
Radial basis funtions for the sphereB. J. C. Baxter and S. HubbertAbstratIn this paper we ompute the ultraspherial series expansions for themore ommonly used radial basis funtions. In several speial ases weprovide asymptoti estimates for the deay rate of the oeÆients in-volved. Knowledge of the deay of these oeÆients is useful beausethey enable error estimates for spherial interpolation.1 IntrodutionThe multivariate interpolation problem is as follows. Given values ffigNi=1 ofa funtion f : <d ! < at distint loations fxigNi=1 in <d, �nd an interpolants : <d ! <, in a suitable linear spae of funtions T (the interpolation spae),satisfying s(xi) = fi; 1 � i � N: (1.1)1.1 Radial basis funtion methodOne of the most promising ways of solving this problem is to employ the RadialBasis Funtion (RBF) method. This method spei�es the interpolation spaeT� = span f�(d(�; x1)); : : : ; �(d(�; xN ))g; (1.2)where d(x; y) = kx� yk ; k�k usually being the Eulidean norm (other normshave been onsidered; see, for example, [2℄ and [3℄), and � : [0;1) ! < is theradial basis funtion.Now posing the interpolation problem in T� amounts to �nding a funtion ofthe form s(x) = NXj=1�j�(d(x; xj)); for �j 2 <; 1 � j � N;



2 B. J. C. Baxter and S. Hubbertsatisfying onditions (1.1). This is equivalent to solving the following linearsystem: A� = f; (1.3)where A 2 <N�N is de�ned byAi;j = �(d(xi; xj)); 1 � i; j � N: (1.4)Thus a unique interpolant s 2 T� exists for any f if and only if the interpolationmatrix A is non-singular.De�nition 1.1. A funtion � : [0;1)! < is said to be:(i) Stritly positive de�nite (SPD) on <d whenever its assoiated interpol-ation matrix (1.4) is positive de�nite on <N ; for all distint fxigNi=1 in <d:(ii) Conditionally stritly positive de�nite of order m (CSPD(m)) on <dwhenever its assoiated interpolation matrix (1.4) is positive de�nite on thesubspae of <N de�ned byVm�1 = f� = (�1; : : : �N )T 2 <N : NXi=1 �ip(xi) = 0 for all p 2 �m�1(<d)g;for all distint fxigNi=1 in <d: Here �m�1(<d) denotes the spae of all d-variatepolynomials of degree at most m� 1:If � is SPD on <d then there exists a unique interpolant s 2 T� sine theinterpolation matrix is, by de�nition, positive de�nite and hene non-singular.If � is CSPD(m) on <d however, it an be shown that if the interpolationnodes are �m�1(<d)-unisolvent | the only p 2 �m�1(<d) to vanish at eahfxigNi=1 is p � 0 | then there exists a unique interpolant s 2 T� ��m�1(<d);of the form s(x) = NXj=1�j�(d(x; xj)) + p(x);where � = (�1; : : : �N )T 2 Vm�1; see [13℄ for details.The funtions used in the RBF method are usually either SPD or CSPD(m)on <d: The following is a list of the more ommon examples.(Gaussian) : �(r) = e��r2 ; � > 0;(Potential Spline) : �(r) = (�1)[�℄+1r2�; � > 0 and � =2 ZZ+ = f1; 2; :::g;(ThinP late Spline) : �(r) = (�1)k+1r2k log(r); k 2 ZZ+;(Multiquadri) : �(r) = (�1)[�℄+1(r2 + 2)� ; � > 0; � =2 ZZ+; and  > 0;(InverseMultiquadri) : �(r) = (r2 + 2)�; �d=2 < � < 0; � =2 ZZ; and  > 0:



Ultraspherial oeÆients 31.2 Zonal basis funtion methodsThe RBF method an be speialised if attention is turned to the ase wherethe distint loations x1; : : : xN are known to lie on the unit sphere Sd�1 in <d;d � 2. To transfer the method we onsider the interpolation spaeT = span f (g(�; x1)); : : : ;  (g(�; xN )g; (1.5)where g(x; y) = aros (xT y) denotes the geodesi metri, and  : [0; �℄! < isalled a zonal basis funtion (ZBF).Following the development of the RBF method, it is lear that interpolationis unique in T if and only if the assoiated interpolation matrix B 2 <N�Nde�ned by Bi;j =  (g(xi; xj)); 1 � i; j � N; (1.6)is non-singular.De�nition 1.2. A funtion  : [0; �℄! < is said to be:(i) Stritly positive de�nite (SPD) on Sd�1 whenever its assoiated in-terpolation matrix (1.6) is positive de�nite on <N ; for all distint fxigNi=1 onSd�1:(ii) Conditionally stritly positive de�nite of order m (CSPD(m)) onSd�1 whenever its assoiated interpolation matrix (1.6) is positive de�nite onthe subspae of <N given byWm�1 = f� = (�1; : : : �N )T 2 <N : NXi=1 �iY (xi) = 0 for all Y 2 Hm�1(Sd�1)g;for all distint fxigNi=1 on Sd�1: Here Hm�1(Sd�1) denotes the spae of allspherial harmonis on Sd�1 of order at most m� 1:With De�nition 1.2, the speialisation of the RBF method to the sphere (theZBF method) is omplete. In partiular, interpolation is unique in T if  isSPD on Sd�1. If  is CSPD(m) on Sd�1 however, it an be shown that if theinterpolation nodes are Hm�1(Sd�1)-unisolvent | the only Y 2 Hm�1(Sd�1)to vanish at eah fxigNi=1 is Y � 0 | then there exists a unique interpolants 2 T �Hm�1(Sd�1); of the forms(x) = NXj=1�j (g(x; xj)) + Y (x);



4 B. J. C. Baxter and S. Hubbertwhere � = (�1; : : : �N )T 2Wm�1; see [5℄ for details. We remark that the role ofthe spherial harmoni spae Hm�1(Sd�1) within the ZBF method is equivalentto the role of the polynomial spae �m�1(<d) within the RBF method, indeedHm�1(Sd�1) = �m�1(<d)jSd�1 ; (see [11℄ or [14℄).Using the work of Shoenberg [16℄, and extensions thereof [5℄, we an formulatethe following theorem.Theorem 1.3. If  is CSPD(m) on Sd�1; then  has the following form (�) = 1Xk=0 akP �k (os(�)); (1.7)where ak � 0 for k � m and 1Xk=0 ak <1: (1.8)Here fP �k g denote the ultraspherial polynomials [1,22.2.3℄ and � = (d� 2)=2:Remarks 1.4. (i) The ase  2 SPD(m) is overed by setting m = 0 inTheorem 1.3.(ii) In [12℄, a framework is established for solving the interpolation problem ona ompat Riemannian manifold M using SPD kernels � :M�M! <: TheZBF method with  SPD is a spei� instane of this more general approahfor M= Sd�1:(iii) In view of Theorem 1.3 we hoose to onsider eah zonal funtion  as afuntion of the inner produt, xT y; sine os(g(x; y)) = xT y:The omplete haraterization of the lass of funtions of the form (1.7) sat-isfying (1.8) that are CSPD(m) on Sd�1 remains an open problem. Severalresearhers have investigated this in reent papers; in partiular, in [18℄, it isshown that a suÆient ondition is ak > 0; for k � m: (See [15℄ for an extensionof this work). One an use this ondition to generate andidate zonal funtionsto be used within the ZBF method. The following is a list of funtions  SPDon S2 for example: (t) = (1 + h2 � 2ht)1=2; where ak = hk; for 0 < h < 1; (t) = (1� h2)(1 + h2 � 2ht)3=2; where ak = (2k + 1)hk; for 0 < h < 1; (t) = 1�q1�t2 ; where a0 = 1=3 and ak = 4(4k2+1)(2k+3) ; k � 1:



Ultraspherial oeÆients 52 Radial Funtions For SpheresMost of the reent researh regarding the ZBF method is of a theoretial nature,and very little has been reported of its performane in pratie (see, however[6℄). Muh more is known about the RBF method and so a potential user maywish to take a ommon radial funtion and use it as a zonal basis funtion;indeed a radial funtion � that is CSPD(m) on <d is also CSPD(m) on Sd�1:Furthermore, the RBFs remain well de�ned if the interpolation problem isset on a perturbed sphere, whih is likely to be the ase for several pratialappliations.In order to take advantage of the extant ZBF theory (espeially onvergeneresults [7℄ and [10℄), it is desirable to have the ultraspherial series expansions(1.7) for all the ommon radial funtions. The remainder of this setion ad-dresses preisely this issue. In order to use radial funtions on the sphere oneusually employsd(x; y) = kx� yk = q2� 2xT y; x; y 2 Sd�1: (2.1)In partiular, if � is SCPD(m) on <d then the zonal funtion  (t) = �(p2� 2t)is SCPD(m) on Sd�1; and so, by Theorem (1.1), has an expansion (t) = 1Pn=1 anP �n (t); �1 � t � 1;where the oeÆients (an) satisfy (1.8). The ultraspherial polynomials ([1℄,Setion 8) P �n are given by Rodrigues' formula ([1℄, 22.11.2)P �n (t) = n(�)(1� t2)1=2�� dndtn (1� t2)n+��1=2; (2.2)where n(�) = (�1)n�1=22(1�n�2�)�(n+ 2�)�(n+ �+ 1=2)�(n+ 1)�(�) : (2.3)We note that these are simply the Legendre polynomials when � = 1=2: Theysatisfy the orthogonality relationZ 1�1 P �m(t)P �n (t)(1 � t2)��1=2dt = Æm;n; m; n 2 ZZ+; (2.4)



6 B. J. C. Baxter and S. Hubbertand thus the series oeÆients are given byan = Z 1�1  (t)(1 � t2)��1=2P �n (t)dt; n 2 ZZ+: (2.5)Employing (2.2) and integrating by parts n times givesan = (�1)nn(�) Z 1�1  (n)(t)(1� t2)n+��1=2dt: (2.6)2.1 MultiquadrisHere we onsider the funtion �(r) = (r2 + 2)� ;  > 0; where � 2 <nZZ. Then� is SPD on <d (and hene Sd�1) for �d=2 < � < 0 , and (�1)[�℄+1� isCSPD([�℄ + 1) for � > 0: To use the multiquadri on the sphere we onsider (t) = (2 + 2 � 2t)� . Applying (2.6) for n 2 IN givesan(�; �) = 2��nn(�)�(� + 1)�(� � n+ 1) 1Z�1 (1 + 22 � t)��n(1� t2)n+��1=2dt:Setting A = 22 and u = t+12 ;we �ndan(�; �) =22n+2�+�(2 +A)��nn(�)�(� + 1)�(� � n+ 1) 1Z0 (1� 2u2 +A )��n(1�u)n+��1=2un+��1=2du:Using the identity (see [1℄, 15.3.1)1Z0 (1� zu)�a(1� u)�b�1ub�1du = �(b)�(� b)�() F (a; b; ; z);with a = n� �, b = n+ �+ 1=2,  = 2b and z = 22+A , we see that



Ultraspherial oeÆients 7an(�; �) = �n(�; �)F (n� �; n+ �+ 1=2; 2(n + �+ 1=2); 22 +A); (2.7)where�n(�; �) = 22n+2�+�(2 +A)��nn(�)�(� + 1)�(n+ �+ 1=2)2�(� � n+ 1)�(2(n+ �+ 1=2)) (2.8)whih on substituting (2.3)= (�1)n2n+�+1(2 +A)��n�1=2�(� + 1)�(n+ 2�)�(� � n+ 1)�(n+ 1)�(�) �(n+ �+ 1=2)�(2(n+ �+ 1=2)) (2.9)and F (a; b; ; z) is the Gauss Hypergeometri series (see [1℄, 15.1.1) de�ned byF (a; b; ; z) = �()�(a)�(b) 1Xk=0 �(a+ k)�(b+ k)�(+ k) znk! : (2.10)This series is absolutely onvergent for jzj � 1 provided <(� a� b) > 0; thatis, �d=2 < �: Thus (2.7) holds for all multiquadris.2.2 Potential splinesHere we onsider the funtion �(r) = r2�; for � > 0 and � =2 ZZ+: It is knownthat (�1)[�℄+1� is CSPD([�℄ + 1). To use the potential splines on the spherewe onsider,  (t) = (2� 2t)� . This an be derived from the multiquadri aseabove by simply setting A = 22 = 0 i.e. 22+A = 1. Using the results fromSetion 2.1 and the following identity ([1℄, 15.1.20)F (a; b; ; 1) = �()�(� a� b)�(� a)�(� b) ;we an dedue the ultraspherial oeÆients of the potential splinesan(�; �) = (�1)n�1=2�(n+ 2�)�(n+ 1)�(�) 22�+1�(� + 1)�(� + �+ 1=2)�(� + 1� n)�(� + n+ 1 + 2�) : (2.11)



8 B. J. C. Baxter and S. Hubbert2.3 Thin plate splinesHere we onsider the funtion �(r) = r2k log(r); for k 2 ZZ+: It is known that(�1)k+1� is CSPD(k + 1). To use the thin plate splines on the sphere weonsider,  (t) = 12(2� 2t)k log(2 � 2t). This funtion an be derived from thepotential spline using the observation (t) = 12 ��� (2� 2t)�����=k: (2.12)Thus the ultraspherial oeÆients of the thin plate splines bn(k; �) are givenby bn(k; �) = 12 ��� an(�; �)����=k; (2.13)where an(�; �) are as in (2.11). In partiular, we rewrite (2.11) asan(�; �) = (�1)n�1=2�(n+ 2�)�(n+ 1)�(�) h(�); (2.14)where h(�) = 22��(� + 1)�(� + �+ 1=2)�(� + 1� n)�(� + n+ 1 + 2�) : (2.15)In order to di�erentiate h(�); we onsider the so alled digamma funtion ([1℄6.3.1), whih is de�ned by 	(z) = �0(z)=�(z) for z 6= 0;�1;�2; : : : : Then for� = k � n h0(k) = h(k)f	(k + 1) + 	(k + �+ 12) + 2 log 2 (2.16)�	(k + 1� n)�	(k + n+ 2�+ 1)gWe an also write �(� + 1) = �(� � 1) � � � (� � n + 1)�(� � n+ 1) and soonsider h(�) ash(�) = 22��(� + �+ 1=2)�(� � 1) � � � (� � n+ 1)�(� + n+ 2�+ 1) = u(�)v(�)w(�) ;where u(�) = 22��(� + �+ 1=2), v(�) = �(� � 1) � � � (� � n+ 1) and w(�) =�(� + n+ 2�+ 1): Thush0(k) = w(k)fu0(k)v(k) + u(k)v0(k)g � u(k)v(k)w0(k)w(k)2



Ultraspherial oeÆients 9and, sine v(k) = 0; for all k < n; this is simplyh0(k) = u(k)v0(k)w(k)Furthermore v0(k) = (�1)n�(k+1)�(k + 1)�(n� k); from whih we an seeh0(k) = (�1)n�(k+1)22k�(k + �+ 1=2)�(k + 1)�(n� k)�(k + n+ 2�+ 1) : (2.17)We an now use equations (2.16) and (2.17) to dedue the ultraspherial oef-�ients for the thin plate spline; for k � nbn(k; �) = an(k; �)f	(k + 1) + 	(k + �+ 12) + 2 log 2�	(k + 1� n) (2.18)�	(k + n+ 2�+ 1)g;whilst for k < nbn(k; �) = (�1)k+122k�1=2�(n+ 2�)�(k + �+ 1=2)�(k + 1)�(n� k)�(n+ 1)�(�)�(k + n+ 1 + 2�) : (2.19)2.4 GaussiansHere we onsider the funtion �(r) = e��r2 ; for � > 0: It is well knownthat � is SPD (see [13℄). To use the Gaussian on the sphere we onsider, (t) = e�2�e2�t. Again we apply formula (2.6) to obtainan(�; �) = (�1)nn(�)e�2�(2�)n 1Z�1 e2�t(1� t2)n+��1=2dt:The integral in the above formula represents the modi�ed Bessel funtion In+�;spei�ally we have ([17℄ 3.71)In+�(2�) = �n+��(n+ �+ 1=2)�1=2 1Z�1 e2�t(1� t2)n+��1=2dt: (2.20)



10 B. J. C. Baxter and S. HubbertTherefore we dedue the ultraspherial oeÆientsan(�; �) = (�1)nn(�)e�2�2n�(n+ �+ 1=2)p��� In+�(2�) n 2 IN;and, on substituting (2.3),an(�; �) = �21�2�e�2��(n+ 2�)�(n+ 1)�(�)�� In+�(2�): (2.21)3 Common RBF's for the 2-SphereIn this onluding setion we speialize the results of the setion 2 to thesphere S2, in whih ase � = 1=2. Furthermore we apply the results to theradial funtions in their more familiar form.3.1 The Inverse Multiquadri: �(r) = (r2 + 2)�1=2:Here we apply (2.7) with � = 1=2 and � = �1=2 giving, for n 2 IN;an = an(�1=2; 1=2) = �n(�1=2; 1=2)F (n + 1=2; n+ 1; 2(n + 1); 44 + 2 ):Considering the following identity ([1℄ 15.1.13):F (a; 12 + a; 1 + 2a; z) = 22a(1 +p1� z)�2asetting a = n+ 12 and z = 44+2 allows us to dedue:an = (�1)n��(1=2� n)�(n+ 3=2)� 2+p4 + 2�2n+1; (3.1)this an be simpli�ed further, using the identity ([1℄,6.1.17)�(z)�(1� z) = �sin�z : (3.2)In partiular setting z = 1=2 � n yields�(1=2� n)�(n+ 3=2) = (n+ 12)�(1=2 � n)�(n+ 1=2) = (n+ 12)(�1)n�giving an = 1(n+ 12)h2n+1 = O�h2n+1n �; (3.3)where h = 2+p(4+2) < 1:



Ultraspherial oeÆients 113.2 The Multiquadri: �(r) = (r2 + 2)1=2:Here we apply (2.7) again with � = 1=2; � = 1=2; giving for n 2 IN;an = an(1=2; 1=2) = �n(1=2; 1=2)F (n � 1=2; n + 1; 2(n+ 1); 44 + 2 ):A losed form representation for F (n�1=2; n+1; 2(n+1); 44+2 ) an be derivedquite easily ([1℄ Setion 15). In partiular, we have:F (n�1=2; n+1; 2(n+1); z) = (n+ 12)p1� z + (1� z2 )(n+ 32) 22n+1(1+p1� z)�(2n+1):Setting z = 44+2 and multiplying by �n(1=2; 1=2) givesan = (�1)n�(2 + 2 + (n+ 1=2)p4 + 2)2�(3=2 � n)�(n+ 5=2) � 2+p4 + 2�2n+1: (3.4)Further simpli�ation is possible, setting z = 3=2� n in (3.2) gives�(3=2 � n)�(n+ 5=2) = (n+ 32)(n+ 12)(n� 12)�(3=2 � n)�(n� 1=2)= (n+ 32)(n+ 12)(n� 12)(�1)n�1�;thus an = �(2 + 2 + (n+ 1=2)p4 + 2)2(n+ 32)(n+ 12)(n� 12) h2n+1 = O�h2n+1n2 �: (3.5)3.3 The Pseudo Cubi: �(r) = r3Here we simply set � = 3=2 and � = 1=2 in (2.11) giving, for n 2 IN;an = an(3=2; 1=2) = (�1)n24 �(5=2)2�(5=2 � n)�(n+ 7=2) (3.6)



12 B. J. C. Baxter and S. HubbertSimpli�ation is again possible, setting z = 5=2� n in (3.2) gives�(5=2� n)�(n+ 7=2) = (n+ 52)(n+ 32)(n+ 12)(n� 12)(n� 32)(�1)n�;thus an = 9(n+ 52)(n+ 32)(n+ 12)(n� 12 )(n� 32) = O� 1n5�: (3.7)3.4 The Thin Plate Spline: �(r) = r2 log rHere we simply set k = 1 and � = 1=2 in (2.19), for n > 1 this providesan = bn(1; 1=2) = 4�(2)2�(n� 1)�(n+ 3)= 4(n+ 2)(n+ 1)n(n� 1) = O� 1n4�: (3.8)3.5 The Gaussian: �(r) = e��r2Setting � = 1=2 in (2.21) yields, for n 2 IN;an = an(�; 1=2) = r��e�2�In+ 12 (2�);employing 2.20 gives an = e�2��n�(n+ 1) 1Z�1 e2�t(1� t2)ndt: (3.9)We an derive the asymptoti behaviour using the well-known method ofLaplae. However, we prefer a diret approah, whih we present for the on-veniene of the reader. Consider the integral appearing in (3.9), that isGn = 1Z�1 e2�t(1� t2)ndt: (3.10)



Ultraspherial oeÆients 13Setting � = pnt; we obtain pnGn = 1Z�1 fn(�)d�where fn(�) = ( e 2��pn (1� �2=n)n; j� j � pn0; j� j > pn: (3.11)Observing that 0 � fn(�) � e2�e��2 and limn!1 fn(�) = e��2 allows us toemploy the dominated onvergene theorem,pnGn = 1Z�1 fn(�)d� ! 1Z�1 e��2d� = p�; as n!1: (3.12)Also we have Stirling's formula ([1℄ 6.1.38)�(n+ 1) = n! � p2�nn+1=2e�n; as n!1: (3.13)Employing (3.12) and (3.13) together in (3.9) givesan � e�2�21=2n�e�n �n; as n!1;i.e. the Gaussian oeÆients deay at an exponential rate.3.6 Conluding RemarksThe motivation for this work stems from reent results on error estimates forspherial interpolation ([4℄, [7℄ and [10℄). These topis have been investigatedby several mathematiians inluding the Leiester group [9℄. In partiular thereport [8℄ alulates the ultraspherial oeÆients for the Duhon splines whihare also ontained in this paper, the approah taken (private ommuniation)however is quite distint from the one given here.For pratial purposes a potential user would prefer to work with a basis fun-tion  with a losed form representation and with provably good approximationproperties. The results of this paper allow us to provide onvergene resultsfor the ommon RBF's restrited to the sphere.
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