M , the linear combination M +µI is positive definite for all sufficiently large µ > 0.
In other words, we take τ−1 (τ(A) + µI) = A + µτ−1(I). Further, it is not difficult
to explicitly calculate the matrix τ−1(I).

Lemma 2.6. Let M ∈ Æn be defined by Mjn = 1/2, for 1 ≤ j ≤ n − 1, and
Mjk = 1−δjk, for 1 ≤ j, k ≤ n−1 (δjk being the Kronecker delta). Then τ(M) = I.

Proof. By definition of the map τ ,

τ(M)jk = Mjn + Mkn − Mjk =
1

2
+

1

2
− (1 − δjk) = δjk, 1 ≤ j, k ≤ n − 1,

as required. �

Let us now summarise our findings formally.

Theorem 2.7. Let D ∈ Rn×n be the almost Euclidean matrix formed by the dis-
tance functional, that is,

Djk = ∆(xj , xk), 1 ≤ j, k ≤ n.

(1) The matrix D(µ) := D + µτ−1(I) is a Euclidean distance matrix for all
sufficiently large µ > 0.

(2) We can calculate the closest Euclidean distance matrix in the pulled-back
Frobenius norm using the Matlab commands:
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[Q, Lambda] = eig(tau(D));

Dhat = tauinv(Q* max(Lambda, zeros(n))*Q’);

However, it is not sufficient to merely calculate a perturbed distance functional

matrix that is a Euclidean distance matrix. We must extend the definition of D̂
to obtain a new distance functional ∆̂. This is particularly simple if we choose to

form D(µ) = D + µτ−1(I). Specifically, we define ∆̂ : Rd × Rd → R by

∆̂(x, xn) = ∆(x, xn) + µ/2, x ∈ Rd \ {xn},
and let

∆̂(x, y) = ∆(x, y) + µ

for any distinct points x, y ∈ Rd \ {xn}; of course, we define ∆̂(x, x) = 0, for all
x ∈ Rd. As for choosing the constant µ, one simple way is to ensure that D(µ) is
strictly diagonally dominant, that is

D(µ)jj >

n∑

k=1,k 6=j

|D(µ)jk|, for 1 ≤ j ≤ n − 1.

In other words, we must have

2Djn + µ >
n∑

k=1,k 6=j

|Djn + Dkn − Djk|, 1 ≤ j ≤ n − 1.

This justifies the choice specified in Theorem 1.5.
Finally, we observe that there are, in fact, infinitely many alternative linear

bijections τ : Æn → Symmn−1 which satisfy τ(En) = Pn−1, and this more general
setting is considered by Gower [3], but τ has the virtue of simplicity. Nevertheless,
such alternatives present an obvious topic of further research, together with the

construction of continuous extensions of ∆̂.
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