On approximation by exponentials

B. J. C. Baxter' and A. Iserles?

Abstract We consider an approximation of L?[0, c0) functions by linear com-
binations of exponentials {exp(—Ag1)}. Having derived explicitly by Fourier trans-
form techniques an orthogonal basis of exponentials, we specialize the discussion
to the choice Ay = ¢, £ = 0,1,..., where ¢ € (0,1). TIn that case the under-
lying orthogonal functions possess a particularly appealing form and they obey
interesting recurrence relations. We conclude the paper with a brief discussion of
convergence issues.
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1. Orthogonality by sums of exponentials

Let A be a complex number with positive real part and define the function gy : R — R
by
(1)

e A >0,
0, x <0

Thus ¢, is a member of the Hilbert space H := {f € T/Q(TRQ) csupp f C [0,00)},
endowed with the usual inner product. Further, for any f € H we have the useful
relation

(fox) = F(=iN), (1.2)
where we have used the well known fact (see Dym and McKean (1972)) that the Fourier

transform of any member of H can be analytically continued throughout the lower half
plane {z € C:Tmz < 0}. We shall also need the Fourier transform of g,:
—i

'@A(Z):z—i/\' (1.3)

Now let (Ag)52, be any sequence of complex numbers with positive real parts. Our
aim is to study the subspaces

Hy = span {gx,, 905,90, } (1.4)
The simple form of (1.3) allows us to construct orthogonal bases for these subspaces.

Theorem 1 H, & H,_1 is the one-dimensional subspace generated by the function

n

—i i

z— 1A z—1Ag
nk::() k

rn(z) =

(1.5)

Proof FEvery element of I{TW,Q I':Tn,1 1s a linear combination of the rational functions
z—iA) "' 10 < k < n}: this defines 7, up to multiplication by a constant. O
SN ; P P Yy

Partial fraction decomposition of the rational function (1.5) yields the coefficients
of r, when expressed as a linear combination of g»,, ..., ¢x, -

Proposition 2 We have

N , o+ M)
= ; Pl [Tim0,0 (A — Ae) (0

Proof  Writing 7,,(2) = —i ZZ':O ak(z —iXg) "', we obtain

n n—1

712% I G-i=-iJ[G+ix).

k=0 1=0,0#k k=0



Setting z = 1}; provides the relation

n n—1
aj H (A = Ae) = H(/\j + k),
1=0,04] k=0
whence the result. O

The formula derived in (1.6) is easily recognized to be a certain divided difference.

Proposition 3  Lel s,(z,1) = exp(—z1) HZ;J) (z+ Ag). Then

r (1) = sn (- 0)[A0s Ay Al (1.7)

Proof The standard algebraic identity

n A )
izo L=z \AG — A
s valid for every function f defined at the points Aqg, ..., A,. O

As a consequence of this divided difference relation, we find that the normalization
chosen for r,, implies the equation r, (0) = 1.

Covrollary 4 For every n, we have r,(0) = 1.

Proof When t = 0, the function z — s, (2,0) is a monic polynomial of degree n.
Hence the divided difference appearing on the right hand side of (1.7) is equal to one
for any choice of Ag, ..., A,.

Corollary 5 The two-norm of v, is given by ||ra||? = (2X) .

Proof The Parseval Theorem provides the equation
Il = 2)" [ Jra(a"d=
JR

However, for real = we have |7, ()]|? = (> + A2)~'. Therefore we need only compute
the elementary integral

lrall? = (27) " /< FA2) da = (20)

O

The complex analytic theory of the Miintz theorem is closely related to the material
discussed here. For example, if (A;)52, is a sequence of positive numbers possessing a
convergent subsequence with positive limit, then linear combinations of the functions
Iror I, - - - are dense in H. For, suppose f € H were orthogonal to these functions.

The the Fourier transform f satisfies f(—i/\k) = 0 for all k, and, by the principle of



isolated zeros for analytic functions, must therefore vanish identically. The Parseval
theorem

[ as = [

then implies that f vanishes almost everywhere. The particular choice A = o + ¢,
where 0 < ¢ < 1 and a > 0, obviously accumulates at the point «, and this particular
case is extensively studied below.

The proof strategy of the preceding paragraph yields a derivation of Lerch’s unique-
ness theorem for Laplace tranforms that deserves to be better known.

Theorem 6 Let f:]0,00) = R be a measurable function for which

/000 exp(—sot)|f(1)] dt < o0

for some sq > 0, and the Laplace transform

/m e () dt =0, (1.8)

for all sufficiently large s. Then [ vanishes almost everywhere.

Proof 'The function g(t) := exp(—spt)f(1) is absolutely integrable. Hence the
dominated convergence theorem implies the continuity of its Fourier transform

g(z) = /000 e g (t) dt

for Tmz < 0. Applying Morera’s theorem, we deduce that the Fourier transform
18, in fact, analytic for Tmz < 0. However, 1.8 implies that ¢ vanishes on an infinite
subinterval of the imaginary axis, and must therefore vanish everywhere by the principle
of isolated zeros. Hence f vanishes almost everywhere. a

We have not seen this proof in the literature, but 1ts novelty is implausible.

The Miuntz theorem is often proved using Cauchy’s determinant identity; see, for
instance, Lemma 11.3.1 of Davis (1975). Tt is noteworthy that our construction of
7, enables us to bypass this identity in an illuminating way. Specifically, let g,(t) =
exp(—pt), where p is not one of the numbers in the sequence {Ap}. Then we can
explicitly determine the distance from g, to H,,.

Proposition 7 We have

kel

2
. - piAk
dist(g,, Hn)" = (2p)"" ( p+Az«) '
k=0 '

Proof Replacing A\, 11 by p pro tem in Theorem 1, we see that the closest function

fn € H, to g, must satisfy the relation

ip(2) — fule) = — T

- -,
z—1 z— 1A
pk:() k




where the constant ¢ is chosen so that the coefficient of g, is unity. Applying (1.6), we

TP A
c= ,
IE)P-FM

conclude that

and Corollary 5 completes the proof. a

Tt 1s an interesting elementary exercise to deduce the Cauchy determinant identity
from Proposition 7. To deduce one half of the Miintz theorem, let 0 < Ag < Ay < ---
be any sequence for which Ay — oo and ZA; is finite. Then the infinite product

(o)

a0 =11 e (19)

is ahsolutely convergent. Thus A is an analytic function in, say, the domain C'\ (—oo, 0]
whose only zeros are located at the points {A;}. But we have the relation

lim 2p dist(g,, H,) = A(p)? > 0.

n—r 00

We conclude this section by presenting a universal differential recurrence relation
which is obeyed by members of the sequence {r,}>°. Our point of departure is (1.5),
which immediately implies that,

(iz+A)rn(2) = (iz — A1) P01 (2), (1.10)
whence R R
7“’7,,,1 - 7“’7,,,] - An7172n71 + Anfn-

Therefore, since the Fourier transform is an isometric linear isomorphism on % (R),
and by virtue of the analyticity of each r,, we deduce

Theorem 8 The sequence rqo, 71, ... obeys the differential recurrence relation
o=l = Xy rn 1 A, n=12 ... (1.11)

O

Formula (1.11) can be recast into an interesting form. We commence by noting
that (1.5) implies the recursion

uz) = (L) P (2)

z— 1A,
= rp_1(z) — (An_1 + An).an,;rn71 (2).
Thus .
(1) = rn 1 (1) — M1+ An) /0 e 2 (=T, (1) dr. (1.12)

2. Approximation by exponentials with rescaling



A particularly appealing choice of parameters is A, = ¢* 4+, where ¢ € (0,1) and o is
positive. According to Section 1, the functions exp(—¢*z —a), k = 0,1,.. ., are dense
with respect to the inner product

(f,9) = /000 F(x)g(z) da

or, alternatively, exp(—¢"z), k= 0,1, ..., are dense with respect to

.= [ " J@)g(a)e " da (2.1)

Moreover, the linear spaces H,, which have been defined in (1.4) are closed under shifts
feH, — f(-+3)eH, foral geck;

whilst a dilation of the independent variable by a factor of ¢ moves up the chain
HoC HiC HyC ---

feH, — flg-) € Hoyr.

We use (1.6) to describe an orthogonal basis of +5_,H,, in a closed form,

— ot - qu;(g (qk + 7 + 2a) —g7t

- . , m=0,1,.... (2.2)
=0 H/,:O/,;éj(q'? —q")

The last expression can be somewhat simplified by using Gaufl Heine symbols but
this procedure has not led to significant additional insight. However, a substantially
simplified form, accompanied by a wealth of further results  generating functions,
recurrence relations, connections to certain functional-differential equations  follows
in the case « = 0. The quid pro quo is, of course, that density with respect to the
inner product (2.2) is lost. Although it is not difficult to prove that density is retained
for certain subspaces of L.2[0, c0), we prefer to concern ourselves with the rich class of
relations satisfied when a = 0.

Recall that the Gauff Heine symbol, also known as the ¢-factorial (Gasper & Rah-
man, 1990), reads

n—1

(z:q)0 =1, (zig)n = (1= ¢" ' 2)(259)n—1 = HU —¢lz), j=1,2,....

Since

Jj—1
H(qy_'_qk) — (]('771)'7/2(7(];(])'7’,
k=0

m—1

T +d*) = a7 (=150)m,

k=j



Jj—1
H(q] —q¢" = (71).7(](.771).7/2((];q)].’ and
£=0

I (@ ") = a"(g;0);,

f=j+1

substitution into (2.2) results in the explicit form

Gt z) =Y Ry (1), 2] < 1.

Proposition 9 The function G obeys the functional-differential equation

19, 19,
EG(T,,Z)—FG(T,,Z) =—z [G(qt,z)qg(;(qt,z) (2.4)
with the initial condition :
G(0,2) = ] . (2.5)
—z

Proof We multiply (2.3) by z™ and sum. Tnterchanging the order of summation,
we obtain

G(t,z) = i i(])? (7q7q)7(717q)m77 eiqitzm

_\ 7 9 g om CLm

7;( Y m; e

ISV P CGDi g | o0 L0
N ;( ! (:9); ] LZ_:O (@:9)m ]

However, according to the Heine formula for basic hypergeometric functions (Gasper

& Rahman, 1990),

0 m (2:9) 00

therefore
[ee]

Gt 2) = EF D Sy (00 o

(z:0)e0 = (¢:9);

and this, according to (Tserles, 1993), is the Dirichlet series expansion of the solution
of the pantograph equation (2.4).



To evaluate the initial condition we again sum a basic hypergeometric series with
the Heine formula,

Z(,W( G0 g, [ g; q;z] _ (429)
P (a:9); ; —Z )0
Therefore 1
G0,y = it @0 1
(z10)o0 ~ (—250)00 12
affirming (2.5). O

Covrollary 10 The Taylor expansion (in 1) of the function G is

G(fw Z) _ i (71')k mfk (26)

kY (2 q) kg

Proof  According to (Tserles, 1993), the solution of the pantograph equation

y (1) = ay(t) + by(gt) + ey’ (qt), >0, y(0) = wo, (2.7)

where a,b,c € C, a# 0, |¢|] < 1, can be expanded into the Taylor series

(o)

Vb/aia)e o
1) = ———(al)".
)= g e o
Letting a = —1, b= —z, ¢ =gz and yo = 1/(1 — z) yields (2.6). O

We note as an aside that, according to (Tserles, 1993) and (Tserles & Tiu, 1994),
the solution of (2.7) exists and it is unique subject to the inequality |¢| < 1. Moreover,
Rea < 0, |a] > |b| implies that the solution is asymptotically stable. Thus, thanks to
the restriction |z| < 1, we deduce that lim,_ ., G(t,z) = 0.

Next we consider recurrence relations that are obeyed by the sequence {R,}52 .
A differential recurrence follows by substitution in (1.11), namely

R, =¢"""R, 1 +q"R,, n=1,2 ... (2.8)

'n—1

This recurrence can be rewritten in the form (1.12).

Several other relations can be derived by a moderate effort. For example, we can
express R, in terms of R,,_1 and its derivatives at ¢ and ¢t (a differential recurrence
with rescaling). Thus, lef

on(t) = (1=¢") Ra (1) R -1 (qt) —¢" R 1 (R, o () —g Ry, i (qt), n=1,2,....

Tt is a trite exercise to verify that

(e Ry 1(gt)) = ¢ (e 7 T Ry ),
(=T Ry _\(qt)) = —¢ "+ q" e T Ray),



consequently

—1

2 £ ¥ .
(e on) = (1=¢")e 7" Ro)+q (e " Ry a)—q" (e 7" Ryy)
+ f/‘<e7‘/t, Ryv) — q£71<e7q/71t7 Rn_1), =12,

Recalling that each R, is orthogonal to exp(—¢‘t) for £ = 0,1,...,m — 1, we thus
deduce the relations

£

(7 ) =0, £=01n 1

Therefore ¢, is a scalar multiple of R,,. But Corollary 4 implies R,,(0) = 1, whilst
(2.8) yields R/ (0) = —(2 — ¢" — ¢"*")/(1 — q). Substitution in (2.9) verifies at once
©n(0) = 0, thus leading to the conclusion that ¢, = 0.

Proposition 11 The sequence {Rytn=01, . satisfies the differential recurrence re-

b

lation with rescaling

(1= 4" Ra(t) = ¢" 7" Ro—1(t) — Ru—i(at) — Ry (t) + Ry, (gt),  n=1,2,....

Finally, we report a pure recurrence relation with rescaling.

Proposition 12 For every n = 2,3, ... we have the relation

(- @) Ra() = (144" Y Ra (1)~ (14 ") Rar(a8) + (1 "V Rualqt). (2.10)

Proof Although (2.10) can be proved by comparing coefficients in (2.3), it is
perhaps more interesting to use the generating function (. Comparing the coefficients
in (2.6) affirms the identity

(1 = 2)[G(t,2) + 2G(gt, 2)] = (1 + 2)[G(t,92) — qzG(qt, q2)],
which we rewrite 1n the form

G(t,2) — Gltg2) = 2[G(t,2) + Glt,a2)] — =[Glat, =) — aGilat g2)]
+ 2°[G(qt, 2) — qG(qt, q2)].

The recurrence (2.10) follows at, once, by substituting the definition of the generating
function . a

3. Convergence of projections

Let Ag, A1, ... be given positive numbers. We consider the approximation of a func-
tion f € L?[0,00) by projections onto each H,. We henceforth consider only the
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inner product (. fo F(t)g(t) dt, although our discussion can be generalized with
minimal effort to the inner product (2.1).

The orthogonal projection of f onto H, can be written as a generalized Fourier
series, which in turn can be expressed explicitly in terms of the Fourier transform of
f, so that

n—1

Fn(t)—ZéiZTM 722A Formdrm(t),  n=0,1,..., (3.1
where (cf. (1.6))
T (1) = Ermj exp(—Agt),

implies (f,rm) Zrm ) / I e Mt dt = Zrm /f(—lA/) (3.2)
/=0

The behaviour of the Fourier transform is entwined with the convergence of the pro-
jections. Let us use H to denote the closure of the subspace Hy + Ho + ---in the 1.2
norm.

Proposition 13 Let f € H. If the function

18 analytic in an open disc centred at the origin and we have the inequality

|<f,7°n>|§wn|<f,7°0>|, n=>01,..., (33)

where w € (0,1) is a point in the disc, then

1 = Full” < 2(F o) ) Amw™™, (3.4)

and the right hand side converges to zero as n tends to infinity.

Proof Tt follows from (3.1) by the Parseval equality that

17 = Pall? =2 3 Al (F ),

and we deduce (3.4) from (3.3) and the analyticity of A at w?. O

Let us assume further that f 18 analytic in the closed unit disc. Substituting

fliz) = Z Lk
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into (3.2) yields

(form) :Z%zrm,f.(*/\z)k :Z%rnf)(()), m=0,1,.... (3.5)

This formula and inequality (3.3) motivate our interest in the magnitude of the deriv-
atives of r,, at the origin.

We restrict our attention in the remainder of this section to the parameters A, = ¢¥,
k=0,1,..., that have already featured in Section 2. According to (2.6) we have

i}?,(’“)(())z" " G(0, z):(q)’fm k=0,1,...

= otk (23 @)k41’
hence the recursion
RM(0)" =
== ZRﬁ,’“/)(WM] S R0 1] :
n=0 Lt=0 n=1 Le=1
We deduce that
=S RV (0)4" k1ZRn o n=01,... k=12 ..
=0
(3.6)
Proposition 14 The derivatives of R, at the origin obey the inequality
1
RO < 5D g (3.7)

(45 9)
Proof We use induction on the derivative order k. The inequality is true for £ = 0

because, by Corollary 4, R,,(0) = 1. We thus assume its correctness for k — 1 and
employ (3.6) to argue that

—159)k— - Y, kqni1 Y,
< (—1,¢)k [ 1 g ] _ (=g

_|_
(G @)k—1 1 —¢%  1-4¢*

=
=
~<
=)
=
A

which completes the proof. m]

Corollary 15
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Proof This is immediate from (3.7), since the sequence

is increasing for every ¢ € (0, 1). a

Of course, analyticity of f in the closed unit disc implies absolute convergence of
its Taylor series at z = 1. Setting

Z(X): SD
— k!
we thereby deduce from (3.8) that

(—159) 0o

|<f7Rﬂ>§0- 3 77:0717
(45 0)c0
Consequently, (3.5) and (3.8) imply the bound
f7Rn §077 77,:0717...7
) (45 0)c0

and, when [ € H, the Parseval theorem yields the expression
1F— PP =2 "l Rl
n=~N
Therefore, our bound on |(f, R,,}| establishes the following result.

Theorem 16 If f € H and f 18 analytic in the closed unit disc, then

1f — Full < "™/ M50, (3.9)
where

Furthermore, since
Zﬂs/mmw (3.10)
— kI 7y

Therefore boundedness of this integral implies analyticity of f in the closed unit disc.
Let us return to the interesting special case f(t) = exp(—At). By (1.2),

<e7M7 Rn) = {gx, Rn) = R”(fu)
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and (1.5) yields

n—1
A—A
<e7M,7°n>:Mv n=01,....
Hk:o(A'F’\’f)

Specialising to A\, = ¢", we obtain

— At _ 1 (1/A;q)n
e ) = X(1/X Qg

We thus deduce by the method of proof of Theorem 16 that

n=01,.. .. (3.11)

N
2 (1/X;9)n
Fo(t) =< "R (t 3.12
: AE: 71/Aqn+1q (1) (3.12)

converges in norm to the orthogonal projection of exp(—At) on H.
The projection of f(1) = exp(—At), A > 1, onto H, is

F(t) = ZM "R ().

2
A= (1A )
Letting N — 0o, it 18 easy to verify that

(o)

Z Ao . (3.13)

Fn(t) — F(t) N

1—|—/\

We next substitute the explicit expression for R, from (2.3), whence exchanging the
order of summation yields

R o WP T ) o N L VRLCR ) o G ER ) R
F(t) = S I 3 T

T4 2o Py
N H%i:o(”m%qmeq fi E”A):()m;/; q;mqj: ”
) %Wi(”m T i <q( ey
- 1%2(”mEq;qq7>q)7(1fi;3:'qm"‘qmtﬂ“ [N ]

we refer to (Gasper & Rahman, 1990) for the terminology of basic hypergeometric
series.

The 2@ series in (3.14) can be summed with the ¢-Gaufl formula (Gasper & Rah-
man, 1990, formula TT1.8, page 236),

. [ ATRTR q] Do d™ N )

a2 T T G ) T N g
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Substitution in (3.14) and elementary simplification result in

(o) ) m

| (* 1//\ f] q g™t
F) = X (g; ) (—1/X )00 Z (; q) TN (3:15)

Note that (3.15) is valid for all A > 0, A # ¢ for k > 0. In the case A = ¢" it is easy
to prove that F(t) = exp(—¢"1).

Finally, we explicitly evaluate F'(0) from (3.15). Tn the course of our analysis we
twice use an explicit formula for the summation of ;@ series (GGasper & Rahman,

1990, formula T1.3, page 236).
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Figure 1 The functions Fy for N =25 8,11, ¢ = 15 and A = %
1.6
5 6 7 8 10

Figure 2 The functions F' and exp(—At) for ¢ = 15 and A =

3
5
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Bearing in mind that 0 < 1/A < 1, we expand into series,

- m (CGDm g
2 (0 (@¢)m 1—g¢m/A

R m GOm0
- Z(*” -~ 9 ;7

m

= (¢ 9)m
SR

= 2714%[ —-q; (]7*(]“1]
£=0

_ iLM:A [i (@) 1 (659)e0 ]

I s 7 1.
N (= ) — (0500 A" (110)00
(@00 [N~ 15i0)e
= A A7 1
(=11 9)00 ,Z:% (459)e
14 ) o — 1 ) oo —1 /\§ 0o
_ 59 {1%[ 1,q7A1]1}_ (4:9) [( /A 4) 1]_
(—110)w ; (—Lid)eo L (1/X50)00
Therefore, substitution in (3.15) proves that
(/X 9)0
FO)=1— ——rF—.

Note that, unless A = ¢~ for a nonnegative integer m, it follows that F(0) # 1. This
constitutes a formal proof of the statement that the sequence { Fx} does not converge
to exp(—At); of course we have already provided a stronger result in Proposition 7. We
can also use the infinite product 1.9 to characterize the Imit of the projections {Fn}.
Indeed, the proof of Proposition 7 implies that

i o

lim f(z) — Fn(z) = A(iz)A(N). 3.1

Jim () - () = AR (3.16)
In Figure 1 we display the functions Fy for different values of N in the case ¢ = 15,

A= ; It illustrates vividly our observation that Fx — F yet, as can be seen in

Figure 2, the function F' is distinct from exp(—%t).
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