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21. Orthogonality by sums of exponentialsLet � be a complex number with positive real part and de�ne the function g�:R! Rby g�(x) = � e��x; x � 0;0; x < 0 (1.1)Thus g� is a member of the Hilbert space H := ff 2 L2(R2) : supp f � [0;1)g,endowed with the usual inner product. Further, for any f 2 H we have the usefulrelation (f; g�) = f̂(�i�); (1.2)where we have used the well known fact (see Dym and McKean (1972)) that the Fouriertransform of any member of H can be analytically continued throughout the lower halfplane fz 2 C : Im z < 0g. We shall also need the Fourier transform of g�:ĝ�(z) = �iz � i�: (1.3)Now let (�k)1k=0 be any sequence of complex numbers with positive real parts. Ouraim is to study the subspacesHn = span fg�0; g�1; : : : ; g�ng (1.4)The simple form of (1.3) allows us to construct orthogonal bases for these subspaces.Theorem 1 Ĥn 	 Ĥn�1 is the one-dimensional subspace generated by the functionbrn(z) = �iz � i�n n�1Yk=0 z + i�kz � i�k : (1.5)Proof Every element of Ĥn	Ĥn�1 is a linear combination of the rational functionsf(z � i�k)�1 : 0 � k � ng; this de�nes r̂n up to multiplication by a constant. 2Partial fraction decomposition of the rational function (1:5) yields the coe�cientsof rn when expressed as a linear combination of g�0 ; : : : ; g�n.Proposition 2 We havern(t) = nXj=0 exp(��jt) Qn�1k=0(�j + �k)Qǹ=0; 6̀=j(�j � �`) : (1.6)Proof Writing r̂n(z) = �iPnk=0�k(z � i�k)�1, we obtain�i nXk=0�k nY`=0; 6̀=k(z � i�`) = �i n�1Yk=0(z + i�k):



3Setting z = i�j provides the relation�j nY`=0; 6̀=j(�j � �`) = n�1Yk=0(�j + �k);whence the result. 2The formula derived in (1:6) is easily recognized to be a certain divided di�erence.Proposition 3 Let sn(z; t) = exp(�zt)Qn�1k=0(z + �k). Thenrn(t) = sn( � ; t)[�0; �1; : : : ; �n]: (1.7)Proof The standard algebraic identityf [�0; : : : ; �n] = nXj=0 f(�j )Qǹ=0; 6̀=j(�j � �`)is valid for every function f de�ned at the points �0; : : : ; �n. 2As a consequence of this divided di�erence relation, we �nd that the normalizationchosen for rn implies the equation rn(0) = 1.Corollary 4 For every n, we have rn(0) = 1.Proof When t = 0, the function z 7! sn(z; 0) is a monic polynomial of degree n.Hence the divided di�erence appearing on the right hand side of (1:7) is equal to onefor any choice of �0; : : : ; �n.Corollary 5 The two-norm of rn is given by krnk2 = (2�n)�1.Proof The Parseval Theorem provides the equationkrnk2 = (2�)�1 ZRjr̂n(z)j2 dz:However, for real x we have jr̂n(x)j2 = (x2 + �2n)�1. Therefore we need only computethe elementary integralkrnk2 = (2�)�1 ZR(x2 + �2n)�1 dx = (2�n)�1: 2The complex analytic theory of the M�untz theorem is closely related to the materialdiscussed here. For example, if (�k)1k=0 is a sequence of positive numbers possessing aconvergent subsequence with positive limit, then linear combinations of the functionsg�0 ; g�1; : : : are dense in H. For, suppose f 2 H were orthogonal to these functions.The the Fourier transform f̂ satis�es f̂ (�i�k) = 0 for all k, and, by the principle of



4isolated zeros for analytic functions, must therefore vanish identically. The Parsevaltheorem ZRjf(x)j2 dx = (2�)�1 ZRjf̂(z)j2 dzthen implies that f vanishes almost everywhere. The particular choice � = � + qk,where 0 < q < 1 and � > 0, obviously accumulates at the point �, and this particularcase is extensively studied below.The proof strategy of the preceding paragraph yields a derivation of Lerch's unique-ness theorem for Laplace tranforms that deserves to be better known.Theorem 6 Let f : [0;1)! R be a measurable function for whichZ 10 exp(�s0t)jf(t)j dt <1for some s0 � 0, and the Laplace transformZ 10 e�stf(t) dt = 0; (1.8)for all su�ciently large s. Then f vanishes almost everywhere.Proof The function g(t) := exp(�s0t)f(t) is absolutely integrable. Hence thedominated convergence theorem implies the continuity of its Fourier transformĝ(z) = Z 10 e�iztg(t) dtfor Im z < 0. Applying Morera's theorem, we deduce that the Fourier transformis, in fact, analytic for Imz < 0. However, 1.8 implies that ĝ vanishes on an in�nitesubinterval of the imaginary axis, and must therefore vanish everywhere by the principleof isolated zeros. Hence f vanishes almost everywhere. 2We have not seen this proof in the literature, but its novelty is implausible.The M�untz theorem is often proved using Cauchy's determinant identity; see, forinstance, Lemma 11.3.1 of Davis (1975). It is noteworthy that our construction ofrn enables us to bypass this identity in an illuminating way. Speci�cally, let gp(t) =exp(�pt), where p is not one of the numbers in the sequence f�kg. Then we canexplicitly determine the distance from gp to Hn.Proposition 7 We havedist(gp;Hn)2 = (2p)�1 nYk=0 p� �kp+ �k!2 :Proof Replacing �n+1 by p pro tem in Theorem 1, we see that the closest functionfn 2 Hn to gp must satisfy the relationĝp(z) � f̂n(z) = �icz � ip nYk=0 z + i�kz � i�k ;



5where the constant c is chosen so that the coe�cient of gp is unity. Applying (1:6), weconclude that c = nYk=0 p� �kp+ �k ;and Corollary 5 completes the proof. 2It is an interesting elementary exercise to deduce the Cauchy determinant identityfrom Proposition 7. To deduce one half of the M�untz theorem, let 0 < �0 < �1 < � � �be any sequence for which �k !1 andP��1k is �nite. Then the in�nite product�(z) = 1Yk=0 1� z=�k1 + z=�k (1.9)is absolutely convergent. Thus � is an analytic function in, say, the domainCn(�1; 0]whose only zeros are located at the points f�kg. But we have the relationlimn!12p dist(gn;Hn) = �(p)2 > 0:We conclude this section by presenting a universal di�erential recurrence relationwhich is obeyed by members of the sequence frng1n . Our point of departure is (1:5),which immediately implies that(iz + �n)r̂n(z) = (iz � �n�1)r̂n�1(z); (1.10)whence br0n�1 � br0n�1 = �n�1r̂n�1 + �nr̂n:Therefore, since the Fourier transform is an isometric linear isomorphismon L2(R),and by virtue of the analyticity of each rn, we deduceTheorem 8 The sequence r0; r1; : : : obeys the di�erential recurrence relationr0n�1 � r0n = �n�1rn�1 + �nrn; n = 1; 2; : : :: (1.11)2Formula (1:11) can be recast into an interesting form. We commence by notingthat (1:5) implies the recursionr̂n(z) = �z + i�n�1z � i�n � r̂n�1(z)= r̂n�1(z) � (�n�1 + �n)dg�n�rn�1(z):Thus rn(t) = rn�1(t) � (�n�1 + �n) Z t0 e��n(t��)rn1(� ) d�: (1.12)2. Approximation by exponentials with rescaling



6A particularly appealing choice of parameters is �k = qk+�, where q 2 (0; 1) and � ispositive. According to Section 1, the functions exp(�qkx� �), k = 0; 1; : : :, are densewith respect to the inner producthf; gi = Z 10 f(x)g(x) dxor, alternatively, exp(�qkx), k = 0; 1; : : :, are dense with respect tohf; gi� = Z 10 f(x)g(x)e�2�x dx: (2.1)Moreover, the linear spaces Hn which have been de�ned in (1:4) are closed under shiftsf 2 Hn =) f( � + �) 2 Hn for all � 2 R;whilst a dilation of the independent variable by a factor of q moves up the chainH0 � H1 � H2 � � � � f 2 Hn =) f(q � ) 2 Hn+1:We use (1:6) to describe an orthogonal basis of +1n=0Hn in a closed form,r[�]m (t) = e��t mXj=0 Qm�1k=0 (qk + qj + 2�)Qm̀=0; 6̀=j(qj � q`) e�qj t; m = 0; 1; : : : : (2.2)The last expression can be somewhat simpli�ed by using Gau�{Heine symbols butthis procedure has not led to signi�cant additional insight. However, a substantiallysimpli�ed form, accompanied by a wealth of further results { generating functions,recurrence relations, connections to certain functional-di�erential equations { followsin the case � = 0. The quid pro quo is, of course, that density with respect to theinner product (2:2) is lost. Although it is not di�cult to prove that density is retainedfor certain subspaces of L2[0;1), we prefer to concern ourselves with the rich class ofrelations satis�ed when � = 0.Recall that the Gau�{Heine symbol, also known as the q-factorial (Gasper & Rah-man, 1990), reads(z; q)0 = 1; (z; q)n = (1� qn�1z)(z; q)n�1 = n�1Yj=0(1� qjz); j = 1; 2; : : : :Since j�1Yk=0(qj + qk) = q(j�1)j=2(�q; q)j;m�1Yk=j (qj + qk) = q(m�j)j(�1; q)m�j ;



7j�1Ỳ=0(qj � q`) = (�1)jq(j�1)j=2(q; q)j; andmY`=j+1(qj � q`) = q(m�j)j(q; q)j;substitution into (2:2) results in the explicit formRm(t) := r[0]m+1(t) = mXj=0(�1)j (�q; q)j(�1; q)m�j(q; q)j(q; q)m�j e�qj t; m = 0; 1; : : :: (2.3)Let G(t; z) := 1Xm=0Rm(t)zm; jzj < 1:Proposition 9 The function G obeys the functional-di�erential equation@@tG(t; z) + G(t; z) = �z �G(qt; z)� q @@tG(qt; z)� (2.4)with the initial condition G(0; z) = 11� z : (2.5)Proof We multiply (2:3) by zm and sum. Interchanging the order of summation,we obtain G(t; z) = 1Xm=0 mXj=0(�1)j (�q; q)j(�1; q)m�j(q; q)j(q; q)m�j e�qj tzm= 1Xj=0(�1)j (�q; q)j(q; q)j e�qj t 1Xm=j (�1; q)m�j(q; q)m�j zm= 24 1Xj=0(�1)j (�q; q)j(q; q)j e�qj tzj35� " 1Xm=0 (�1; q)m(q; q)m zm# :However, according to the Heine formula for basic hypergeometric functions (Gasper& Rahman, 1990), 1Xm=0 (�1; q)m(q; q)m zm = 1�0 � �1;|; q; z� = (�z; q)1(z; q)1 ;therefore G(t; z) = (�z; q)1(z; q)1 1Xj=0(�1)j (�q; q)j(q; q)j e�qj tzj ;and this, according to (Iserles, 1993), is the Dirichlet series expansion of the solutionof the pantograph equation (2:4).



8 To evaluate the initial condition we again sum a basic hypergeometric series withthe Heine formula,1Xj=0(�1)j (�q; q)j(q; q)j zj = 1�0 � �q;|; q; z� = (qz; q)1(�z; q)1 :Therefore G(0; z) = (�z; q)1(z; q)1 � (qz; q)1(�z; q)1 = 11� z ;a�rming (2:5). 2Corollary 10 The Taylor expansion (in t) of the function G isG(t; z) = 1Xk=0 (�1)kk! (�z; q)k(z; q)k+1 tk: (2.6)Proof According to (Iserles, 1993), the solution of the pantograph equationy0(t) = ay(t) + by(qt) + cy0(qt); t � 0; y(0) = y0; (2.7)where a; b; c 2 C , a 6= 0, jcj < 1, can be expanded into the Taylor seriesy(t) = y0 1Xk=0 1k! (�b=a; q)k(c; q)k (at)k:Letting a = �1, b = �z, c = qz and y0 = 1=(1� z) yields (2:6). 2We note as an aside that, according to (Iserles, 1993) and (Iserles & Liu, 1994),the solution of (2:7) exists and it is unique subject to the inequality jcj < 1. Moreover,Re a < 0, jaj > jbj implies that the solution is asymptotically stable. Thus, thanks tothe restriction jzj < 1, we deduce that limt!1G(t; z) = 0.Next we consider recurrence relations that are obeyed by the sequence fRng1n=0.A di�erential recurrence follows by substitution in (1:11), namelyR0n�1 � R0n = qn�1Rn�1 + qnRn; n = 1; 2; : : : : (2.8)This recurrence can be rewritten in the form (1:12).Several other relations can be derived by a moderate e�ort. For example, we canexpress Rn in terms of Rn�1 and its derivatives at t and qt (a di�erential recurrencewith rescaling). Thus, let'n(t) := (1�qn)Rn(t)+Rn�1(qt)�qn�1Rn�1(t)+R0n�1(t)�qR0n�1(qt); n = 1; 2; : : ::(2.9)It is a trite exercise to verify thathe�q`t; Rn�1(qt)i = q�1he�q`�1 t; Rn�1i;he�q`t; R0n�1(qt)i = �q�1 + q`�2he�q`�1 t; Rn�1i; ` = 1; 2; : : :;



9consequentlyhe�q`t; 'ni = (1� qn)he�q` t; Rni+ q�1he�q`�1 t; Rn�1i � qn�1he�q`t; Rn�1i+ q`he�q`t; Rn�1i � q`�1he�q`�1 t; Rn�1i; ` = 1; 2; : : : :Recalling that each Rm is orthogonal to exp(�q`t) for ` = 0; 1; : : :;m � 1, we thusdeduce the relations he�q`t; 'ni = 0; ` = 0; 1; : : : ; n� 1:Therefore 'n is a scalar multiple of Rn. But Corollary 4 implies Rn(0) = 1, whilst(2:8) yields R0n(0) = �(2 � qn � qn+1)=(1 � q). Substitution in (2:9) veri�es at once'n(0) = 0, thus leading to the conclusion that 'n � 0.Proposition 11 The sequence fRngn=0;1;::: satis�es the di�erential recurrence re-lation with rescaling(1� qn)Rn(t) = qn�1Rn�1(t) �Rn�1(qt)� R0n�1(t) + qR0n�1(qt); n = 1; 2; : : : :2Finally, we report a pure recurrence relation with rescaling.Proposition 12 For every n = 2; 3; : : : we have the relation(1� qn)Rn(t) = (1 + qn�1)Rn�1(t)� (1+ qn)Rn�1(qt) + (1� qn�1)Rn�2(qt): (2.10)Proof Although (2:10) can be proved by comparing coe�cients in (2:3), it isperhaps more interesting to use the generating function G. Comparing the coe�cientsin (2:6) a�rms the identity(1� z)[G(t; z) + zG(qt; z)] = (1 + z)[G(t; gz)� qzG(qt; qz)];which we rewrite in the formG(t; z)�G(t; gz) = z[G(t; z) + G(t; qz)]� z[G(qt; z)� qG(qt; gz)]+ z2[G(qt; z)� qG(qt; qz)]:The recurrence (2:10) follows at once, by substituting the de�nition of the generatingfunction G. 23. Convergence of projectionsLet �0; �1; : : : be given positive numbers. We consider the approximation of a func-tion f 2 L2[0;1) by projections onto each Hn. We henceforth consider only the



10inner product hf; gi = R10 f(t)g(t) dt, although our discussion can be generalized withminimal e�ort to the inner product (2:1).The orthogonal projection of f onto Hn can be written as a generalized Fourierseries, which in turn can be expressed explicitly in terms of the Fourier transform off , so thatFn(t) = nXm=0 hf; rmihrm; rmirm(t) = 2 n�1Xm=0�mhf; rmirm(t); n = 0; 1; : : : ; (3.1)where (cf. (1:6)) rm(t) = nX̀=0 rm;` exp(��`t);implies hf; rmi = mX̀=0 rm;` Z 10 f(t)e��` t dt = mX̀=0 rm;`f̂ (�i�`):; (3.2)The behaviour of the Fourier transform is entwined with the convergence of the pro-jections. Let us use H to denote the closure of the subspace H1 +H2 + � � � in the L2norm.Proposition 13 Let f 2 H. If the function�(z) := 1Xn=0�nznis analytic in an open disc centred at the origin and we have the inequalityjhf; rnij � !njhf; r0ij; n = 0; 1; : : : ; (3.3)where ! 2 (0; 1) is a point in the disc, thenkf � Fnk2 � 2jhf; r0ij2 1Xm=n �m!2m; (3.4)and the right hand side converges to zero as n tends to in�nity.Proof It follows from (3:1) by the Parseval equality thatkf � Fnk2 = 2 1Xm=n�mjhf; rmij2;and we deduce (3:4) from (3:3) and the analyticity of � at !2. 2Let us assume further that f̂ is analytic in the closed unit disc. Substitutingf̂ (iz) = 1Xk=0 'kk! zk



11into (3:2) yieldshf; rmi = 1Xk=0 'kk! mX̀=0 rm;`(��`)k = 1Xk=0 'kk! r(k)m (0); m = 0; 1; : : : : (3.5)This formula and inequality (3:3) motivate our interest in the magnitude of the deriv-atives of rm at the origin.We restrict our attention in the remainder of this section to the parameters �k = qk,k = 0; 1; : : :, that have already featured in Section 2. According to (2:6) we have1Xn=0R(k)n (0)zn = @k@tkG(0; z) = (�1)k (�z; q)k(z; q)k+1 ; k = 0; 1; : : : ;hence the recursion1Xn=0R(k)n (0)zn = �1 + qk�1z1� qkz 1Xn=0R(k�1)n (0)zn= � 1Xn=0" nX̀=0R(k�1)n�` (0)qk`# zn � 1Xn=1" nX̀=1R(k�1)n�` (0)qk`�1# zn:We deduce thatR(k)n (0) = � nX̀=0R(k�1)n�` (0)qk` � qk�1 n�1X̀=0 R(k�1)n�1�`(0)qk`; n = 0; 1; : : :; k = 1; 2; : : ::(3.6)Proposition 14 The derivatives of Rn at the origin obey the inequalityjR(k)n (0)j � (�1; q)k(q; q)k ; n; k = 0; 1; : : :: (3.7)Proof We use induction on the derivative order k. The inequality is true for k = 0because, by Corollary 4, Rn(0) = 1. We thus assume its correctness for k � 1 andemploy (3:6) to argue thatjR(k)n (0)j � (�1; q)k�1(q; q)k�1 " nX̀=0 qk` + qk�1 n�1X̀=0 qk`#� (�1; q)k�1(q; q)k�1 � 11� qk + qk�11� qk � = (�1; q)k(q; q)kwhich completes the proof. 2Corollary 15 jR(k)n (0)j � (�1; q)1(q; q)1 ; n; k = 0; 1; : : : : (3.8)



12 Proof This is immediate from (3:7), since the sequence� (�1; q)k�1(q; q)k�1 : k = 0; 1; : : :�is increasing for every q 2 (0; 1). 2Of course, analyticity of f̂ in the closed unit disc implies absolute convergence ofits Taylor series at z = 1. Setting� := 1Xk=0 j'kjk! <1;we thereby deduce from (3:8) thatjhf;Rni � � (�1; q)1(q; q)1 ; n = 0; 1; : : : :Consequently, (3:5) and (3:8) imply the boundjhf;Rnij � � (�1; q)1(q; q)1 ; n = 0; 1; : : : ;and, when f 2 H, the Parseval theorem yields the expressionkf � FNk2 = 2 1Xn=N qnjhf;Rnij2:Therefore, our bound on jhf;Rnij establishes the following result.Theorem 16 If f 2 H and f̂ is analytic in the closed unit disc, thenkf � Fnk � ��qN=2 N!1�! 0; (3.9)where �� = �r 21� q � (�1; q)1(q; q)1 : 2Furthermore, since 1Xk=0 j'kjk! � Z 10 etjf(t)j dt: (3.10)Therefore boundedness of this integral implies analyticity of f̂ in the closed unit disc.Let us return to the interesting special case f(t) = exp(��t). By (1:2),he��t; Rni = hg�; Rni = R̂n(�i�)



13and (1:5) yields he��t; rni = Qn�1k=0(�� �k)Qnk=0(� + �k) ; n = 0; 1; : : : :Specialising to �` = q`, we obtainhe��t; Rni = 1� (1=�; q)n(�1=�; q)n+1 ; n = 0; 1; : : : : (3.11)We thus deduce by the method of proof of Theorem 16 thatFn(t) = 2� NXn=0 (1=�; q)n(�1=�; q)n+1 qnRn(t) (3.12)converges in norm to the orthogonal projection of exp(��t) on H.The projection of f(t) = exp(��t), � > 1, onto Hn isFN (t) = 2� NXn=0 (1=�; q)n(�1=�; q)n+1 qnRn(t):Letting N !1, it is easy to verify thatFN (t)! F (t) = 21 + � 1Xn=0 (1=�; q)n(�q=�; q)n qnRn(t): (3.13)We next substitute the explicit expression for Rn from (2:3), whence exchanging theorder of summation yieldsF (t) = 21 + � 1Xm=0(�1)m (�q; q)m(q; q)m e�qmt 1Xn=m (1=�; q)n(�1; q)n�m(�q=�; q)n(q; q)n�m qn= 21 + � 1Xm=0(�1)m (�q; q)m(q; q)m qme�qmt 1Xn=0 (1=�; q)m+n(�1; q)n(q; q)n(�q=�; q)m+n qn= 21 + � 1Xm=0(�1)m (�q; q)m(1=�; q)m(q; q)m(�q=�; q)m qme�qmt 1Xn=0 (qm=�; q)n(�1; q)n(q; q)n(�qm+1=�; q)n qn= 21 + � 1Xm=0(�1)m (�q; q)m(1=�; q)m(q; q)m(�q=�; q)m qme�qmt2�1 � qm=�;�1;�qm+1=�; q; q� (3.14){ we refer to (Gasper & Rahman, 1990) for the terminology of basic hypergeometricseries.The 2�1 series in (3:14) can be summed with the q-Gau� formula (Gasper & Rah-man, 1990, formula II.8, page 236),2�1 � qm=�;�1;�qm+1=�; q; q� = (�q; q)1(qm+1=�; q)1(q; q)1(�qm+1=�; q)1 :



14Substitution in (3:14) and elementary simpli�cation result inF (t) = 1� (�1; q)1(1=�; q)1(q; q)1(�1=�; q)1 1Xm=0(�1)m (�q; q)m(q; q)m qm1� qm=�e�qmt: (3.15)Note that (3:15) is valid for all � > 0, � 6= qk for k � 0. In the case � = qk it is easyto prove that F (t) = exp(�qkt).Finally, we explicitly evaluate F (0) from (3:15). In the course of our analysis wetwice use an explicit formula for the summation of 1�0 series (Gasper & Rahman,1990, formula II.3, page 236).
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Figure 1 The functions FN for N = 2; 5; 8; 11, q = 12 and � = 32 .
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16 Bearing in mind that 0 < 1=� < 1, we expand into series,1Xm=0(�1)m (�q; q)m(q; q)m qm1� qm=�= 1Xm=0(�1)m (�q; q)m(q; q)m qm 1X̀=0 qm`�`= 1X̀=0 1�` 1�0 � �q;|; q;�q`+1�= 1X̀=0 1�` (q`+2; q)1(�q`+1; q)1 = �" 1X̀=0 (q`+1; q)1(�q`; q)1 1�` � (q; q)1(�1; q)1#= � (q; q)1(�1; q)1 " 1X̀=0 (�1; q)`(q; q)` ��` � 1#= � (q; q)1(�1; q)1 �1�0 � �1;|; q; ��1�� 1� = (q; q)1(�1; q)1 � (�1=�; q)1(1=�; q)1 � 1� :Therefore, substitution in (3:15) proves thatF (0) = 1� (1=�; q)1(�1=�; q)1 :Note that, unless � = q�m for a nonnegative integer m, it follows that F (0) 6= 1. Thisconstitutes a formal proof of the statement that the sequence fFNg does not convergeto exp(��t); of course we have already provided a stronger result in Proposition 7. Wecan also use the in�nite product 1.9 to characterize the lmit of the projections fFNg.Indeed, the proof of Proposition 7 implies thatlimN!1 f̂ (z) � F̂N (z) = �iz � i��(iz)�(�): (3.16)In Figure 1 we display the functions FN for di�erent values of N in the case q = 12 ,� = 32 . It illustrates vividly our observation that FN ! F yet, as can be seen inFigure 2, the function F is distinct from exp(�32 t).BibliographyP.J. Davis (19675), Interpolation and Approximation, Dover, New York.H. Dym and H. P. McKean (1972), Fourier Series and Integrals,, Academic Press, New York.W. Feller (1968), \On M�untz' theorem and completely monotone functions", Amer. Math.Monthly 75, 342{350.G. Gasper and M. Rahman (1990), Basic Hypergeometric Series,Cambridge University Press,Cambridge.A. Iserles (1993), \On the generalized pantograph functional-di�erential equation", Europ. J.Appl. Math. 4, 1{38.
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