
Regarding the p-norms of radial basis interpolation matricesB. J. C. Baxter, N. Sivakumar and J. D. WardCenter for Approximation TheoryDepartment of MathematicsTexas A & M UniversityCollege Station, TX 77843-3368U. S. A.A radial basis function approximation has the forms(x) = nXj=1 yj '(x� xj); x 2 Rd;where ':Rd ! R is some given (usually radially symmetric) function, (yj)n1 are real coe�cients, andthe centres (xj)n1 are points in Rd. For a wide class of functions ', it is known that the interpolationmatrix A = ('(xj � xk))nj;k=1 is invertible. Further, several recent papers have provided upperbounds on kA�1k2, where the points (xj)n1 satisfy the condition kxj � xkk2 � �, j 6= k, for somepositive constant �. In this paper, we calculate similar upper bounds on kA�1kp for p � 1 whichapply when ' decays su�ciently quickly and A is symmetric and positive de�nite. We include anapplication of this analysis to a preconditioning of the interpolation matrix An = ('(j � k))nj;k=1when '(x) = (x2 + c2)1=2, the Hardy multiquadric. In particular, we show that supn kA�1n k1 is�nite. Furthermore, we �nd that the bi-in�nite symmetric Toeplitz matrix E = ('(j � k))j;k2Zdenjoys the remarkable property that kE�1kp = kE�1k2 for every p � 1 when ' is a Gaussian.Indeed, we also show that this property persists for any function ' which is a tensor product ofeven, absolutely integrable P�olya frequency functions.
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baxter, sivakumar and ward1. IntroductionA radial basis function approximation has the forms(x) = nXj=1 yj '(x� xj); x 2 Rd;where ':Rd ! R is some given (usually radially symmetric) function, (yj)n1 are real coe�cients,and the centres (xj)n1 are points in Rd. Such approximants provide a 
exible and useful approachto multivariate interpolation (see [D, P]). For a wide class of functions ', it is known that theinterpolation matrix A = ('(xj � xk))nj;k=1 (1:1)is invertible (see [M, MN]). Further, several recent papers [B, NW1, NW2, Ba1, Ba2] have providedupper bounds on kA�1k2, where the points (xj)n1 satisfy the separation condition kxj � xkk2 � �,j 6= k, for some positive constant �. In this paper we derive upper bounds on kA�1kp for certainfunctions ' and p � 1, under the same separation condition on the set of centres. Speci�cally,in Section 2, we use total positivity to show that the bi-in�nite symmetric Toeplitz matrix E =(exp(��kj � kk22))j;k2Zd enjoys the remarkable property that kE�1kp = kE�1k2 for every p � 1.(We refer the reader to [GS] or [W] for the general theory of Toeplitz matrices.) Furthermore, weshow that this result generalizes to a certain larger class of bi-in�nite symmetric Toeplitz matricesgenerated by P�olya frequency functions. In Section 3, we show that a theorem of Demko, Moss andSmith on the inverse of a banded symmetric positive de�nite matrix can be used to provide boundson kA�1k1, where A is given by (1.1), ' is a strictly positive de�nite function (see De�nition 1.1)satisfying certain growth restrictions, and (xj)n1 can be any set of di�erent points in Rd. Moreover,the symmetry of A implies kA�1k1 = kA�1k1, whence the Riesz convexity theorem [HLP, p. 214],which states that log kA�1kp is a convex function of 1=p, provides an upper bound on kA�1kp for allp � 1. The results of Section 3 do not apply directly to the many unbounded radial basis functionsstudied in the literature. However, we use a preconditioning argument and the main theorem ofSection 3 to prove that the inverses of the matricesAn = ('(j � k))nj;k=0; n = 0; 1; : : : ;where '(x) = (x2 + c2)1=2 and c is a positive constant, are uniformly bounded in the 1-norm.Once again, symmetry and the Riesz convexity theorem imply that the matrices (A�1n )1n=0 are alsouniformly bounded in the p-norm for every p � 1.2



p-norms of interpolation matricesTo the writers' knowledge, this is the �rst paper dedicated to the study of upper bounds forkA�1kp for p 6= 2. However, the result for the multiquadric in Section 4 was discovered inde-pendently by M. J. D. Powell (private communication), whose technique was quite di�erent; hisstudy of kA�1n k1 was motivated by a desire to understand the uniform error of interpolation by amultiquadric on a regular grid [BP].We shall need the following de�nition and proposition in Sections 3 and 4.De�nition 1.1. We shall say that a function f :Rd ! C is positive de�nite if it is measurable andnXj;k=1ajakf(xj � xk) � 0 (1:2)for any complex sequence (aj)nj=1 and any points (xj)nj=1 in Rd. Further, we shall say that f isstrictly positive de�nite if inequality (1.2) is strict whenever (aj)nj=1 is a non-zero sequence and thepoints (xj)nj=1 are all di�erent.Proposition 1.2. Let f :Rd ! R be positive de�nite. Then f(x) = f(�x) for every x 2 Rd.Proof. See [R, p.18].2. Cardinal interpolation and norm estimatesLet � be a positive constant and let ':Rd ! R be the Gaussian'(x) = exp(��kxk22); x 2 Rd: (2:1)In this section we prove the remarkable result that the bi-in�nite symmetric Toeplitz matrix A =('(j � k))j;k2Zd satis�es the equation kA�1kp = kA�1k1for every p greater than one. Using some recent work of Baxter and Micchelli, we can view thisas a consequence of the fact that the Gaussian is an even, absolutely integrable P�olya frequencyfunction, and we address this point brie
y at the end of the section. Indeed, it would be possible tobegin our study with this more general work, but we have chosen to concentrate on the particularcase of the Gaussian because of its greater familiarity to many readers.We begin with the case d = 1. Consider the bi-in�nite, symmetric Toeplitz matrix A = ('(j �k))j;k2Z . Then the theory of Toeplitz matrices [W, Section 2] implies thatA is an invertible boundedlinear operator on `p(Z) for every p � 1 because the symbol function�(�) = Xk2Z '̂(� + 2�k); � 2 R;3



baxter, sivakumar and wardis a positive continuous function. Furthermore, A�1 is a Toeplitz matrix, say, A�1 = (cj�k)j;k2Z .Then the cardinal function � : R! R given by�(x) = Xk2Z ck'(x� k); x 2 R; (2:2)satis�es �(j) = �0j , j 2 Z , and the exponential decay of ' ensures the absolute convergence of theseries in equation (2.2) at every point x in R.We shall prove the following.Theorem 2.1. kA�1kp = kA�1k2 for p � 1.We �rst need a preliminary result.Proposition 2.2. The coe�cients (ck)k2Z of the cardinal function � alternate in sign, that is(�1)kck � 0 for every integer k.Proof. For each non-negative integer n, we letAn = ('(j � k))nj;k=�n: (2:3)Now An is an invertible totally positive matrix (see [K, Section 7.1, p. 334]), that is every minoris non-negative. Therefore A�1n enjoys the \chequerboard" property: the elements of the inversematrix satisfy (�1)j+k(A�1n )jk � 0, for j; k = �n; : : : ; n. In particular, if we letcnk = (A�1n )0k; k = �n; : : : ; n; (2:4)then (�1)kcnk � 0 and the de�nition of A�1n provides the equationsnXk=�n cnk'(j � k) = �0j ; j = �n; : : : ; n: (2:5)Thus the function �n:R! R de�ned by�n(x) = nXk=�n cnk'(x� k); x 2 R; (2:6)is a cardinal function of interpolation for the �nite set f�n; : : : ; ng.Now Theorem 9 of [BM] supplies the following useful fact relating the coe�cients of �n and �:limn!1 cnk = ck; k 2 Z :4



p-norms of interpolation matricesHence the property (�1)kcnk � 0 implies the required condition (�1)kck � 0.Proof of Theorem 2.1. By [W, p. 186],ck = (2�)�1 Z 2�0 1�(�) e�ik� d�; k 2 Z ; (2:7)where �(�) = Xk2Z '̂(� + 2�k); � 2 R: (2:8)Therefore, using standard results of Toeplitz operator theory ([W, Theorem 1']), we obtain theexpression kA�1k2 = maxf 1�(�) : � 2 [0; 2�]g:Applying Lemma 2.7 of [Ba2], we getkA�1k2 = 1�(�) = Xk2Z(�1)kck: (2:9)But Proposition 2.1 and the symmetry of A provide the relationskA�1k1 = kA�1k1 = Xk2Z jckj = Xk2Z(�1)kck: (2:10)Therefore A�1 is a nontrivial linear operator on `p(Z), for p = 1; 2, and 1, whose norms agree oneach of these sequence spaces. Consequently, the Riesz convexity theorem [HLP, p. 214] implieskA�1kp = kA�1k2 for p � 1.Turning now to the multivariate case, we let '(x) = exp(��kxk22), � > 0, x 2 Rd, and de�neA := ('(j � k))j;k2Zd. Then A may be viewed as a bounded linear operator on `p(Zd) for p � 1.As before, A�1 = (c(d)j�k)j;k2Zd, where (c(d)j )j2Zd are the coe�cients of the multivariate cardinalfunction, to wit: Pk2Zd c(d)k '(j � k) = �0;j , j 2 Zd. The following is an extension of Theorem2.1.Proposition 2.3. Let A = ('(j � k))j;k2Zd. Then kA�1kp = kA�1k2 for p � 1.Proof. The Toeplitz theory and [Ba2, Lemma 2.8] give the relationsc(d)k = (2�)�d Z[0;2�]d 1�(d)(�) e�ik� d�; k = (k1; : : : ; kd) 2 Zd (2:11)and kA�1k2 = 1�(�; �; : : : ; �) = Xk2Zd(�1)k1+���kdc(d)k ;5



baxter, sivakumar and wardwhere �(d)(�) = Xk2Zd '̂(� + 2�k): (2:12)Moreover, kA�1k1 = kA�1k1 = Xk2Zd jc(d)k j: (2:13)Therefore it su�ces to demonstrate that (�1)k1+���+kdc(d)k � 0 for all k 2 Zd. To this end, we notethat, since '̂ is a tensor product of univariate Gaussians, we have�(d)(�) = dYj=1�(�j); � = (�1; : : : ; �d) 2 Rd; (2:14)where � is the univariate symbol given by (2.8). Consequently, (2.11) impliesc(d)k = dYj=1 ckj ; k 2 Zd; (2:15)whence (�1)k1+���+kd c(d)k = dYj=1(�1)kj ckj � 0;by Proposition 2.2. Once again, the Riesz convexity theorem ensures the validity of the assertionfor all p � 1.Finally, we discuss the more general formulation of the results using the work of Baxter andMicchelli [BaM]. Speci�cally, we show that all of the results of this section apply when the Gaussianis replaced by any tensor product of even, absolutely integrable P�olya frequency functions. Werecall that a function ':R ! R is a P�olya frequency function if the matrix ('(xj � yk))nj;k=1 istotally positive for any real numbers x1 < � � �< xn and y1 < � � �< yn.Proposition 2.4. Let ':R! R be an even, absolutely integrable P�olya frequency function. Thenthere is an even real sequence (cj)j2Z such that Pk2Z c2k <1 and the function �:R! R de�nedby �(x) = Xk2Z ck'(x� k); x 2 R; (2:16)satis�es �(j) = �0j ; j 2 Z :Furthermore, the coe�cients (ck)k2Z of � alternate in sign, that is (�1)kck � 0.6



p-norms of interpolation matricesProof. In [S2] it is shown that an even, absolutely integrable P�olya frequency function must decayexponentially for large argument, which implies that the in�nite series (2.16) is well de�ned. Stan-dard Toeplitz theory provides the remaining properties of � except for the alternation of signs of itscoe�cients, which fact requires only minor modi�cations to the proof of Proposition 2.2.The analogue of Theorem 2.1 is equally straightforward.Theorem 2.5. Let ':R ! R be an even, absolutely integrable P�olya frequency function and letA = ('(j � k))j;k2Z. Then kA�1kp = kA�1k1 for every p greater than one.Proof. The proof of Theorem 2.1 requires one important change to e�ect this result. Speci�cally,equation (2.9) is now a consequence of Theorem 4.2 of [BaM] instead of Lemma 2.7 of [Ba2].For the multivariate form of this theorem, it is appropriate to de�ne ':Rd ! R by the tensorproduct '(x) = dYj=1'j(xj); x = (x1; : : : ; xd) 2 Rd; (2:17)where each 'j is an even, absolutely integrable P�olya frequency function; we note that the multi-variate Gaussian arises in this way from the univariate Gaussian. It is not di�cult to constructfunctions of the form (2.17). For example, '(x) = exp(�kxk1) will do. We refer the reader to [BaM]for details.As before, we consider the Toeplitz matrixA = ('(j � k))j;k2Zd; (2:18)where ' is given by (2.17). The symbol function satis�es the equation�(�) = dYj=1 �j(�j); � = (�1; : : : ; �d) 2 Rd; (2:19)where �j(�) = Xk2Z '̂j(� + 2�k); � 2 R: (2:20)Therefore the inverse of the interpolation matrix (2.18) is given by A�1 = (c(d)j�k)j;k2Zd, whereXk2Zd c(d)k '(j � k) = �0j ; j 2 Zd:Furthermore, (2.19) implies c(d)k = dYj=1 cjkj ; k = (k1; : : : ; kd) 2 Zd; (2:21)7



baxter, sivakumar and wardand Pl2Z cjl'j(k � l) = �0k , for k 2 Z and j 2 f1; 2; : : : ; dg. By Proposition 2.4, we have(�1)k1+���+kdc(d)k = dYj=1(�1)kjcjkj � 0: (2:22)Therefore, as for the Gaussian, we have kA�1k2 = kA�1k1. Applying the Riesz convexity theoremyields the analogue of Proposition 2.3, which we state formally below.Theorem 2.6. Let f'j:R ! R : j = 1; : : : ; dg be any set of even, absolutely integrable P�olyafrequency functions. If ':Rd ! R is de�ned by the tensor product (2.17) and the bi-in�nite,symmetric, Toeplitz matrix A is given by (2.18), then kA�1kp = kA�1k1 for every p greater thanone.3.The main resultsLet (xj)nj=1 be any set of di�erent points, or centres, in Rd, let ':Rd ! R be an even function,and let A = ('(xj � xk))nj;k=1 be the associated interpolation matrix. For many choices of ', thereexist upper bounds on kA�1k2 which depend only on ', the dimension d of the ambient space, andthe minimum separation distance minj 6=kkxj � xkk2 of the centres ([NW1, NW2]). In this sectionwe show that the same is true for every p-norm for a certain class of functions ' which includesthe Gaussian. In fact, it su�ces to prove this when p = 1, because A is symmetric and the Rieszconvexity theorem ([HLP, p. 214]) implies that log kA�1kp is a convex function of 1=p for p � 1;therefore most of this section studies kA�1k1.The section falls naturally into two parts. In the �rst, we describe a method for obtaining upperbounds on kA�1k1 in terms of kA�1k2, provided the matrix A is symmetric, positive de�nite, andcan be approximated su�ciently rapidly by banded matrices; the main theorem here is Theorem 3.6.The second part of the section deals with the application of this method to interpolation matrices,and culminates in Theorem 3.11 and Corollary 3.12.Our main tool in the matricial analysis to follow is a theorem of Demko, Moss and Smith, givenbelow.Theorem 3.1. Let A 2 Rn�n be a positive de�nite symmetric matrix. If A is m-banded, that isAjk = 0 whenever jj � kj exceeds m, then���A�1jk ��� � 2 kA�1k2 �jj�kj; 1 � j; k � n; (3:1)where � = �pcond2(A)�1pcond2(A)+1�1=m and cond2(A) = kAk2 kA�1k2.8



p-norms of interpolation matricesProof. This is Theorem 2.4 of [DMS].We shall extend the preceding theorem to matrices indexed by d-dimensional integers. A precisede�nition of such matrices follows.De�nition 3.2. We shall say that a multivariate matrix A is simply a �nitely supported functionA:Zd � Zd ! R. Writing Ajk for A(j; k), the following terms extend in a natural way.(i) A is symmetric if Ajk = Akj for all j; k 2 Zd.(ii) A is positive de�nite if Xj;k2Zd yjykAjk > 0 (3:2)for every �nitely supported non-zero real sequence (yj)j2Zd such that the support of the matrix(yjyk)j;k2Zd is contained in the support of A.(iii) A is R-banded, where R is a positive constant, if Ajk = 0 whenever kj � kk2 exceeds R.(This notion of bandedness for multivariate matrices is highly useful in other contexts. See, forinstance, [de B, p. 43].)Armed with these concepts, it is possible to extend Theorem 3.1 to multivariate matrices.Theorem 3.3. Let A = (Ajk)j;k2Zd be a symmetric positive de�nite matrix which is m-banded,where m is a positive integer. ThenjA�1jk j � 2kA�1k2�kj�kk2 ; j; k 2 Zd; (3:3)where � = �pcond2(A)�1pcond2(A)+1�1=m.Proof. The proof of Theorem 2.4 of [DMS] requires only minor changes to e�ect this result. Specif-ically, we note that if A is m-banded then Al is lm-banded for any positive integer l.Theorem 3.3 provides the following upper bound on kA�1k1 for symmetric, positive de�nite, bandedmultivariate matrices A.Corollary 3.4. Let A be as in Theorem 3.3. ThenkA�1k1 � 2kA�1k2 1 + �1=pd1� �1=pd!d = 2kA�1k2�tanh� 12md log��+ 1�� 1����d ; (3:4)where � =pcond2(A). Further, if kA�1k2 � � and cond2(A) � �, thenkA�1k1 � 2��1 + �1� ��d ; (3:5)where � = �p��1p�+1�1=mpd. 9



baxter, sivakumar and wardProof. The Cauchy-Schwarz inequality and (3.3) provide the relationskA�1k1 � 2kA�1k2 Xk2Zd �kkk2 � 2kA�1k2 Xk2Zd �kkk1=pd= 2kA�1k2 1Xl=�1 �jlj=pd!d = 2kA�1k2 1 + �1=pd1� �1=pd!d :Using the identity 1� �1=pd1 + �1=pd = tanh� 12mpd log�� + 1� � 1��provides the remainder of (3.4). Furthermore, it is elementary that the function[0;1) 3 x 7! �tanh� 12mpd log�x+ 1x� 1����dis increasing, which implies the second part of this corollary.We wish to use Corollary 3.4 to obtain upper bounds on kA�1k1 when A is a symmetric,positive de�nite multivariate matrix which can be approximated su�ciently rapidly by bandedmatrices. We need the following standard perturbation result.Lemma 3.5. Let (V; k � k) be any normed space and let S:V ! V be an invertible bounded linearoperator whose inverse is also bounded. If T :V ! V is a linear operator such that kS � Tk �1=(2kS�1k), then kT�1k � 2kS�1k.Proof. We have the relationskTxk � kSxk � k(S � T )xk � kxk=kS�1k � kxk=(2kS�1k) = kxk=(2kS�1k):We now address the main result of the �rst part of this section.Theorem 3.6. Suppose A = (Ajk)j;k2Zd is a symmetric, positive de�nite matrix. Let (Am)1m=1,be a sequence of symmetric multivariate matrices such that(i) Am is m-banded for each positive integer m;(ii) supm kAmk1 =: K <1;(iii) kA�Amk1 = O(m�t+d), for some constant t > 2d.Then there exists an increasing function D : [0;1)! [0;1) such that kA�1k1 � D(kA�1k2).10



p-norms of interpolation matricesProof. Suppose kxk2 = 1. The Cauchy-Schwarz inequality and the symmetry of A � Am yield thepair of inequalities jxTAx� xTAmxj � kA�Amk2 � kA�Amk1:So, by assumption (iii) and positive de�niteness of A, there exists a positive integer m0 such that,for every m � m0, Am is positive de�nite and kA � Amk2 � 1=(2kA�1k2). Consequently, Lemma3.5 implies that kA�1m k2 � 2kA�1k2 for m � m0, so from assumption (ii), we have the estimatecond2(Am) � 2KkA�1k2 =: �, m � m0. Hence, we conclude from Corollary 3.4 thatkA�1m k1 � 4kA�1k2 �1 + �1� ��d ; m � m0; (3:6)where � = �p� � 1p� + 1�1=(mpd):Applying (3.4), we �nd that the right hand side of (3.6) is O(md), so, since t > 2d, assumption (iii)guarantees the existence of a positive integer m1 � m0 such that kA� Amk1 � 1=(2kA�1m k1) forall m � m1. An appeal to Lemma 3.5 and inequality (3.6) now provides the following �nal estimate:kA�1k1 � 2kA�1m k1 � 8kA�1k2 �1 + �1� ��d ; m � m1; (3:7)where � = �p� � 1p� + 1�1=(mpd):The observation that the right hand side of (3.7) is an increasing function of kA�1k2 completes theproof.We now apply the results obtained heretofore to interpolation matrices of the form ('(xj �xk))nj;k=1, where (xj)nj=1 is any set of di�erent points in Rd and ':Rd ! R is an even function.In order to do so, let us re-express the interpolation matrix as a multivariate matrix of the formA = (Ajk)j;k2Zd. Roughly speaking, we choose a scaling zj = �xj, for j = 1; : : : ; n, and label eachzj with a nearby member of the lattice Zd. More precisely, we use the following elegant lemma ofD. Hensley.Lemma 3.7. Let (zj)nj=1 be any subset of Rd such that kzj � zkk2 � pd when j 6= k. De�ne�j = �b�j1c; : : : ; b�jdc� ; j = 1; : : : ; n;where zj = (�j1; : : : ; �jd) and b�c denotes the greatest integer function. Then the points (�j)nj=1 areall di�erent. Further, if k�j � �kk2 � R and R � 4pd, then kzj � zkk2 � R=2.11



baxter, sivakumar and wardProof. If �j = �k , then j�jl � �kl j < 1 for l = 1; : : : ; d, which implies kzj � zkk2 < pd. Thereforej = k and we have shown that the integers (�j)nj=1 are all di�erent. For the second statement of thelemma, we note thatk�j � �kk2 � kzj � zkk2 + k(zj � �j)� (zk � �k)k2 < kzj � zkk2 + 2pd;whence k�j � �kk2 � R implies kzj � zkk2 � R� 2pd � R=2 for R � 4pd.In order to apply Lemma 3.7 to arbitrary sets of distinct points, we introduce the following termi-nology.De�nition 3.8. Let q be a positive number. A subset X of Rd is said to be q-separated if theopen balls fBxgx2X are disjoint, where Bx = fy 2 Rd : kx� yk2 < qg.We are now ready to de�ne the multivariate matrix corresponding to ('(xj � xk))nj;k=1. Givenany q-separated subset (xj)nj=1 in Rd, we set zj = (pd=2q)xj for j = 1; : : : ; n, and calculate integers(�j)nj=1 using Lemma 3.7. De�ne A = (Ajk)j;k2Zd by the equationsAjk = �'(xl � xm); if j = �l and k = �m0; otherwise : (3:8)Thus, if ' is a strictly positive de�nite function of compact support, then (3.8) produces a banded,positive de�nite, symmetric multivariate matrix A. Unfortunately, whilst there are several strictlypositive de�nite radial basis functions in common use, such as the Gaussian '(x) = exp(��kxk22)and the inverse multiquadric '(x) = (kxk22+c2)1=2, not one enjoys the property of compact support.However, if ' decays rather quickly for large argument, then it can be useful to approximate ' bythe compactly supported function given by'm(x) := �'(x); kxk2 � m0 kxk2 > m ;where m is some positive integer. The function 'm gives rise to the interpolation matrixAm := ('m(xj � xk))nj;k=1; (3:9)which can also be written as a multivariate matrix using 'm in place of ' in (3.8). Moreover, Amis m-banded, and we shall use it to approximate the original matrix A.The analysis of the banded sections Am requires the next two lemmata.Lemma 3.9. Let X be any q-separated subset of Rd contained in the annulus fx 2 Rd : r1 �kxk2 � r2g, where q � r1 � r2. Let ':Rd ! R be a function such that0 � '(x) � Ckxk�t2 ; x 2 Rd;12



p-norms of interpolation matriceswhere C and t > d are positive constants. ThenXx2X '(x) � 3dq�tC br2=qcXl=br1=qc l�t(l+ 2)d�1 � 3dq�tC 1Xl=1 l�t(l+ 2)d�1 <1: (3:10)Proof. We haveXx2X '(x) � CXx2X kxk�t2 � q�tC br2=qcXl=br1=qc l�tcardfx 2 X : ql � kxk2 � q(l + 1)g:Now cardfx 2 X : ql � kxk2 � q(l + 1)g cannot be larger than the maximum number of disjointopen balls of radius q which can be packed in the annulus fx 2 Rd : q(l � 1) � kxk2 � q(l + 2)g,and comparing the volumes of this latter annulus with that of an open ball of radius q we obtainthe upper bound (l+ 2)d � (l� 1)d � 3d(l+ 2)d�1. HenceXx2X '(x) � 3dq�tC br2=qcXl=br1=qc l�t(l+ 2)d�1 � 3dq�tC 1Xl=1 l�t(l+ 2)d�1 <1;the condition t > d implying the �niteness of this �nal bound.Lemma 3.10. Let (xj)nj=1 be any q-separated subset of Rd and let A = ('(xj � xk))nj;k=1 where':Rd ! R is as in Lemma 3.9. Suppose Am is the banded matrix given by (3.9) for every positiveinteger m. Then supm kAmk1 <1 and kA� Amk1 = O(m�t+d).Proof. Standard linear algebra and the de�nition of 'm imply the relationskAmk1 � kAk1 = '(0) + max1�j�n nXk=1;k 6=j '(xj � xk): (3:11)It is easy to check that the points fxj � xkgnk=1;k 6=j form a q-separated set of Rd satisfying thehypotheses of Lemma 3.9. Consequently, (3.10) and (3.11) provide the inequalitykAmk1 � '(0) + 3dq�tC 1Xl=1 l�t(l + 2)d�1 <1 (3:12)for every m. A similar argument leads to the estimatekA� Amk1 � 3dq�tC 1Xl=bm=qc l�t(l+ 2)d�1; (3:13)whence the asserted rate of convergence.Note that (3.12) and (3.13) do not depend on the particular choice of q-separated set (xj)nj=1.We close the section with our main results for interpolation matrices.13



baxter, sivakumar and wardTheorem 3.11. Let ':Rd ! R be a strictly positive de�nite function such that0 � '(x) � Ckxk�t2 ; x 2 Rd;where C and t > 2d are constants. Then there is an increasing function D: [0;1)! [0;1) suchthat, for every �nite q-separated subset (xj)nj=1 of Rd, the interpolation matrix A = ('(xj�xk))nj;k=1satis�es the inequality kA�1k1 � D(kA�1k2):Proof. Let Am be as above and regard A and Am as multivariate matrices. The required resultfollows from Lemma 3.10 and Theorem 3.6.Corollary 3.12. Let ':Rd ! R satisfy the conditions of Theorem 3.11 and let there be a constantK(q) such that kA�1k2 � K(q); (3:14)where A = ('(xj � xk))nj;k=1 and (xj)nj=1 can be any �nite q-separated subset of Rd. Then there isa constant L(q) for which kA�1kp � L(q); (3:15)for every p � 1.Proof. This follows immediately from Theorem 3.11 when p = 1, the result for p = 1 being anobvious consequence of symmetry. The Riesz convexity theorem then provides the result for all pgreater than one.We refer the reader to [NW1, NW2] for bounds such as (3.14).4.An application to the Hardy multiquadricLet ':R! R be the Hardy multiquadric, that is'(x) = (x2 + c2)1=2; x 2 R; (4:1)where c is a non-negative constant, and let An = ('(j � k))nj;k=0. In this section we prove thatsupn kA�1n k1 is �nite for every c � 0. This is not a simple consequence of Section 3 because theHardy multiquadric is not a positive de�nite function. However, we �nd that it is suitable to applythe results of Section 3 to the second divided di�erence of the multiquadric in the rather specialcase of equally spaced points on a line, the general case being unclear at this time. We emphasize14



p-norms of interpolation matricesthat the convergence analysis of interpolation at equally spaced points on a line is still a topic forcurrent research. In particular, the papers of [BP, P] are devoted to this problem. Furthermore, [P]�nds that there is an intimate link between uniform convergence of the multiquadric interpolantsand the boundedness of the set fkA�1n k1 : n = 1; 2; : : : g. Therefore there are several reasons tostudy bounds on kA�1n k1.When c = 0, An becomes the Euclidean distance matrix (jj � kj)nj;k=0. Direct calculationprovides the inverse matrix0BBBBBB@ (1� n)=2n 1=2 1=2n1=2 �1 1=21=2 �1 .. . �1 1=21=2n 1=2 (1� n)=2n1CCCCCCA : (4:2)Thus kA�1n k1 = 2 for every n when c = 0. Therefore we restrict attention to the case when c ispositive.Our technique rests on the observation that the second divided di�erence (x) = 12 ('(x+ 1)� 2'(x) + '(x� 1)) ; x 2 R; (4:3)generates matrices Cn = ( (j�k))nj;k=0 which are amenable to the analysis of Section 3. Speci�callywe have the following pair of results.Lemma 4.1. The condition numbers (cond2(Cn))1n=0 form a bounded set.Lemma 4.2. There is a constant � such thatkC�1n k1 � �; n � 0: (4:4)We shall prove these lemmata later in order to continue our main argument.Let us introduce a new matrix Bn by the equationBn = CnA�1n ; n � 0; (4:5)recalling that An is invertible by [M, Theorem 2.3]. The particular form of Cn allows us to calculateBn rather easily. Indeed we �nd thatBn = 0BBBBBB@ �Tn1=2 �1 1=21=2 �1 .. . �1 1=2�Tn 1CCCCCCA ; (4:6)15



baxter, sivakumar and wardwhere An�n = 0BB@  (0) (1)... (n)1CCA =: 
n (4:7)and (�n)j = (�n)n�j for j = 0; 1; : : : ; n. Thus (4.7) implies the inequalitieskBnk1 � 2 + 2 max0�j�n j(�n)j j � 2 + 2kA�1n k2 � k
nk2: (4:8)Now an application of the mean value theorem provides the relation  (x) = O(jxj�3) for large jxj,which allows us to conclude thatk
nk22 � 1Xj=0  (j)2 = O( 1Xj=1 j�6) <1: (4:9)Consequently supn k
nk2 is �nite. Furthermore, supn kA�1n k2 is also �nite (see [NW2] or [Ba2,Proposition 4.2]). Hence there is a constant �, depending only on c, such thatkBnk1 � �; n � 0: (4:10)Applying (4.5), (4.10), Lemma 4.2, and the symmetry of Cn, we obtain the relationskA�1n k1 = kA�1n k1 � kC�1n k1kBnk1 � ��; (4:11)for every non-negative integer n.Finally, we address the proofs of Lemmata 4.1 and 4.2. It is easy to see that supn cond2(Cn)is �nite using the classical theory of Toeplitz operators, because the symbol function �(�) =Pk2Zd  ̂(�+2�k) is clearly a positive continuous function. However, we include a sharp bound oncond2(Cn) for the enjoyment of the reader.Lemma 4.3. Let �:Rd ! R be the d-dimensional multiquadric�(x) = �kxk22 + c2�1=2 ; x 2 Rd:Then the function 	̂:Rd ! R given by	̂(�) = �2 sin2(k�k2=2)�̂(�); � 2 Rd; (4:12)is absolutely integrable. Further, its inverse Fourier transform	(x) = (2�)�d ZRd 	̂(�)eix� d�; x 2 Rd; (4:13)is a uniformly continuous function which is radially symmetric and strictly positive de�nite.16



p-norms of interpolation matricesProof. The Fourier transform �̂ is known to be a non-positive radially symmetric function decayingexponentially for large argument for which the limit limk�k2!0 k�kd+12 �̂(�) exists [Ba2, Section 4].This implies that 	̂ is an absolutely integrable radially symmetric function, because the existenceof the limit limk�k2!0 k�kd�12 	̂(�) ensures that 	̂ is summable on every bounded neighbourhood ofzero, and 	̂ inherits the exponential decay of �̂ for large argument. Thus (4.13) de�nes a uniformlycontinuous radially symmetric function 	:Rd ! R. Further, 	 is positive de�nite because (4.13)yields the relations nXj;k=1 yjyk	(xj � xk) = (2�)�d ZRd ��� nXj=1 yjeixj����2	̂(�) d� � 0;for any complex numbers (yj)nj=1 and for any points (xj)nj=1 in Rd. Moreover, if the sequence (yj)nj=1is non-zero and if the points (xj)nj=1 are all di�erent, then the function Cd 3 � 7! Pnj=1 yjeixj� isa non-zero entire function of d complex variables. Hence, its zero-set f� 2 Rd :Pnj=1 yjeixj� = 0ghas measure zero. Finally, since �̂ is negative almost everywhere, we deduce that the last inequalityis strict, which implies that 	 is strictly positive de�nite.This result is relevant because � = ' and 	 =  when d = 1. Thus Lemma 4.3 reveals that is the univariate form of a radially symmetric function which is strictly positive de�nite for anydimension d. The proof of Lemma 4.1 may now be completed using [Ba2, Theorem 4.1] as follows.Proof of Lemma 4.1. Lemma 4.3 and [Ba2, Theorem 3.10] imply that the symbol function �:Rd ! Rde�ned by the equation �(�) = Xk2Zd 	̂(� + 2�k); � 2 Rd; (4:14)satis�es the inequalities �(�e) � �(�) � �(0); � 2 Rd; (4:15)where e = [1; 1; : : : ; 1]T 2 Rd. Further, the theory of Toeplitz operators described in [Ba2, Section1] yields the boundskCnk2 � �(0) and kC�1n k2 � 1=�(�); n = 0; 1; 2; : : : ; (4:16)when d = 1. Hence cond2(Cn) � �(0)=�(�) for every non-negative integer n, and this is bestpossible.Proof of Lemma 4.2. This is a simple application of Theorem 3.11, since we have already seen that is a positive de�nite function which decays cubically for large argument, that is  (x) = O(jxj�3)as jxj ! 1. 17
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