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A radial basis function approximation has the form

n
@) =S yiele —ap), e R
J=1
where p: R? — R is some given (usually radially symmetric) function, (y;)7 are real coefficients, and
the centres (2:;)7 are points in R?. For a wide class of functions ¢, it is known that the interpolation
matrix A = (¢(7; — 24))7 ,_, is invertible. Further, several recent papers have provided upper
bounds on ||[A7"||a, where the points (7;)7 satisfy the condition ||z; — 24||2 > &, § # k, for some
positive constant 4. Tn this paper, we calculate similar upper bounds on |[|A~'||, for p > 1 which
apply when ¢ decays sufficiently quickly and A is symmetric and positive definite. We include an
application of this analysis to a preconditioning of the interpolation matrix A, = (¢(j — k))7 ,_,
when o(z) = (22 4 ¢2)'/2, the Hardy multiquadric. Tn particular, we show that sup, |4, ]|~ is
finite. Furthermore, we find that the bi-infinite symmetric Toeplitz matrix K = (o(j — k)); rez4

enjoys the remarkable property that [|[F~']|, = |

E=Y|s for every p > 1 when ¢ is a Gaussian.
Indeed, we also show that this property persists for any function ¢ which is a tensor product of

even, absolutely integrable Pdlya frequency functions.
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1. Introduction

A radial basis function approximation has the form

e
d
s(z) = Z% oz —x;), z € R,
J=1
where ©: R? — R is some given (usually radially symmetric) function, (y;)7 are real coefficients,
and the centres (2;)7 are points in R, Such approximants provide a flexible and useful approach
to multivariate interpolation (see [D, P]). For a wide class of functions ¢, it is known that the

interpolation matrix

A= (p(rj —28)) ] n=r (1.1)

is invertible (see [M, MN]). Further, several recent papers [B, NW1, NW2, Bal, Ba2] have provided

T satisfy the separation condition ||z; — 2|2 > 4,

upper bounds on ||A7"||2, where the points (1)
J # k, for some positive constant §. Tn this paper we derive upper bounds on ||[A7"]|, for certain
functions ¢ and p > 1, under the same separation condition on the set of centres. Specifically,
in Section 2, we use total positivity to show that the bi-infinite symmetric Toeplitz matrix K =
FE~ Y|y for every p > 1.

(exp(—Allj — k||3)) ;. ke enjoys the remarkable property that ||F '], = |

(We refer the reader to [GS] or [W] for the general theory of Toeplitz matrices.) Furthermore, we
show that this result generalizes to a certain larger class of bi-infinite symmetric Toeplitz matrices
generated by Pdlya frequency functions. In Section 3, we show that a theorem of Demko, Moss and
Smith on the inverse of a banded symmetric positive definite matrix can be used to provide bounds
on ||[A7"]|., where A is given by (1.1), ¢ is a strictly positive definite function (see Definition 1.1)
satisfying certain growth restrictions, and (z;)7 can be any set of different points in R, Moreover,
the symmetry of A implies ||A7"||{ = ||A~"||~, whence the Riesz convexity theorem [HLP, p. 214],
which states that log ||A~"||, is a convex function of 1/p, provides an upper bound on |[|[A~"|], for all
p > 1. The results of Section 3 do not apply directly to the many unbounded radial basis functions
studied in the literature. However, we use a preconditioning argument and the main theorem of

Section 3 to prove that the inverses of the matrices

An=(p(G = k)i jmor  n=0,1,...,

where @(2) = (22 4+ ¢*)'/? and ¢ is a positive constant, are uniformly bounded in the ooc-norm.
Once again, symmetry and the Riesz convexity theorem imply that the matrices (A, '), are also

uniformly bounded in the p-norm for every p > 1.

2
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To the writers’ knowledge, this is the first paper dedicated to the study of upper bounds for
|A="]], for p # 2. However, the result for the multiquadric in Section 4 was discovered inde-
pendently by M. J. D. Powell (private communication), whose technique was quite different; his
study of [|A, ]| was motivated by a desire to understand the uniform error of interpolation by a
multiquadric on a regular grid [BP].

We shall need the following definition and proposition in Sections 3 and 4.

Definition 1.1. We shall say that a function f:R? — C is positive definite if it is measurable and

T

> ajapf(e; —wp) >0 (1.2)

J,k=1
for any complex sequence (a;)7_, and any points (x;)7%_; in R, Further, we shall say that f is

it

strictly positive definite if inequality (1.2) is strict whenever (a;)7_; is a non-zero sequence and the

it

points (z;)7_, are all different.

Proposition 1.2. Let f: R — R be positive definite. Then f(x) = f(—=) for every xz € R".

Proof. See [R, p.18]. ]

2. Cardinal interpolation and norm estimates

Let A be a positive constant and let ¢: R? — R be the Gaussian
ola) = exp(-Alsl3), 7 e R (2.1)

In this section we prove the remarkable result that the bi-infinite symmetric Toeplitz matrix A =

(p(7 — k) jreza satisfies the equation
A= ] = 1A

for every p greater than one. Using some recent work of Baxter and Micchelli, we can view this
as a consequence of the fact that the GGaussian is an even, absolutely integrable Pdlya frequency
function, and we address this point briefly at the end of the section. Indeed, it would be possible to
begin our study with this more general work, but we have chosen to concentrate on the particular
case of the GGaussian because of its greater familiarity to many readers.

We begin with the case d = 1. Consider the bi-infinite, symmetric Toeplitz matrix A = (p(j —
k)) i rez. Then the theory of Toeplitz matrices [W, Section 2] implies that A is an invertible bounded
linear operator on (?(Z) for every p > 1 because the symbol function

a(&) =Y ¢lE+2rk), EER,

keZ
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is a positive continuous function. Furthermore, A™" is a Toeplitz matrix, say, A~ = (¢;_x),jrez-

Then the cardinal function y : R — R given by

X(@) = epplz—k),  zER, (2.2)

keZ

satisfies x(j) = do;, 7 € 2, and the exponential decay of ¢ ensures the absolute convergence of the
series in equation (2.2) at every point 2 in R.

We shall prove the following.
Theorem 2.1. [[A7"||, = ||A" ||y for p> 1.
We first need a preliminary result.

Proposition 2.2. The coefficients (cy)rez of the cardinal function x alternate in sign, that is

(—1)¥ep, > 0 for every integer k.

Proof. For each non-negative integer n, we let

An = (27 = k) p=—n- (2.3)

Now A, is an invertible totally positive matrix (see [K, Section 7.1, p. 334]), that is every minor
is non-negative. Therefore A' enjoys the “chequerboard” property: the elements of the inverse

matrix satisfy (—1)7F%(A, "), > 0, for j,k = —n,...,n. In particular, if we let

Cok = (A#)mf, k= —-n,...,n, (2.4)
then (71)]“(377,;f > 0 and the definition of A# provides the equations
Z ok — k) = 8o, j==n,...,n. (2.5)

Thus the function x,,: R — R defined by

T

(@)= Y cwplz k), 7 ER, (2.6)
k=—n
is a cardinal function of interpolation for the finite set {—n,...,n}.

Now Theorem 9 of [BM] supplies the following useful fact relating the coefficients of x,, and y:

lim e, = ¢y, ke Z.

n—0o0



P-NORMS OF INTERPOLATION MATRICES

k

Hence the property (—1)¥c,; > 0 implies the required condition (—1)%c; > 0. [

Proof of Theorem 2.1. By [W, p. 186],

2m
cr = (2m) 7! Lefikg
= (27) /0 e e ez, (2.7)
where
a(&) = @(+2mk), EeR. (2.8)
keZ

Therefore, using standard results of Toeplitz operator theory ([W, Theorem 1’]), we obtain the

expression
1

A7y = max{— : £ € [0, 2x]}.

A7 e = maxf s s € € 0.21])
Applying Temma 2.7 of [Ba2], we get,

1
1A = = = S (1) 2.9)
o(r) ];

But Proposition 2.1 and the symmetry of A provide the relations

A oo = 1A e =D lewl = D (- 1)Fese (2.10)

keEZ kez
Therefore A~" is a nontrivial linear operator on (7(Z), for p = 1,2, and oo, whose norms agree on
each of these sequence spaces. Consequently, the Riesz convexity theorem [HLP, p. 214] implies
A7 ], = |47 ]2 for p > 1. D
Turning now to the multivariate case, we let p(2) = exp(—Al|z[|3), A > 0, 2 € R?, and define
A= (p(j — k))jreza. Then A may be viewed as a bounded linear operator on (P(ZY) for p > 1.
(d

As before, A7 = (Cl(jd;)k)j’kegd7 where (c; )

function, to wit: Y7, -4 Cgfd) ©(j — k) =80, 7 € Z%. The following is an extension of Theorem

)Jjeza are the coefficients of the multivariate cardinal

2.1.
Proposition 2.3. Let A= (¢(j —k));reza. Then [[A7", = [[A7" |2 for p > 1.

Proof. The Toeplitz theory and [Ba2, Lemma 2.8] give the relations

(d) _ d/ 1 —ik¢ _ d
o’ = (27 ——¢ dg, k= 1(ky,....kg) € Z 2.11
¥ ( ) J[0,27]4 al?) (5) ( 1 ) ( )

and
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where
d (&)=Y (¢ +2rk). (2.12)
kezd
Moreover,
_ _ d
A oo = 1A 1 = > 1el). (2.13)

kezd

Therefore it suffices to demonstrate that (71)k‘+"'+kdcgj) > 0 for all k € Z9. To this end, we note

that, since ¢ is a tensor product of univariate (Gaussians, we have

d O =T]cl&), &=(&,....&) e R, (2.14)

where o is the univariate symbol given by (2.8). Consequently, (2.11) implies

d
A =TT ex,, kez?, (2.15)
j=1
whence
d
(Rl =TI e, >0,
j=1

by Proposition 2.2. Once again, the Riesz convexity theorem ensures the validity of the assertion
for all p > 1. [

Finally, we discuss the more general formulation of the results using the work of Baxter and
Micchelli [BaM]. Specifically, we show that all of the results of this section apply when the Gaussian
is replaced by any tensor product of even, absolutely integrable Pdlya frequency functions. We
recall that a function ¢: R — R is a Pélya frequency function if the matrix (¢(z; — yx))? ,—; is

totally positive for any real numbers oy < --- < a2, and y; < --- < y,.

Proposition 2.4. et ©: R — R be an even, absolutely integrable Pélya frequency function. Then

by
x(x) = Z cro(e — k), x € R, (2.16)

keZ

satisfies

X (1) = doj, JEZ.
Furthermore, the coefficients (c)rez of x alternate in sign, that is (—1)%c;, > 0.

6
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Proof. Tn [S2] it is shown that an even, absolutely integrable Pdlya frequency function must decay
exponentially for large argument, which implies that the infinite series (2.16) is well defined. Stan-
dard Toeplitz theory provides the remaining properties of y except for the alternation of signs of its
coefficients, which fact requires only minor modifications to the proof of Proposition 2.2. [

The analogue of Theorem 2.1 is equally straightforward.

Theorem 2.5. lLet o: R — R be an even, absolutely integrable Pdlya frequency function and let

A=(o(j—k))irez. Then |JA, = |A~ |1 for every p greater than one.

Proof. The proof of Theorem 2.1 requires one important change to effect this result. Specifically,
equation (2.9) is now a consequence of Theorem 4.2 of [BaM] instead of LLemma 2.7 of [Ba2]. =
For the multivariate form of this theorem, it is appropriate to define ¢: R? — R by the tensor

product
p) =T ei@),  a=(r1,..,20) € R, (2.17)

where each ¢; is an even, absolutely integrable Pélya frequency function; we note that the multi-
variate (zaussian arises in this way from the univariate Gaussian. It is not difficult to construct
functions of the form (2.17). For example, ¢(x) = exp(—||z]|1) will do. We refer the reader to [BaM]
for details.

As before, we consider the Toeplitz matrix

A= (plj— b)) jpeze (2.18)

where ¢ is given by (2.17). The symbol function satisfies the equation

a(§) = H oi(&),  £=(&,...,&) € RY, (2.19)
where
ai(n) =Y ¢iln+2rk), neR. (2.20)

keZ

Therefore the inverse of the interpolation matrix (2.18) is given by A~ = ((:(d)k)]"kegd, where

Sl k) =boy  je 2"

ke Z4
Furthermore, (2.19) implies
d
A = [Teies k=, ... ka) € 27, (2.21)
J=1
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and Y,z ik —1) = dop, for k€ Z and j € {1,2,...,d}. By Proposition 2.4, we have

d
(nfrth gt =TT e > 0. (2:22)
J=1
Therefore, as for the Gaussian, we have [|[A7"||; = ||[A7"||i. Applying the Riesz convexity theorem

vields the analogue of Proposition 2.3, which we state formally below.

Theorem 2.6. let {¢;: R — R :j = 1,...,d} be any set of even, absolutely integrable Pélya
frequency functions. If o:R* — R is defined by the tensor product (2.17) and the bi-infinite,
symmetric, Toeplitz matriz A is given by (2.18), then [|[A~"|], = ||A |1 for every p greater than

one.

3.The main results

Let (z;)7_, be any set of different points, or centres, in R let o: R* — R be an even function,
and let A = (¢(7; — 71))?,—; be the associated interpolation matrix. For many choices of ¢, there
exist upper bounds on ||[A7"||s which depend only on ¢, the dimension d of the ambient space, and
the minimum separation distance min .||z; — 2xl|2 of the centres ([INW1, NW2]). In this section
we show that the same is true for every p-norm for a certain class of functions ¢ which includes
the Gaussian. In fact, it suffices to prove this when p = 0o, because A is symmetric and the Riesz
convexity theorem ([HLP, p. 214]) implies that log||A~"]|, is a convex function of 1/p for p > 1;
therefore most of this section studies ||A7"]| -

The section falls naturally into two parts. In the first, we describe a method for obtaining upper
bounds on [|[A7"|| in terms of ||A7" |2, provided the matrix A is symmetric, positive definite, and
can be approximated sufficiently rapidly by banded matrices; the main theorem here is Theorem 3.6.
The second part of the section deals with the application of this method to interpolation matrices,
and culminates in Theorem 3.11 and Corollary 3.12.

Our main tool in the matricial analysis to follow is a theorem of Demko, Moss and Smith, given

below.

Theorem 3.1. Tet A € R"™*"™ be a positive definite symmetric mairiz. If A is m-banded, that is

A = 0 whenever |j — k| exceeds m, then

A <2, <k <, (3.1)

M

1/m
ond,(4)— _
where (1 = <;22TE;‘;+:> and condy (A) = [|A|l2 [| Ao

8
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Proof. This is Theorem 2.4 of [DMS]. |
We shall extend the preceding theorem to matrices indexed by d-dimensional integers. A precise

definition of such matrices follows.

Definition 3.2. We shall say that a multivariate matriz A is simply a finitely supported function

A: 29 % Z7 5 R. Writing Aji, for A(4, k), the following terms extend in a natural way.

(i) Ais symmetric if A, = Ay; for all j ke Z7.
(i) A is positive definite if

> yiyeAr >0 (3.2)

jkezd

for every finitely supported non-zero real sequence (y;) ;e za such that the support of the matrix
(YY) jkeza is contained in the support of A.

(iii) A is R-banded, where R is a positive constant, if A;; = 0 whenever [|j — k|| exceeds R.
(This notion of bandedness for multivariate matrices is highly useful in other contexts. See, for

instance, [de B, p. 43].)
Armed with these concepts, it is possible to extend Theorem 3.1 to multivariate matrices.

Theorem 3.3. Let A = (A1) ez be a symmetric positive definite matriz which is m-banded,

where m is a positive integer. Then

A <2 A ol Fl ke 27 (3.3)

_ cond,(4) -1
where = <7condg(A)+1> .

Proof. The proof of Theorem 2.4 of [DMS] requires only minor changes to effect this result. Specif-
ically, we note that if A is m-banded then A’ is Im-banded for any positive integer [. [
Theorem 3.3 provides the following upper bound on || A" ||, for symmetric, positive definite, banded

multivariate matrices A.

Corollary 3.4. lLet A be as in Theorem 3.3. Then

d
- - 14 pu /v - 1 k4 1\T\ °
Ao <2IA7 2 | ———=] =2||A7 "] ( tanh | 3.4
147" < 2 “2(1,wa 1A (1 | og (2D L
where k = /condy(A). Further, if |[A~"||s < @ and condy(A) < 3, then
d
1
A <20 (1) (35)
1—v

1/7)7\/3
where v = Vil )
NGES
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Proof. The Cauchy-Schwarz inequality and (3.3) provide the relations

HAq o < 2||A71||2 Z Mllkllz < QHA%H? Z Mllklh/ﬂ

kezd kezd

d d
00 1/\/3
_ i AN i I +p
=2[|A7l2 ( > ) =2[|A7l2 <—] ERYNZE

I=—00

Using the identity

——= — lLan —F—= 10
14 pt/Vd omvd S\ k1

provides the remainder of (3.4). Furthermore, it is elementary that the function

e (o (2]

is increasing, which implies the second part of this corollary. [

We wish to use Corollary 3.4 to obtain upper bounds on ||[A7'||., when A is a symmetric,
positive definite multivariate matrix which can be approximated sufficiently rapidly by banded

matrices. We need the following standard perturbation result.

Lemma 3.5. Let (V,||-||) be any normed space and let S:V — V' be an invertible bounded linear

operator whose inverse is also bounded. If T:V — V' is a linear operator such that ||S — T <
/@IS ), then |71 < 20151
Proof. We have the relations
ITall > 1520 — 1165 — Tyl > 21/1S 1~ lall/@1S 1) = ll2l1/ IS~ 1D-
|

We now address the main result of the first part of this section.

o0

Theorem 3.6. Suppose A = (A;;); keza is a symmelric, positive definite matriz. Let (Ap,)2_,,

be a sequence of symmetric multivariate matrices such that
(i) A, is m-banded for each positive integer m;

(ii) sup,, [|Am|le =1 K < o0;

(iii) ||A — Aplloe = O(m~'+9), for some constant t > 2d.

Then there exists an increasing function D : [0, 00) — [0,00) such that [|[A7" ||, < D(||A7"]|2).

10
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Proof. Suppose ||z]]2 = 1. The Cauchy-Schwarz inequality and the symmetry of A — A,, yield the
pair of inequalities

|27 Az — 2T ALz <||1A = Al < 1A — Anloo-

So, by assumption (iii) and positive definiteness of A, there exists a positive integer mg such that,
for every m > my, A,, is positive definite and ||A — A, [la < 1/(2|[A7"|]2). Consequently, Lemma
3.5 implies that [|A,'||s < 2[|[A7"]]a for m > mq, so from assumption (ii), we have the estimate

condy (A,,) < 2K||A7Y|s =: B, m > mg. Hence, we conclude from Corollary 3.4 that

d
_ _ 14+ v
A e <4147 e ($52) > (3.6)

where
VB -1 1/(m/d)
T

Applying (3.4), we find that the right hand side of (3.6) is O(m?), so, since ¢ > 2d, assumption (iii)
guarantees the existence of a positive integer my > mq such that ||[A — A, |l < 1/(2[|A4,,!]|0) for

all m > my. An appeal to Lemma 3.5 and inequality (3.6) now provides the following final estimate:

d
_ _ _ 14+v
A7 o < 2040 e <A (1) 0 > o, (3.7

where
VB -1 1/(m~/d)
MU

The observation that the right hand side of (3.7) is an increasing function of ||A~"||s completes the
proof. [
We now apply the results obtained heretofore to interpolation matrices of the form (p(z; —

it

T%))7 p—1> Where (x;)7_, is any set of different points in R* and ©: R* — R is an even function.
In order to do so, let us re-express the interpolation matrix as a multivariate matrix of the form
A = (Ajr) reza- Roughly speaking, we choose a scaling z; = pa;, for j=1,...,n, and label each

z; with a nearby member of the lattice Z7. More precisely, we use the following elegant lemma of

D. Hensley.

Lemma 3.7. let (z;)7_ be any subset of R? such that ||z; — zx||2 > Vd when j # k. Define

vi= (161 1€), =1

where z; = (517, .. ,SZ]) and |-| denotes the greatest integer function. Then the points (v;)7_, are

all different. Further, if ||v; — vi||2 > R and R > AN/d, then |z; — zx|l2 > R/2.

11
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Proof. 1f v; = vy, then |E'Z —&F < 1 for I = 1,...,d, which implies ||z; — 2|2 < V/d. Therefore
7 = k and we have shown that the integers (1/'7')777':1 are all different. For the second statement of the

lemma, we note that
lvi = wille <1125 = 2ella + 125 = v5) = (26 — vidll2 < 25 — 2ell2 + 2V,

whence ||v; — vg|l2 > R implies [|z; — z|la > R — 20/d > R/2 for R > 4/4d. [
In order to apply L.emma 3.7 to arbitrary sets of distinct points, we introduce the following termi-

nology.

Definition 3.8. Let ¢ be a positive number. A subset X of R? is said to be ¢-separated if the
open balls {B,},cx are disjoint, where B, = {y € R : ||z — y|» < ¢}-

We are now ready to define the multivariate matrix corresponding to (¢(7; — 2x))7 ;. Given

T

any g-separated subset (z;)7_; in R?, we set z; = (\/3/2(7)7“7 for j = 1,...,n, and calculate integers

(vj)7=y using Lemma 3.7. Define A = (A;}.); rez4 by the equations

Ay — {cp(ml —m), fj=viand k=v, . (3.8)

0, otherwise

Thus, if ¢ is a strictly positive definite function of compact support, then (3.8) produces a banded,
positive definite, symmetric multivariate matrix A. Unfortunately, whilst there are several strictly
positive definite radial basis functions in common use, such as the Gaussian (2) = exp(—Al|z[|3)
and the inverse multiquadric () = (||z]|3+¢2)"/2, not one enjoys the property of compact support.
However, if ¢ decays rather quickly for large argument, then it can be useful to approximate ¢ by

the compactly supported function given by

_fel), Al <m

where m is some positive integer. The function ¢, gives rise to the interpolation matrix

Am = (om(2j = 28))F j=1s (3.9)

which can also be written as a multivariate matrix using ¢, in place of ¢ in (3.8). Moreover, A,,
is m-banded, and we shall use it to approximate the original matrix A.

The analysis of the banded sections A,, requires the next two lemmata.

Lemma 3.9. lLet X be any q-separated subset of R contained in the annulus {z € R : ry <

|z|l2 < ro}, where ¢ < ry < ry. Let 02 R* = R be a function such that

0 <) <Cllzy’,  =eRY,

12
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where C' and t > d are positive constants. Then

[r2/4q]
Y elw)<sdg'C > 142" 1<%dq’*(“21 HI+2)"" < oo (3.10)
reX I=|r1/q] =1
Proof. We have
[r2/ql
S o) <O el <q'C S I eand{a € X gl < [Jafle < gl + 1)}
reX reX I=|r1/q]

Now card{z € X : gl < ||z]l2 < ¢(I + 1)} cannot be larger than the maximum number of disjoint
open balls of radius ¢ which can be packed in the annulus {z € R® : ¢(I — 1) < ||z|]» < q(I +2)},
and comparing the volumes of this latter annulus with that of an open ball of radius ¢ we obtain

the upper bound (I + Q)d —(I- 1)d < 3d(l+ 2)”]71. Hence

[r2/q]
Y o) <3dg'C > l—|—2d1<%dq’f(“21fl—|—2) ! < oo,
reX 1= Lr1/qJ =1
the condition £ > d implying the finiteness of this final bound. [

Lemma 3.10. let (z;)7_ be any q-separated subset of R* and let A = (p(z; — Tk))7 p—q where
©: R — R is as in Lemma 3.9. Suppose A,, is the banded matriz given by (3.9) for every positive

integer m. Then sup,, ||Am |l < 00 and ||A — A, ||ee = O(m ).

Proof. Standard linear algebra and the definition of ¢, imply the relations

T

[Aulloe < Nl = 0(0) + max 3 e — ). (3.11)
T k=1

It is easy to check that the points {z; — mk}};’:]’kij form a g-separated set of R? satisfying the

hypotheses of LLemma 3.9. Consequently, (3.10) and (3.11) provide the inequality

[Amlloo < @(0)+3dg "CY 171 +2)" ' < o0 (3.12)

=1

for every m. A similar argument leads to the estimate

A~ Apllee < 3dg~'C Z “Hl4+2)7" (3.13)
I=[m/q]

whence the asserted rate of convergence. ]
Note that (3.12) and (3.13) do not depend on the particular choice of g-separated set (z;)7_;.

We close the section with our main results for interpolation matrices.

13
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Theorem 3.11. let : R — R be a strictly positive definite function such that

0 <) <Cllzy’,  =eRY,

where C' and t > 2d are constants. Then there is an increasing function D:[0,00) — [0, 00) such

that, for every finite g-separated subset (x;)7_, of R?, the interpolation matriz A = (o(@j=21))7 =

7=1 ) :

satisfies the inequality

1A oo < DA )

Proof. T.et A,, be as above and regard A and A,, as multivariate matrices. The required result

follows from l.emma 3.10 and Theorem 3.6. []

Corollary 3.12. et o: R* — R satisfy the conditions of Theorem 3.11 and let there be a constant
K (q) such that
A7 ]2 < K(9), (3.14)

where A = (p(7; — x1))% =y and (z;)7_y can be any finite q-separated subset of R Then there is
a constant L(q) for which

1A, < L(g), (3.15)
for every p > 1.

Proof. This follows immediately from Theorem 3.11 when p = oo, the result for p = 1 being an
obvious consequence of symmetry. The Riesz convexity theorem then provides the result for all p
greater than one. ]

We refer the reader to [NW1, NW2] for bounds such as (3.14).

4.An application to the Hardy multiquadric

let o: R — R be the Hardy multiquadric, that is
p)=(@"+)'P weR, (4.1)

where ¢ is a non-negative constant, and let A, = (o(j — k))%,_,. In this section we prove that
sup,, |4, " ||~ is finite for every ¢ > 0. This is not a simple consequence of Section 3 because the
Hardy multiquadric is not a positive definite function. However, we find that it is suitable to apply
the results of Section 3 to the second divided difference of the multiquadric in the rather special

case of equally spaced points on a line, the general case being unclear at this time. We emphasize

14
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that the convergence analysis of interpolation at equally spaced points on a line is still a topic for
current research. In particular, the papers of [BP, P] are devoted to this problem. Furthermore, [P]
finds that there is an intimate link between uniform convergence of the multiquadric interpolants
and the boundedness of the set {[|A, ']l : 7 = 1,2,... }. Therefore there are several reasons to
study bounds on ||A, "] -

When ¢ = 0, A, becomes the Fuclidean distance matrix (|7 — k|)7,_,. Direct calculation

provides the inverse matrix

(1T—=m)/2n 1/2 1/2n
1/2 112
12 1
(4.2)
1 1/2
1/2n 1/2 (1 —mn)/2n

Thus ||A,"||.c = 2 for every n when ¢ = 0. Therefore we restrict attention to the case when ¢ is
positive.

Our technique rests on the observation that the second divided difference

) =5 (el 1) - 2p(0) t oz 1)), wER, (4.3)

generates matrices C',, = (¢(j —k))7 ,_, which are amenable to the analysis of Section 3. Specifically

we have the following pair of results.
Lemma 4.1. The condition numbers (cond2(C},))02, form a bounded set.

Lemma 4.2. There is a constant U such that

Co Ml < n > 0. (4.4)

We shall prove these lemmata later in order to continue our main argument.

et us introduce a new matrix B,, by the equation
B,=C,A",  n>0, (4.5)

recalling that A,, is invertible by [M, Theorem 2.3]. The particular form of (', allows us to calculate
B,, rather easily. Indeed we find that

(J/T
/2 =1 1/2
/2 —1
B, = , (4.6)
1 1/2
ﬁT

15
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where

¥(n)
and (8,); = (n)pn—j; for j =0,1,...,n. Thus (4.7) implies the inequalities

1Bl <242 max [(n);] < 2+ 204, 2 - Il (48)

Now an application of the mean value theorem provides the relation 1 (z) = O(|=|~%) for large |z|,

which allows us to conclude that

o0

Il <) =005 %) < oo (4.9)
7=0 7=1
Consequently sup,, [|V»||2 is finite. Furthermore, sup, ||A,'||2 is also finite (see [NW2] or [Ba2,
Proposition 4.2]). Hence there is a constant A, depending only on ¢, such that
I|BLll1 < A, n > 0. (4.10)

Applying (4.5), (4.10), Lemma 4.2, and the symmetry of ', we obtain the relations

1A oo = 1A I < IC M Balle < TA, (4.11)

for every non-negative integer n.

Finally, we address the proofs of Lemmata 4.1 and 4.2. Tt is easy to see that sup,, condy(C},)
is finite using the classical theory of Toeplitz operators, because the symbol function o(§) =
D ohezd QL(S + 27k) is clearly a positive continuous function. However, we include a sharp bound on

condq (C,) for the enjoyment of the reader.

Lemma 4.3. Let ®: R* — R be the d-dimensional multiquadric
ba) = (23 +)'", rer?

Then the function W: R = R given by

W(E) = —2sin’(lg]l2/2)0(E),  £eR, (4.12)

is absolutely integrable. Further, its inverse Fourier transform

(z) = (zﬂ)d/ V(e de,  xe R, (4.13)

JRI

is a uniformly continuous function which is radially symmetric and strictly positive definite.

16
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Proof. The Fourier transform ® is known to be a non-positive radially symmetric function decaying
exponentially for large argument for which the limit Tim¢,50 ||£||;]+1(i5(£) exists [Ba2, Section 4].
This implies that ¥ is an absolutely integrable radially symmetric function, because the existence
of the limit lim¢),50 ||£||;]71\Tl(£) ensures that W is summable on every bounded neighbourhood of
zero, and U inherits the exponential decay of d for large argument. Thus (4.13) defines a uniformly
continuous radially symmetric function W: R? — R. Further, W is positive definite because (4.13)

yields the relations

") de > 0,

S V(s ) = (QT)d.L,,

Jk=1

n
> yjeini
j=1

T

for any complex numbers (y;)7_; and for any points (z;)7_, in R?. Moreover, if the sequence (yi) i

is non-zero and if the points (7“7)777:1 are all different, then the function C* 3 & — 27:1 ye' i€ s
a non-zero entire function of d complex variables. Hence, its zero-set {¢ € R? : 27:1 yeimi€ =0}
has measure zero. Finally, since ® is negative almost everywhere, we deduce that the last inequality
is strict, which implies that W is strictly positive definite. [

This result is relevant, because ® = ¢ and W = ) when d = 1. Thus Lemma 4.3 reveals that
1 is the univariate form of a radially symmetric function which is strictly positive definite for any
dimension d. The proof of Lemma 4.1 may now be completed using [Ba2, Theorem 4.1] as follows.

Proof of Lemma 4.1. Temma 4.3 and [Ba2, Theorem 3.10] imply that the symbol function o: R* = R

defined by the equation

o)=Y W(E+2rk), EeR, (4.14)
kezd
satisfies the inequalities
o(ne) < a(€) <a(0),  €ERY (4.15)
where e = [1,1,...,1]7 € R%. Further, the theory of Toeplitz operators described in [Ba2, Section
1] yields the bounds
Chll2 < a(0) and C e < 1/a(n), n=0,1,2,..., (4.16)

when d = 1. Hence condy(C),) < o(0)/o(r) for every non-negative integer n, and this is best
possible. [
Proof of Lemma 4.2. This is a simple application of Theorem 3.11, since we have already seen that
1 is a positive definite function which decays cubically for large argument, that is ¢ (z) = O(|2z|~?)

as || = oo. |
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