On approximation by exponentials

B. J. C. Baxter ${ }^{1}$ and A. Iserles ${ }^{2}$

Abstract

We consider an approximation of $L^{2}[0, \infty)$ functions by linear combinations of exponentials $\left\{\exp \left(-\lambda_{\ell} t\right)\right\}$. Having derived explicitly by Fourier transform techniques an orthogonal basis of exponentials, we specialize the discussion to the choice $\lambda_{\ell}=q^{\ell}, \ell=0,1, \ldots$, where $q \in(0,1)$. In that case the underlying orthogonal functions possess a particularly appealing form and they obey interesting recurrence relations. We conclude the paper with a brief discussion of convergence issues.

[^0]
1. Orthogonality by sums of exponentials

Let λ be a complex number with positive real part and define the function $g_{\lambda}: \mathbb{R} \rightarrow \mathbb{R}$ by

$$
g_{\lambda}(x)= \begin{cases}\mathrm{e}^{-\lambda x}, & x \geq 0 \tag{1.1}\\ 0, & x<0\end{cases}
$$

Thus g_{λ} is a member of the Hilbert space $H:=\left\{f \in L^{2}\left(\mathbb{R}^{2}\right): \operatorname{supp} f \subset[0, \infty)\right\}$, endowed with the usual inner product. Further, for any $f \in H$ we have the useful relation

$$
\begin{equation*}
\left(f, g_{\lambda}\right)=\hat{f}(-i \lambda) \tag{1.2}
\end{equation*}
$$

where we have used the well known fact (see Dym and McKean (1972)) that the Fourier transform of any member of H can be analytically continued throughout the lower half plane $\{z \in \mathbb{C}: \operatorname{Im} z<0\}$. We shall also need the Fourier transform of g_{λ} :

$$
\begin{equation*}
\hat{g}_{\lambda}(z)=\frac{-\mathrm{i}}{z-\mathrm{i} \lambda} \tag{1.3}
\end{equation*}
$$

Now let $\left(\lambda_{k}\right)_{k=0}^{\infty}$ be any sequence of complex numbers with positive real parts. Our aim is to study the subspaces

$$
\begin{equation*}
H_{n}=\operatorname{span}\left\{g_{\lambda_{0}}, g_{\lambda_{1}}, \ldots, g_{\lambda_{n}}\right\} \tag{1.4}
\end{equation*}
$$

The simple form of (1.3) allows us to construct orthogonal bases for these subspaces.
Theorem $1 \hat{H}_{n} \ominus \hat{H}_{n-1}$ is the one-dimensional subspace generated by the function

$$
\begin{equation*}
\widehat{r}_{n}(z)=\frac{-\mathrm{i}}{z-\mathrm{i} \lambda_{n}} \prod_{k=0}^{n-1} \frac{z+\mathrm{i} \lambda_{k}}{z-\mathrm{i} \lambda_{k}} \tag{1.5}
\end{equation*}
$$

Proof Every element of $\hat{H}_{n} \ominus \hat{H}_{n-1}$ is a linear combination of the rational functions $\left\{\left(z-\mathrm{i} \lambda_{k}\right)^{-1}: 0 \leq k \leq n\right\}$; this defines \hat{r}_{n} up to multiplication by a constant.

Partial fraction decomposition of the rational function (1.5) yields the coefficients of r_{n} when expressed as a linear combination of $g_{\lambda_{0}}, \ldots, g_{\lambda_{n}}$.
Proposition 2 We have

$$
\begin{equation*}
r_{n}(t)=\sum_{j=0}^{n} \exp \left(-\lambda_{j} t\right) \frac{\prod_{k=0}^{n-1}\left(\lambda_{j}+\lambda_{k}\right)}{\prod_{\ell=0, \ell \neq j}^{n}\left(\lambda_{j}-\lambda_{\ell}\right)} \tag{1.6}
\end{equation*}
$$

Proof Writing $\hat{r}_{n}(z)=-\mathrm{i} \sum_{k=0}^{n} \alpha_{k}\left(z-\mathrm{i} \lambda_{k}\right)^{-1}$, we obtain

$$
-\mathrm{i} \sum_{k=0}^{n} \alpha_{k} \prod_{\ell=0, \ell \neq k}^{n}\left(z-\mathrm{i} \lambda_{\ell}\right)=-\mathrm{i} \prod_{k=0}^{n-1}\left(z+i \lambda_{k}\right)
$$

Setting $z=i \lambda_{j}$ provides the relation

$$
\alpha_{j} \prod_{\ell=0, \ell \neq j}^{n}\left(\lambda_{j}-\lambda_{\ell}\right)=\prod_{k=0}^{n-1}\left(\lambda_{j}+\lambda_{k}\right)
$$

whence the result.
The formula derived in (1.6) is easily recognized to be a certain divided difference.
Proposition 3 Let $s_{n}(z, t)=\exp (-z t) \prod_{k=0}^{n-1}\left(z+\lambda_{k}\right)$. Then

$$
\begin{equation*}
r_{n}(t)=s_{n}(\cdot, t)\left[\lambda_{0}, \lambda_{1}, \ldots, \lambda_{n}\right] \tag{1.7}
\end{equation*}
$$

Proof The standard algebraic identity

$$
f\left[\lambda_{0}, \ldots, \lambda_{n}\right]=\sum_{j=0}^{n} \frac{f\left(\lambda_{j}\right)}{\prod_{\ell=0, \ell \neq j}^{n}\left(\lambda_{j}-\lambda_{\ell}\right)}
$$

is valid for every function f defined at the points $\lambda_{0}, \ldots, \lambda_{n}$.
As a consequence of this divided difference relation, we find that the normalization chosen for r_{n} implies the equation $r_{n}(0)=1$.

Corollary 4 For every n, we have $r_{n}(0)=1$.
Proof When $t=0$, the function $z \mapsto s_{n}(z, 0)$ is a monic polynomial of degree n. Hence the divided difference appearing on the right hand side of (1.7) is equal to one for any choice of $\lambda_{0}, \ldots, \lambda_{n}$.

Corollary 5 The two-norm of r_{n} is given by $\left\|r_{n}\right\|^{2}=\left(2 \lambda_{n}\right)^{-1}$.
Proof The Parseval Theorem provides the equation

$$
\left\|r_{n}\right\|^{2}=(2 \pi)^{-1} \int_{\mathbb{R}}\left|\hat{r}_{n}(z)\right|^{2} \mathrm{~d} z
$$

However, for real x we have $\left|\hat{r}_{n}(x)\right|^{2}=\left(x^{2}+\lambda_{n}^{2}\right)^{-1}$. Therefore we need only compute the elementary integral

$$
\left\|r_{n}\right\|^{2}=(2 \pi)^{-1} \int_{\mathbb{R}}\left(x^{2}+\lambda_{n}^{2}\right)^{-1} \mathrm{~d} x=\left(2 \lambda_{n}\right)^{-1}
$$

The complex analytic theory of the Müntz theorem is closely related to the material discussed here. For example, if $\left(\lambda_{k}\right)_{k=0}^{\infty}$ is a sequence of positive numbers possessing a convergent subsequence with positive limit, then linear combinations of the functions $g_{\lambda_{0}}, g_{\lambda_{1}}, \ldots$ are dense in H. For, suppose $f \in H$ were orthogonal to these functions. The the Fourier transform \hat{f} satisfies $\hat{f}\left(-\mathrm{i} \lambda_{k}\right)=0$ for all k, and, by the principle of
isolated zeros for analytic functions, must therefore vanish identically. The Parseval theorem

$$
\int_{\mathbb{R}}|f(x)|^{2} \mathrm{~d} x=(2 \pi)^{-1} \int_{\mathbb{R}}|\hat{f}(z)|^{2} \mathrm{~d} z
$$

then implies that f vanishes almost everywhere. The particular choice $\lambda=\alpha+q^{k}$, where $0<q<1$ and $\alpha>0$, obviously accumulates at the point α, and this particular case is extensively studied below.

The proof strategy of the preceding paragraph yields a derivation of Lerch's uniqueness theorem for Laplace tranforms that deserves to be better known.

Theorem 6 Let $f:[0, \infty) \rightarrow \mathbb{R}$ be a measurable function for which

$$
\int_{0}^{\infty} \exp \left(-s_{0} t\right)|f(t)| \mathrm{d} t<\infty
$$

for some $s_{0} \geq 0$, and the Laplace transform

$$
\begin{equation*}
\int_{0}^{\infty} \mathrm{e}^{-s t} f(t) \mathrm{d} t=0 \tag{1.8}
\end{equation*}
$$

for all sufficiently large s. Then f vanishes almost everywhere.
Proof The function $g(t):=\exp \left(-s_{0} t\right) f(t)$ is absolutely integrable. Hence the dominated convergence theorem implies the continuity of its Fourier transform

$$
\hat{g}(z)=\int_{0}^{\infty} \mathrm{e}^{-i z t} g(t) \mathrm{d} t
$$

for $\operatorname{Im} z<0$. Applying Morera's theorem, we deduce that the Fourier transform is, in fact, analytic for $\operatorname{Im} z<0$. However, 1.8 implies that \hat{g} vanishes on an infinite subinterval of the imaginary axis, and must therefore vanish everywhere by the principle of isolated zeros. Hence f vanishes almost everywhere.

We have not seen this proof in the literature, but its novelty is implausible.
The Müntz theorem is often proved using Cauchy's determinant identity; see, for instance, Lemma 11.3.1 of Davis (1975). It is noteworthy that our construction of r_{n} enables us to bypass this identity in an illuminating way. Specifically, let $g_{p}(t)=$ $\exp (-p t)$, where p is not one of the numbers in the sequence $\left\{\lambda_{k}\right\}$. Then we can explicitly determine the distance from g_{p} to H_{n}.

Proposition 7 We have

$$
\operatorname{dist}\left(g_{p}, H_{n}\right)^{2}=(2 p)^{-1}\left(\prod_{k=0}^{n} \frac{p-\lambda_{k}}{p+\lambda_{k}}\right)^{2}
$$

Proof Replacing λ_{n+1} by p protem in Theorem 1, we see that the closest function $f_{n} \in H_{n}$ to g_{p} must satisfy the relation

$$
\hat{g}_{p}(z)-\hat{f}_{n}(z)=\frac{-\mathrm{i} c}{z-\mathrm{i} p} \prod_{k=0}^{n} \frac{z+\mathrm{i} \lambda_{k}}{z-\mathrm{i} \lambda_{k}}
$$

where the constant c is chosen so that the coefficient of g_{p} is unity. Applying (1.6), we conclude that

$$
c=\prod_{k=0}^{n} \frac{p-\lambda_{k}}{p+\lambda_{k}}
$$

and Corollary 5 completes the proof.
It is an interesting elementary exercise to deduce the Cauchy determinant identity from Proposition 7. To deduce one half of the Müntz theorem, let $0<\lambda_{0}<\lambda_{1}<\cdots$. be any sequence for which $\lambda_{k} \rightarrow \infty$ and $\sum \lambda_{k}^{-1}$ is finite. Then the infinite product

$$
\begin{equation*}
\Delta(z)=\prod_{k=0}^{\infty} \frac{1-z / \lambda_{k}}{1+z / \lambda_{k}} \tag{1.9}
\end{equation*}
$$

is absolutely convergent. Thus Δ is an analytic function in, say, the domain $C \backslash(-\infty, 0]$ whose only zeros are located at the points $\left\{\lambda_{k}\right\}$. But we have the relation

$$
\lim _{n \rightarrow \infty} 2 p \operatorname{dist}\left(g_{n}, H_{n}\right)=\Delta(p)^{2}>0
$$

We conclude this section by presenting a universal differential recurrence relation which is obeyed by members of the sequence $\left\{r_{n}\right\}_{n}^{\infty}$. Our point of departure is (1.5), which immediately implies that

$$
\begin{equation*}
\left(\mathrm{i} z+\lambda_{n}\right) \hat{r}_{n}(z)=\left(\mathrm{i} z-\lambda_{n-1}\right) \hat{r}_{n-1}(z), \tag{1.10}
\end{equation*}
$$

whence

$$
{\widehat{r^{\prime}}}_{n-1}-{\widehat{r^{\prime}}}_{n-1}=\lambda_{n-1} \hat{r}_{n-1}+\lambda_{n} \hat{r}_{n}
$$

Therefore, since the Fourier transform is an isometric linear isomorphism on $L^{2}(\mathbb{R})$, and by virtue of the analyticity of each r_{n}, we deduce

Theorem 8 The sequence r_{0}, r_{1}, \ldots obeys the differential recurrence relation

$$
\begin{equation*}
r_{n-1}^{\prime}-r_{n}^{\prime}=\lambda_{n-1} r_{n-1}+\lambda_{n} r_{n}, \quad n=1,2, \ldots . \tag{1.11}
\end{equation*}
$$

Formula (1.11) can be recast into an interesting form. We commence by noting that (1.5) implies the recursion

$$
\begin{aligned}
\hat{r}_{n}(z) & =\left(\frac{z+\mathrm{i} \lambda_{n-1}}{z-\mathrm{i} \lambda_{n}}\right) \hat{r}_{n-1}(z) \\
& =\hat{r}_{n-1}(z)-\left(\lambda_{n-1}+\lambda_{n}\right) \widehat{g_{\lambda_{n}}{ }^{* r}}{ }_{n-1}(z)
\end{aligned}
$$

Thus

$$
\begin{equation*}
r_{n}(t)=r_{n-1}(t)-\left(\lambda_{n-1}+\lambda_{n}\right) \int_{0}^{t} \mathrm{e}^{-\lambda_{n}(t-\tau)} r_{n_{1}}(\tau) \mathrm{d} \tau \tag{1.12}
\end{equation*}
$$

2. Approximation by exponentials with rescaling

A particularly appealing choice of parameters is $\lambda_{k}=q^{k}+\alpha$, where $q \in(0,1)$ and α is positive. According to Section 1, the functions $\exp \left(-q^{k} x-\alpha\right), k=0,1, \ldots$, are dense with respect to the inner product

$$
\langle f, g\rangle=\int_{0}^{\infty} f(x) g(x) \mathrm{d} x
$$

or, alternatively, $\exp \left(-q^{k} x\right), k=0,1, \ldots$, are dense with respect to

$$
\begin{equation*}
\langle f, g\rangle_{\alpha}=\int_{0}^{\infty} f(x) g(x) \mathrm{e}^{-2 \alpha x} \mathrm{~d} x \tag{2.1}
\end{equation*}
$$

Moreover, the linear spaces H_{n} which have been defined in (1.4) are closed under shifts

$$
f \in H_{n} \quad \Longrightarrow \quad f(\cdot+\beta) \in H_{n} \quad \text { for all } \beta \in \mathbb{R} \text {; }
$$

whilst a dilation of the independent variable by a factor of q moves up the chain $H_{0} \subset H_{1} \subset H_{2} \subset \cdots$

$$
f \in H_{n} \quad \Longrightarrow \quad f(q \cdot) \in H_{n+1} .
$$

We use (1.6) to describe an orthogonal basis of $+_{n=0}^{\infty} H_{n}$ in a closed form,

$$
\begin{equation*}
r_{m}^{[\alpha]}(t)=\mathrm{e}^{-\alpha t} \sum_{j=0}^{m} \frac{\prod_{k=0}^{m-1}\left(q^{k}+q^{j}+2 \alpha\right)}{\prod_{\ell=0, \ell \neq j}^{m}\left(q^{j}-q^{\ell}\right)} \mathrm{e}^{-q^{j} t}, \quad m=0,1, \ldots . \tag{2.2}
\end{equation*}
$$

The last expression can be somewhat simplified by using Gauß-Heine symbols but this procedure has not led to significant additional insight. However, a substantially simplified form, accompanied by a wealth of further results - generating functions, recurrence relations, connections to certain functional-differential equations - follows in the case $\alpha=0$. The quid pro quo is, of course, that density with respect to the inner product (2.2) is lost. Although it is not difficult to prove that density is retained for certain subspaces of $L^{2}[0, \infty)$, we prefer to concern ourselves with the rich class of relations satisfied when $\alpha=0$.

Recall that the Gauß-Heine symbol, also known as the q-factorial (Gasper \& Rahman, 1990), reads

$$
(z ; q)_{0}=1, \quad(z ; q)_{n}=\left(1-q^{n-1} z\right)(z ; q)_{n-1}=\prod_{j=0}^{n-1}\left(1-q^{j} z\right), \quad j=1,2, \ldots
$$

Since

$$
\begin{aligned}
& \prod_{k=0}^{j-1}\left(q^{j}+q^{k}\right)=q^{(j-1), j / 2}(-q ; q)_{j} \\
& \prod_{k=j}^{m-1}\left(q^{j}+q^{k}\right)=q^{(m-j) j}(-1 ; q)_{m-j}
\end{aligned}
$$

$$
\begin{aligned}
& \prod_{\ell=0}^{j-1}\left(q^{j}-q^{\ell}\right)=(-1)^{j} q^{(j-1) j / 2}(q ; q)_{j}, \quad \text { and } \\
& \prod_{\ell=j+1}^{m}\left(q^{j}-q^{\ell}\right)=q^{(m-j), j}(q ; q)_{j}
\end{aligned}
$$

substitution into (2.2) results in the explicit form

$$
\begin{equation*}
R_{m}(t):=r_{m+1}^{[0]}(t)=\sum_{j=0}^{m}(-1)^{j} \frac{(-q ; q)_{j}(-1 ; q)_{m-j}}{(q ; q)_{j}(q ; q)_{m-j}} \mathrm{e}^{-q^{j} t}, \quad m=0,1, \ldots \tag{2.3}
\end{equation*}
$$

Let

$$
G(t, z):=\sum_{m=0}^{\infty} R_{m}(t) z^{m}, \quad|z|<1
$$

Proposition 9 The function G obeys the functional-differential equation

$$
\begin{equation*}
\frac{\partial}{\partial t} G(t, z)+G(t, z)=-z\left[G(q t, z)-q \frac{\partial}{\partial t} G(q t, z)\right] \tag{2.4}
\end{equation*}
$$

with the initial condition

$$
\begin{equation*}
G(0, z)=\frac{1}{1-z} \tag{2.5}
\end{equation*}
$$

Proof We multiply (2.3) by z^{m} and sum. Interchanging the order of summation, we obtain

$$
\begin{aligned}
G(t, z) & =\sum_{m=0}^{\infty} \sum_{j=0}^{m}(-1)^{j} \frac{(-q ; q)_{j}(-1 ; q)_{m-j}}{(q ; q)_{j}(q ; q)_{m-j}} \mathrm{e}^{-q^{j} t} z^{m} \\
& =\sum_{j=0}^{\infty}(-1)^{j} \frac{(-q ; q)_{j}}{(q ; q)_{j}} \mathrm{e}^{-q^{j} t} \sum_{m=j}^{\infty} \frac{(-1 ; q)_{m-j}}{(q ; q)_{m-j}} z^{m} \\
& =\left[\sum_{j=0}^{\infty}(-1)^{j} \frac{(-q ; q)_{j}}{(q ; q)_{j}} \mathrm{e}^{-q^{j} t} z^{j}\right] \times\left[\sum_{m=0}^{\infty} \frac{(-1 ; q)_{m}}{(q ; q)_{m}} z^{m}\right] .
\end{aligned}
$$

However, according to the Heine formula for basic hypergeometric functions (Gasper \& Rahman, 1990),

$$
\sum_{m=0}^{\infty} \frac{(-1 ; q)_{m}}{(q ; q)_{m}} z^{m}={ }_{1} \Phi_{0}\left[\begin{array}{c}
-1 ; \\
-;
\end{array} ; z\right]=\frac{(-z ; q)_{\infty}}{(z ; q)_{\infty}}
$$

therefore

$$
G(t, z)=\frac{(-z ; q)_{\infty}}{(z ; q)_{\infty}} \sum_{j=0}^{\infty}(-1)^{j} \frac{(-q ; q)_{j}}{(q ; q)_{j}} \mathrm{e}^{-q^{j} t} z^{j},
$$

and this, according to (Iserles, 1993), is the Dirichlet series expansion of the solution of the pantograph equation (2.4).

To evaluate the initial condition we again sum a basic hypergeometric series with the Heine formula,

$$
\sum_{j=0}^{\infty}(-1)^{j} \frac{(-q ; q)_{j}}{(q ; q)_{j}} z^{j}={ }_{1} \Phi_{0}\left[\begin{array}{l}
-q ; \\
-;
\end{array} ; z\right]=\frac{(q z ; q)_{\infty}}{(-z ; q)_{\infty}} .
$$

Therefore

$$
G(0, z)=\frac{(-z ; q)_{\infty}}{(z ; q)_{\infty}} \times \frac{(q z ; q)_{\infty}}{(-z ; q)_{\infty}}=\frac{1}{1-z}
$$

affirming (2.5).
Corollary 10 The Taylor expansion (in t) of the function G is

$$
\begin{equation*}
G(t, z)=\sum_{k=0}^{\infty} \frac{(-1)^{k}}{k!} \frac{(-z ; q)_{k}}{(z ; q)_{k+1}} t^{k} \tag{2.6}
\end{equation*}
$$

Proof According to (Iserles, 1993), the solution of the pantograph equation

$$
\begin{equation*}
y^{\prime}(t)=a y(t)+b y(q t)+c y^{\prime}(q t), \quad t \geq 0, \quad y(0)=y_{0} \tag{2.7}
\end{equation*}
$$

where $a, b, c \in \mathbb{C}, a \neq 0,|c|<1$, can be expanded into the Taylor series

$$
y(t)=y_{0} \sum_{k=0}^{\infty} \frac{1}{k!} \frac{(-b / a ; q)_{k}}{(c ; q)_{k}}(a t)^{k} .
$$

Letting $a=-1, b=-z, c=q z$ and $y_{0}=1 /(1-z)$ yields (2.6).
We note as an aside that, according to (Iserles, 1993) and (Iserles \& Liu, 1994), the solution of (2.7) exists and it is unique subject to the inequality $|c|<1$. Moreover, Re $a<0,|a|>|b|$ implies that the solution is asymptotically stable. Thus, thanks to the restriction $|z|<1$, we deduce that $\lim _{t \rightarrow \infty} G(t, z)=0$.

Next we consider recurrence relations that are obeyed by the sequence $\left\{R_{n}\right\}_{n=0}^{\infty}$. A differential recurrence follows by substitution in (1.11), namely

$$
\begin{equation*}
R_{n-1}^{\prime}-R_{n}^{\prime}=q^{n-1} R_{n-1}+q^{n} R_{n}, \quad n=1,2, \ldots \tag{2.8}
\end{equation*}
$$

This recurrence can be rewritten in the form (1.12).
Several other relations can be derived by a moderate effort. For example, we can express R_{n} in terms of R_{n-1} and its derivatives at t and $q t$ (a differential recurrence with rescaling). Thus, let
$\varphi_{n}(t):=\left(1-q^{n}\right) R_{n}(t)+R_{n-1}(q t)-q^{n-1} R_{n-1}(t)+R_{n-1}^{\prime}(t)-q R_{n-1}^{\prime}(q t), \quad n=1,2, \ldots$
It is a trite exercise to verify that

$$
\begin{aligned}
& \left\langle\mathrm{e}^{-q^{\ell} t}, R_{n-1}(q t)\right\rangle=q^{-1}\left\langle\mathrm{e}^{-q^{\ell-1} t}, R_{n-1}\right\rangle, \\
& \left\langle\mathrm{e}^{-q^{\ell} t}, R_{n-1}^{\prime}(q t)\right\rangle=-q^{-1}+q^{\ell-2}\left\langle\mathrm{e}^{-q^{\ell-1}}, R_{n-1}\right\rangle,
\end{aligned} \quad \ell=1,2, \ldots,
$$

consequently

$$
\begin{aligned}
\left\langle\mathrm{e}^{-q^{\ell} t}, \varphi_{n}\right\rangle= & \left(1-q^{n}\right)\left\langle\mathrm{e}^{-q^{\ell} t}, R_{n}\right\rangle+q^{-1}\left\langle\mathrm{e}^{-q^{\ell-1} t}, R_{n-1}\right\rangle-q^{n-1}\left\langle\mathrm{e}^{-q^{\ell} t}, R_{n-1}\right\rangle \\
& +q^{\ell}\left\langle\mathrm{e}^{-q^{\ell} t}, R_{n-1}\right\rangle-q^{\ell-1}\left\langle\mathrm{e}^{-q^{\ell-1} t}, R_{n-1}\right\rangle, \quad \ell=1,2, \ldots .
\end{aligned}
$$

Recalling that each R_{m} is orthogonal to $\exp \left(-q^{\ell} t\right)$ for $\ell=0,1, \ldots, m-1$, we thus deduce the relations

$$
\left\langle\mathrm{e}^{-q^{\ell} t}, \varphi_{n}\right\rangle=0, \quad \ell=0,1, \ldots, n-1
$$

Therefore φ_{n} is a scalar multiple of R_{n}. But Corollary 4 implies $R_{n}(0)=1$, whilst (2.8) yields $R_{n}^{\prime}(0)=-\left(2-q^{n}-q^{n+1}\right) /(1-q)$. Substitution in (2.9) verifies at once $\varphi_{n}(0)=0$, thus leading to the conclusion that $\varphi_{n} \equiv 0$.

Proposition 11 The sequence $\left\{R_{n}\right\}_{n=0,1, \ldots}$ satisfies the differential recurrence relation with rescaling

$$
\left(1-q^{n}\right) R_{n}(t)=q^{n-1} R_{n-1}(t)-R_{n-1}(q t)-R_{n-1}^{\prime}(t)+q R_{n-1}^{\prime}(q t), \quad n=1,2, \ldots
$$

Finally, we report a pure recurrence relation with rescaling.
Proposition 12 For every $n=2,3, \ldots$ we have the relation

$$
\begin{equation*}
\left(1-q^{n}\right) R_{n}(t)=\left(1+q^{n-1}\right) R_{n-1}(t)-\left(1+q^{n}\right) R_{n-1}(q t)+\left(1-q^{n-1}\right) R_{n-2}(q t) \tag{2.10}
\end{equation*}
$$

Proof Although (2.10) can be proved by comparing coefficients in (2.3), it is perhaps more interesting to use the generating function G. Comparing the coefficients in (2.6) affirms the identity

$$
(1-z)[G(t, z)+z G(q t, z)]=(1+z)[G(t, g z)-q z G(q t, q z)],
$$

which we rewrite in the form

$$
\begin{aligned}
G(t, z)-G(t, g z)= & z[G(t, z)+G(t, q z)]-z[G(q t, z)-q G(q t, g z)] \\
& +z^{2}[G(q t, z)-q G(q t, q z)] .
\end{aligned}
$$

The recurrence (2.10) follows at once, by substituting the definition of the generating function G.

3. Convergence of projections

Let $\lambda_{0}, \lambda_{1}, \ldots$ be given positive numbers. We consider the approximation of a function $f \in L^{2}[0, \infty)$ by projections onto each H_{n}. We henceforth consider only the
inner product $\langle f, g\rangle=\int_{0}^{\infty} f(t) g(t) \mathrm{d} t$, although our discussion can be generalized with minimal effort to the inner product (2.1).

The orthogonal projection of f onto H_{n} can be written as a generalized Fourier series, which in turn can be expressed explicitly in terms of the Fourier transform of f, so that

$$
\begin{equation*}
F_{n}(t)=\sum_{m=0}^{n} \frac{\left\langle f, r_{m}\right\rangle}{\left\langle r_{m}, r_{m}\right\rangle} r_{m}(t)=2 \sum_{m=0}^{n-1} \lambda_{m}\left\langle f, r_{m}\right\rangle r_{m}(t), \quad n=0,1, \ldots, \tag{3.1}
\end{equation*}
$$

where (cf. (1.6))

$$
\begin{align*}
r_{m}(t) & =\sum_{\ell=0}^{n} r_{m, \ell} \exp \left(-\lambda_{\ell} t\right) \\
\text { implies } \quad\left\langle f, r_{m}\right\rangle & =\sum_{\ell=0}^{m} r_{m, \ell} \int_{0}^{\infty} f(t) \mathrm{e}^{-\lambda_{\ell} t} \mathrm{~d} t=\sum_{\ell=0}^{m} r_{m, \ell} \hat{f}\left(-\mathrm{i} \lambda_{\ell}\right) . \tag{3.2}
\end{align*}
$$

The behaviour of the Fourier transform is entwined with the convergence of the projections. Let us use \mathcal{H} to denote the closure of the subspace $H_{1}+H_{2}+\cdots$ in the L^{2} norm.

Proposition 13 Let $f \in \mathcal{H}$. If the function

$$
\Lambda(z):=\sum_{n=0}^{\infty} \lambda_{n} z^{n}
$$

is analytic in an open disc centred at the origin and we have the inequality

$$
\begin{equation*}
\left|\left\langle f, r_{n}\right\rangle\right| \leq \omega^{n}\left|\left\langle f, r_{0}\right\rangle\right|, \quad n=0,1, \ldots, \tag{3.3}
\end{equation*}
$$

where $\omega \in(0,1)$ is a point in the disc, then

$$
\begin{equation*}
\left\|f-F_{n}\right\|^{2} \leq 2\left|\left\langle f, r_{0}\right\rangle\right|^{2} \sum_{m=n}^{\infty} \lambda_{m} \omega^{2 m} \tag{3.4}
\end{equation*}
$$

and the right hand side converges to zero as n tends to infinity.
Proof It follows from (3.1) by the Parseval equality that

$$
\left\|f-F_{n}\right\|^{2}=2 \sum_{m=n}^{\infty} \lambda_{m}\left|\left\langle f, r_{m}\right\rangle\right|^{2}
$$

and we deduce (3.4) from (3.3) and the analyticity of Λ at ω^{2}.
Let us assume further that \hat{f} is analytic in the closed unit disc. Substituting

$$
\hat{f}(\mathrm{i} z)=\sum_{k=0}^{\infty} \frac{\varphi_{k}}{k!} z^{k}
$$

into (3.2) yields

$$
\begin{equation*}
\left\langle f, r_{m}\right\rangle=\sum_{k=0}^{\infty} \frac{\varphi_{k}}{k!} \sum_{\ell=0}^{m} r_{m, \ell}\left(-\lambda_{\ell}\right)^{k}=\sum_{k=0}^{\infty} \frac{\varphi_{k}}{k!} r_{m}^{(k)}(0), \quad m=0,1, \ldots \tag{3.5}
\end{equation*}
$$

This formula and inequality (3.3) motivate our interest in the magnitude of the derivatives of r_{m} at the origin.

We restrict our attention in the remainder of this section to the parameters $\lambda_{k}=q^{k}$, $k=0,1, \ldots$, that have already featured in Section 2. According to (2.6) we have

$$
\sum_{n=0}^{\infty} R_{n}^{(k)}(0) z^{n}=\frac{\partial^{k}}{\partial t^{k}} G(0, z)=(-1)^{k} \frac{(-z ; q)_{k}}{(z ; q)_{k+1}}, \quad k=0,1, \ldots
$$

hence the recursion

$$
\begin{aligned}
\sum_{n=0}^{\infty} R_{n}^{(k)}(0) z^{n} & =-\frac{1+q^{k-1} z}{1-q^{k} z} \sum_{n=0}^{\infty} R_{n}^{(k-1)}(0) z^{n} \\
& =-\sum_{n=0}^{\infty}\left[\sum_{\ell=0}^{n} R_{n-\ell}^{(k-1)}(0) q^{k \ell}\right] z^{n}-\sum_{n=1}^{\infty}\left[\sum_{\ell=1}^{n} R_{n-\ell}^{(k-1)}(0) q^{k \ell-1}\right] z^{n}
\end{aligned}
$$

We deduce that

$$
\begin{equation*}
R_{n}^{(k)}(0)=-\sum_{\ell=0}^{n} R_{n-\ell}^{(k-1)}(0) q^{k \ell}-q^{k-1} \sum_{\ell=0}^{n-1} R_{n-1-\ell}^{(k-1)}(0) q^{k \ell}, \quad n=0,1, \ldots, k=1,2, \ldots \tag{3.6}
\end{equation*}
$$

Proposition 14 The derivatives of R_{n} at the origin obey the inequality

$$
\begin{equation*}
\left|R_{n}^{(k)}(0)\right| \leq \frac{(-1 ; q)_{k}}{(q ; q)_{k}}, \quad n, k=0,1, \ldots \tag{3.7}
\end{equation*}
$$

Proof We use induction on the derivative order k. The inequality is true for $k=0$ because, by Corollary $4, R_{n}(0)=1$. We thus assume its correctness for $k-1$ and employ (3.6) to argue that

$$
\begin{aligned}
\left|R_{n}^{(k)}(0)\right| & \leq \frac{(-1 ; q)_{k-1}}{(q ; q)_{k-1}}\left[\sum_{\ell=0}^{n} q^{k \ell}+q^{k-1} \sum_{\ell=0}^{n-1} q^{k \ell}\right] \\
& \leq \frac{(-1 ; q)_{k-1}}{(q ; q)_{k-1}}\left[\frac{1}{1-q^{k}}+\frac{q^{k-1}}{1-q^{k}}\right]=\frac{(-1 ; q)_{k}}{(q ; q)_{k}}
\end{aligned}
$$

which completes the proof.

Corollary 15

$$
\begin{equation*}
\left|R_{n}^{(k)}(0)\right| \leq \frac{(-1 ; q)_{\infty}}{(q ; q)_{\infty}}, \quad n, k=0,1, \ldots \tag{3.8}
\end{equation*}
$$

Proof This is immediate from (3.7), since the sequence

$$
\left\{\frac{(-1 ; q)_{k-1}}{(q ; q)_{k-1}}: k=0,1, \ldots\right\}
$$

is increasing for every $q \in(0,1)$.
Of course, analyticity of \hat{f} in the closed unit disc implies absolute convergence of its Taylor series at $z=1$. Setting

$$
\sigma:=\sum_{k=0}^{\infty} \frac{\left|\varphi_{k}\right|}{k!}<\infty
$$

we thereby deduce from (3.8) that

$$
\left\lvert\,\left\langle f, R_{n}\right\rangle \leq \sigma \frac{(-1 ; q)_{\infty}}{(q ; q)_{\infty}}\right., \quad n=0,1, \ldots .
$$

Consequently, (3.5) and (3.8) imply the bound

$$
\left|\left\langle f, R_{n}\right\rangle\right| \leq \sigma \frac{(-1 ; q)_{\infty}}{(q ; q)_{\infty}}, \quad n=0,1, \ldots
$$

and, when $f \in \mathcal{H}$, the Parseval theorem yields the expression

$$
\left\|f-F_{N}\right\|^{2}=2 \sum_{n=N}^{\infty} q^{n}\left|\left\langle f, R_{n}\right\rangle\right|^{2}
$$

Therefore, our bound on $\left|\left\langle f, R_{n}\right\rangle\right|$ establishes the following result.
Theorem 16 If $f \in \mathcal{H}$ and \hat{f} is analytic in the closed unit disc, then

$$
\begin{equation*}
\left\|f-F_{n}\right\| \leq \sigma^{*} q^{N / 2} \xrightarrow{N \rightarrow \infty} 0, \tag{3.9}
\end{equation*}
$$

where

$$
\sigma^{*}=\sigma \sqrt{\frac{2}{1-q}} \times \frac{(-1 ; q)_{\infty}}{(q ; q)_{\infty}} .
$$

Furthermore, since

$$
\begin{equation*}
\sum_{k=0}^{\infty} \frac{\left|\varphi_{k}\right|}{k!} \leq \int_{0}^{\infty} e^{t}|f(t)| \mathrm{d} t \tag{3.10}
\end{equation*}
$$

Therefore boundedness of this integral implies analyticity of \hat{f} in the closed unit disc. Let us return to the interesting special case $f(t)=\exp (-\lambda t)$. By (1.2),

$$
\left\langle\mathrm{e}^{-\lambda t}, R_{n}\right\rangle=\left\langle g_{\lambda}, R_{n}\right\rangle=\hat{R}_{n}(-\mathrm{i} \lambda)
$$

and (1.5) yields

$$
\left\langle\mathrm{e}^{-\lambda t}, r_{n}\right\rangle=\frac{\prod_{k=0}^{n-1}\left(\lambda-\lambda_{k}\right)}{\prod_{k=0}^{n}\left(\lambda+\lambda_{k}\right)}, \quad n=0,1, \ldots .
$$

Specialising to $\lambda_{\ell}=q^{\ell}$, we obtain

$$
\begin{equation*}
\left\langle\mathrm{e}^{-\lambda t}, R_{n}\right\rangle=\frac{1}{\lambda} \frac{(1 / \lambda ; q)_{n}}{(-1 / \lambda ; q)_{n+1}}, \quad n=0,1, \ldots \tag{3.11}
\end{equation*}
$$

We thus deduce by the method of proof of Theorem 16 that

$$
\begin{equation*}
F_{n}(t)=\frac{2}{\lambda} \sum_{n=0}^{N} \frac{(1 / \lambda ; q)_{n}}{(-1 / \lambda ; q)_{n+1}} q^{n} R_{n}(t) \tag{3.12}
\end{equation*}
$$

converges in norm to the orthogonal projection of $\exp (-\lambda t)$ on \mathcal{H}.
The projection of $f(t)=\exp (-\lambda t), \lambda>1$, onto H_{n} is

$$
F_{N}(t)=\frac{2}{\lambda} \sum_{n=0}^{N} \frac{(1 / \lambda ; q)_{n}}{(-1 / \lambda ; q)_{n+1}} q^{n} R_{n}(t)
$$

Letting $N \rightarrow \infty$, it is easy to verify that

$$
\begin{equation*}
F_{N}(t) \rightarrow F(t)=\frac{2}{1+\lambda} \sum_{n=0}^{\infty} \frac{(1 / \lambda ; q)_{n}}{(-q / \lambda ; q)_{n}} q^{n} R_{n}(t) \tag{3.13}
\end{equation*}
$$

We next substitute the explicit expression for R_{n} from (2.3), whence exchanging the order of summation yields

$$
\begin{align*}
F(t) & =\frac{2}{1+\lambda} \sum_{m=0}^{\infty}(-1)^{m} \frac{(-q ; q)_{m}}{(q ; q)_{m}} \mathrm{e}^{-q^{m} t} \sum_{n=m}^{\infty} \frac{(1 / \lambda ; q)_{n}(-1 ; q)_{n-m}}{(-q / \lambda ; q)_{n}(q ; q)_{n-m}} q^{n} \\
& =\frac{2}{1+\lambda} \sum_{m=0}^{\infty}(-1)^{m} \frac{(-q ; q)_{m}}{(q ; q)_{m}} q^{m} \mathrm{e}^{-q^{m} t} \sum_{n=0}^{\infty} \frac{(1 / \lambda ; q)_{m+n}(-1 ; q)_{n}}{(q ; q)_{n}(-q / \lambda ; q)_{m+n}} q^{n} \\
& =\frac{2}{1+\lambda} \sum_{m=0}^{\infty}(-1)^{m} \frac{(-q ; q)_{m}(1 / \lambda ; q)_{m}}{(q ; q)_{m}(-q / \lambda ; q)_{m}} q^{m} \mathrm{e}^{-q^{m} t} \sum_{n=0}^{\infty} \frac{\left(q^{m} / \lambda ; q\right)_{n}(-1 ; q)_{n}}{(q ; q)_{n}\left(-q^{m+1} / \lambda ; q\right)_{n}} q^{n} \\
& =\frac{2}{1+\lambda} \sum_{m=0}^{\infty}(-1)^{m} \frac{(-q ; q)_{m}(1 / \lambda ; q)_{m}}{(q ; q)_{m}(-q / \lambda ; q)_{m}} q^{m} \mathrm{e}^{-q^{m} t}{ }_{2} \Phi_{1}\left[\begin{array}{c}
q^{m} / \lambda,-1 ; \\
-q^{m+1} / \lambda ;
\end{array}{ }^{2, q}\right] \tag{3.14}
\end{align*}
$$

- we refer to (Gasper \& Rahman, 1990) for the terminology of basic hypergeometric series.

The ${ }_{2} \Phi_{1}$ series in (3.14) can be summed with the q-Gauß formula (Gasper \& Rahman, 1990, formula II.8, page 236),

$$
{ }_{2} \Phi_{1}\left[\begin{array}{l}
q^{m} / \lambda,-1 ; \\
-q^{m+1} / \lambda ;
\end{array}, q, q\right]=\frac{(-q ; q)_{\infty}\left(q^{m+1} / \lambda ; q\right)_{\infty}}{(q ; q)_{\infty}\left(-q^{m+1} / \lambda ; q\right)_{\infty}} .
$$

Substitution in (3.14) and elementary simplification result in

$$
\begin{equation*}
F(t)=\frac{1}{\lambda} \frac{(-1 ; q)_{\infty}(1 / \lambda ; q)_{\infty}}{(q ; q)_{\infty}(-1 / \lambda ; q)_{\infty}} \sum_{m=0}^{\infty}(-1)^{m} \frac{(-q ; q)_{m}}{(q ; q)_{m}} \frac{q^{m}}{1-q^{m} / \lambda} \mathrm{e}^{-q^{m} t} \tag{3.15}
\end{equation*}
$$

Note that (3.15) is valid for all $\lambda>0, \lambda \neq q^{k}$ for $k \geq 0$. In the case $\lambda=q^{k}$ it is easy to prove that $F(t)=\exp \left(-q^{k} t\right)$.

Finally, we explicitly evaluate $F(0)$ from (3.15). In the course of our analysis we twice use an explicit formula for the summation of ${ }_{1} \Phi_{0}$ series (Gasper \& Rahman, 1990, formula II.3, page 236).

Figure 1 The functions F_{N} for $N=2,5,8,11, q=\frac{1}{2}$ and $\lambda=\frac{3}{2}$.

Figure 2 The functions F and $\exp (-\lambda t)$ for $q=\frac{1}{2}$ and $\lambda=\frac{3}{2}$.

Bearing in mind that $0<1 / \lambda<1$, we expand into series,

$$
\begin{aligned}
& \sum_{m=0}^{\infty}(-1)^{m} \frac{(-q ; q)_{m}}{(q ; q)_{m}} \frac{q^{m}}{1-q^{m} / \lambda} \\
= & \sum_{m=0}^{\infty}(-1)^{m} \frac{(-q ; q)_{m}}{(q ; q)_{m}} q^{m} \sum_{\ell=0}^{\infty} \frac{q^{m \ell}}{\lambda^{\ell}} \\
= & \sum_{\ell=0}^{\infty} \frac{1}{\lambda^{\ell}} 1 \Phi_{0}\left[-q ;-; q,-q^{\ell+1}\right] \\
= & \sum_{\ell=0}^{\infty} \frac{1}{\lambda^{\ell}} \frac{\left(q^{\ell+2} ; q\right)_{\infty}}{\left(-q^{\ell+1} ; q\right)_{\infty}}=\lambda\left[\sum_{\ell=0}^{\infty} \frac{\left(q^{\ell+1} ; q\right)_{\infty}}{\left(-q^{\ell} ; q\right)_{\infty}} \frac{1}{\lambda^{\ell}}-\frac{(q ; q)_{\infty}}{(-1 ; q)_{\infty}}\right] \\
= & \lambda \frac{(q ; q)_{\infty}}{(-1 ; q)_{\infty}}\left[\sum_{\ell=0}^{\infty} \frac{(-1 ; q)_{\ell}}{(q ; q)_{\ell}} \lambda^{-\ell}-1\right] \\
= & \lambda \frac{(q ; q)_{\infty}}{(-1 ; q)_{\infty}}\left\{1 \Phi_{0}\left[-1 ; q, \lambda^{-1}\right]-1\right\}=\frac{(q ; q)_{\infty}}{(-1 ; q)_{\infty}}\left[\frac{(-1 / \lambda ; q)_{\infty}}{(1 / \lambda ; q)_{\infty}}-1\right] .
\end{aligned}
$$

Therefore, substitution in (3.15) proves that

$$
F(0)=1-\frac{(1 / \lambda ; q)_{\infty}}{(-1 / \lambda ; q)_{\infty}}
$$

Note that, unless $\lambda=q^{-m}$ for a nonnegative integer m, it follows that $F(0) \neq 1$. This constitutes a formal proof of the statement that the sequence $\left\{F_{N}\right\}$ does not converge to $\exp (-\lambda t)$; of course we have already provided a stronger result in Proposition 7. We can also use the infinite product 1.9 to characterize the lmit of the projections $\left\{F_{N}\right\}$. Indeed, the proof of Proposition 7 implies that

$$
\begin{equation*}
\lim _{N \rightarrow \infty} \hat{f}(z)-\hat{F}_{N}(z)=\frac{-\mathrm{i}}{z-\mathrm{i} \lambda} \Delta(\mathrm{i} z) \Delta(\lambda) . \tag{3.16}
\end{equation*}
$$

In Figure 1 we display the functions F_{N} for different values of N in the case $q=\frac{1}{2}$, $\lambda=\frac{3}{2}$. It illustrates vividly our observation that $F_{N} \rightarrow F$ yet, as can be seen in Figure 2, the function F is distinct from $\exp \left(-\frac{3}{2} t\right)$.

Bibliography

P.J. Davis (19675), Interpolation and Approximation, Dover, New York.
H. Dym and H. P. McKean (1972), Fourier Series and Integrals,, Academic Press, New York.
W. Feller (1968), "On Müntz' theorem and completely monotone functions", Amer. Math. Monthly 75, 342-350.
G. Gasper and M. Rahman (1990), Basic Hypergeometric Series, Cambridge University Press, Cambridge.
A. Iserles (1993), "On the generalized pantograph functional-differential equation", Europ. J. Appl. Math. 4, 1-38.
A. Iserles and Y. Liu (1994), "On pantograph integro-differential equations", J. Integral Eqns ${ }_{6}$ Applcs 6, 213-237.
I. J. Schoenberg (1981), "On polynomial interpolation at the points of a geometric progression", Proc. Roy. Soc. Edinburgh 90a, 195-207.

[^0]: ${ }^{1}$ Department of Mathematics, Imperial College, London SW7 2BZ, England.
 ${ }^{2}$ Department of Applied Mathematics and Theoretical Physics, University of Cambridge, Silver Street, Cambridge CB3 9EW, England.

