
Norm estimates for the ℓ2-inverses

of multivariate Toeplitz matrices

B. J. C. Baxter

Department of Applied Mathematics and Theoretical Physics,
Silver Street, Cambridge CB3 9EW,

England

C. A. Micchelli

Department of Mathematics,
IBM Research Center,

Yorktown Heights, NY 10598,
U. S. A.

This paper bounds the ℓ2-norms of inverses of certain Toeplitz matrices arising from Pólya fre-

quency functions.

1



B. J. C. Baxter and C. A. Micchelli

1. Introduction

Let ϕ:Rd → R be an even continuous function of at most polynomial growth. Associated with this

function is a symmetric bi-infinite multivariate Toeplitz matrix

Φ = (ϕ(j − k))j,k∈Zd . (1.1)

Every finite subset I of Zd determines a finite submatrix of Φ given by

ΦI := (ϕ(j − k))j,k∈I . (1.2)

We are interested in upper bounds on the ℓ2-norm of the inverse matrix Φ−1, that is the quantity

‖Φ−1
I ‖ = 1

/

min{‖x‖2 : ‖ΦIx‖2 = 1, x ∈ RI}, (1.3)

where ‖x‖2
2 =

∑

j∈I x2
j for x = (xj)j∈I . The type of bound we seek follows the pattern of results

in Baxter (1991). Specifically, we let ϕ̂ be the distributional Fourier transform of ϕ in the sense of

Schwartz (1966), which we assume to be a measurable function on Rd. We let e := (1, . . . , 1)T ∈ Rd

and set

τϕ̂ :=
∑

j∈Zd

|ϕ̂(πe + 2πj)| (1.4)

whenever the right hand side of this equation is meaningful. Then, for a certain class of radially

symmetric functions, Baxter proved that

‖Φ−1
I ‖ ≤ 1/τϕ̂ (1.5)

for every finite subset I of Zd. In this paper we extend this bound to a wider class of functions

which need not be radially symmetric. For instance, we show that (1.5) holds for the class of

functions

ϕ(x) = (‖x‖1 + c)γ , x ∈ Rd,

where ‖x‖1 =
∑d

j=1 |xj | is the ℓ1-norm of x, and either γ < 1, c > 0 or 0 < γ < 1 and c = 0.

Our analysis develops the methods used by Baxter (1991). However, here we emphasize the

importance of certain properties of Pólya frequency functions and Pólya frequency sequences (due

to I. J. Schoenberg) in order to obtain estimates like (1.5).

In Section 2 we discuss Fourier transform techniques which we need to prove our bound. Fur-

ther, the results of this section improve on the treatment of Baxter (1991), in that the condition of

admissibility (see Definition 3.2 of Baxter (1991)) is shown to be unnecessary. Section 3 contains

a discussion of the class of functions ϕ for which we will prove the bound (1.4). The final section

contains the proof of our main result.
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2. Preliminary facts

We begin with a rather general framework. Let ϕ:Rd → R be a continuous function of polynomial

growth. Thus ϕ possesses a Fourier transform in the sense of Schwartz (1966) which we shall assume

is almost everywhere equal to a Lebesgue measurable function on Rd. Given a nonzero real sequence

(yj)j∈Zd of finite support and points (xj)j∈Zd in Rd, we introduce the function F :Rd → R given

by

F (x) =
∑

j,k∈Zd

yjykϕ(x + xj − xk), x ∈ Rd. (2.1)

Thus the value of F at zero is given by

F (0) =
∑

j,k∈Zd

yjykϕ(xj − xk), (2.2)

which is the quadratic form whose study is the object of this paper. We observe that the Fourier

transform of F is the tempered distribution

F̂ (ξ) =
∣

∣

∣

∑

j∈Zd

yje
ixjξ

∣

∣

∣

2

ϕ̂(ξ), ξ ∈ Rd. (2.3)

Further, if F̂ is an absolutely integrable function, then the inversion formula provides the equation

F (0) = (2π)−d

∫

Rd

F̂ (ξ) dξ, (2.4)

since F is the inverse distributional Fourier transform of F̂ and this coincides with the classical

inverse transform when F̂ ∈ L1(Rd). In other words, we have the equation

∑

j,k∈Zd

yjykϕ(xj − xk) = (2π)−d

∫

Rd

∣

∣

∣

∑

j∈Zd

yje
ixjξ

∣

∣

∣

2

ϕ̂(ξ) dξ (2.5)

when F̂ is absolutely integrable. If we make the further assumption that ϕ̂ is one-signed almost

everywhere on Rd, and the points (xj)j∈Zd form a subset of the integers Zd, then it is possible to

improve (2.5). First observe that dissecting Rd into integer translates of the cube [0, 2π]d provides

the relations

∑

j,k∈Zd

yjykϕ(j − k) = (2π)−d

∫

Rd

∣

∣

∣

∑

j∈Zd

yje
ijξ

∣

∣

∣

2

ϕ̂(ξ) dξ

=
∑

k∈Zd

(2π)−d

∫

[0,2π]d

∣

∣

∣

∑

j∈Zd

yje
ijξ

∣

∣

∣

2

ϕ̂(ξ + 2πk) dξ

= (2π)−d

∫

[0,2π]d

∣

∣

∣

∑

j∈Zd

yje
ijξ

∣

∣

∣

2

σ(ξ) dξ,

(2.6)
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where

σ(ξ) =
∑

k∈Zd

ϕ̂(ξ + 2πk), for almost every ξ ∈ Rd (2.7)

and the monotone convergence theorem justifies the exchange of summation and integration. Fur-

ther, we see that another consequence of the condition that ϕ̂ be one-signed is the bound

∣

∣

∣

∑

j∈Zd

yje
ijξ

∣

∣

∣

2

|ϕ̂(ξ)| < ∞

for almost every point ξ ∈ [0, 2π]d, because the left hand side of (2.6) is a fortiori finite. This

implies that σ is almost everywhere finite, since the set of all zeros of a nonzero trigonometric

polynomial has measure zero. This is well known, but we include its short proof for completeness

below. Following Rudin (1986), we shall say that a continuous function f : Cd → C is an entire

function of d complex variables if, for every point (w1, . . . , wd) ∈ Cd and for every j ∈ {1, . . . , d},

the mapping

C ∋ x 7→ f(w1, . . . , wj−1, z, wj+1, . . . , wd)

is an entire function of one complex variable.

Lemma 2.1. Given complex numbers (aj)
n
j=1 and a set of distinct points (xj)n

j=1 in Rd, we let

p:Rd → C be the function

p(ξ) =

n
∑

j=1

aje
ixjξ, ξ ∈ Rd.

Then p enjoys the following properties:

(i) p is identically zero if and only if aj = 0, 1 ≤ j ≤ n.

(ii) p is nonzero almost everywhere unless aj = 0, 1 ≤ j ≤ n.

Proof.

(i) Suppose p is identically zero. Choose any j ∈ {1, . . . , n} and let fj :R
d → R be a continuous

function of compact support such that fj(x
k) = δjk for 1 ≤ k ≤ n. Then

aj =
n

∑

k=1

akfj(x
k) = (2π)−d

∫

Rd

n
∑

k=1

akeixkξ f̂j(ξ) dξ = 0.

The converse is obvious.

(ii) Let f : Cd → C be an entire function and let

Z = {x ∈ Rd : f(x) = 0}.
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If voldZ is a set of positive Lebesgue measure in Rd, then we shall prove that f is identically zero,

which implies the required result. We proceed by induction on the dimension d. When d = 1, we

see that f is an entire function of one complex variable with uncountably many zeros, because Z

is a set of real numbers with positive Lebesgue measure. Such a function must vanish everywhere.

Therefore suppose that the result is true for d − 1 for some d ≥ 2. Fubini’s theorem provides the

relation

0 < voldZ =

∫

Rd−1

vol1Z(x2, . . . , xd) dx2 . . . dxd,

where

Z(x2, . . . , xd) = {x1 ∈ R : (x1, . . . , xd) ∈ Z}.

Thus there is a set, X say, in Rd−1 of positive (d − 1)-dimensional Lebesgue measure such that

vol1Z(x2, . . . , xd) is positive for every (x2, . . . , xd) ∈ X, and therefore the entire function C ∋ z 7→

f(z, x2, . . . , xd) vanishes for all z ∈ C, because Z(x2, . . . , xd) is an uncountable set. Thus, choosing

any z1 ∈ C, we see that the entire function of d − 1 complex variables defined by

(z2, . . . , zd) 7→ f(z1, z2, . . . , zd), (z2, . . . , zd) ∈ Cd−1,

vanishes for all (z2, . . . , zd) in X, which is a set of positive (d− 1)- dimensional Lebesgue measure.

By induction hypothesis, we deduce that

f(z1, z2, . . . , zd) = 0 for all z2, . . . , zd ∈ C,

and since z1 can be any complex number, we conclude that f is identically zero.

We can now derive our first bounds on the quadratic form (2.2). For any measurable function

g: [0, 2π]d → R, we recall the definitions of the essential supremum

ess sup g = inf{c ∈ R : g(x) ≤ c for almost every x ∈ [0, 2π]d} (2.8)

and the essential infimum

ess inf g = sup{c ∈ R : g(x) ≥ c for almost every x ∈ [0, 2π]d}. (2.9)

Thus (2.6) and the Parseval relation provide the inequalities

ess inf σ
∑

j∈Zd

y2
j ≤

∑

j,k∈Zd

yjykϕ(xj − xk) ≤ ess sup σ
∑

j∈Zd

y2
j . (2.10)

Let V be the vector space of real sequences (yj)j∈Zd of finite support for which the function F̂

of (2.3) is absolutely integrable. We have seen that, when ϕ̂ is one-signed, (2.10) is valid for

every element (yj)j∈Zd of V . Of course, at this stage there is no guarantee that V 6= {0} or that

the bounds are finite. Nevertheless, we identify below a case when the bounds (2.10) cannot be

improved. This will be of relevance later.
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Proposition 2.2. Let P be a nonzero trigonometric polynomial such that the principal ideal I

generated by P , that is the set

I = {P · T : T a trigonometric polynomial}, (2.11)

consists of trigonometric polynomials whose Fourier coefficient sequences are elements of V . Fur-

ther, suppose that there is a point η at which σ is continuous and P (η) 6= 0. Then we can find a

sequence {(y
(n)
j )j∈Zd : n = 1, 2, . . .} in V such that

lim
n→∞

∑

j,k∈Zd

y
(n)
j y

(n)
k ϕ(j − k)

/

∑

j∈Zd

[y
(n)
j ]2 = σ(η). (2.12)

Proof. We follow Baxter (1991) and introduce the nth degree tensor product Fejér kernel

Kn(ξ) :=
d

∏

j=1

sin2 nξj/2

n sin2 ξj/2
=

∣

∣

∣
n−d/2

∑

k∈Zd

0≤k<en

eikξ
∣

∣

∣

2

=: |Ln(ξ)|2, ξ ∈ Rd, (2.13)

where e = (1, . . . , 1)T ∈ Rd. Then the function P (·)Ln(· − η) is a member of I and we choose

(y
(n)
j )j∈Zd to be its Fourier coefficient sequence. The Parseval relation provides the equation

∑

j∈Zd

[y
(n)
j ]2 = (2π)−d

∫

[0,2π]d

∣

∣

∣
P 2(ξ)

∣

∣

∣
Kn(ξ − η) dξ (2.14)

and the approximate identity property of the Fejér kernel (Zygmund (1988), p.86) implies that

P 2(η) = lim
n→∞

(2π)−d

∫

[0,2π]d

∣

∣

∣
P 2(ξ)

∣

∣

∣
Kn(ξ − η) dξ

= lim
n→∞

∑

j∈Zd

[y
(n)
j ]2.

(2.15)

Further, because σ is continuous at η, we also have the relations

P 2(η)σ(η) = lim
n→∞

(2π)−d

∫

[0,2π]d
P 2(ξ)Kn(ξ − η)σ(ξ) dξ

= lim
n→∞

∑

j,k∈Zd

y
(n)
j y

(n)
k ϕ(j − k).

(2.16)

Hence (2.15) and (2.16) provide equation (2.13).

Corollary 2.3. If σ attains its essential infimum (resp. supremum) at a point of continuity, then

the lower (resp. upper) bound of (2.10) cannot be improved.
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Proof. This is an obvious consequence of Proposition 2.2.

We now specialize this general setting to the following case.

Definition 2.4. Let G:Rd → R be a continuous absolutely integrable function such that G(0) = 1

for which the Fourier transform is non-negative and absolutely integrable. Further, we require that

there exist non-negative constants C and κ for which

|1 − G(x)| ≤ C‖x‖κ, x ∈ Rd. (2.17)

We let G denote the class of all such functions G.

Clearly the Gaussian G(x) = exp(−‖x‖2) provides an example of such a function. The next

lemma mentions some salient properties of G.

Lemma 2.5. Let G ∈ G.

(i) G is a symmetric function, that is

G(x) = G(−x), x ∈ Rd. (2.18)

(ii)

|G(x)| ≤ 1, x ∈ Rd. (2.19)

(iii) G is a positive definite function in the sense of Bochner. In other words, for any real sequence

(yj)j∈Zd of finite support, and for any points (xj)j∈Zd in Rd, we have

∑

j,k∈Zd

yjykG(xj − xk) ≥ 0. (2.20)

Proof.

(i) The fact that Ĝ is real-valued implies the equation

2i

∫

Rd

G(x) sin xξ dx = Ĝ(ξ) − Ĝ(−ξ) ∈ R, ξ ∈ Rd,

which is a contradiction unless both sides vanish. Thus Ĝ is a symmetric function. However,

G must inherit this symmetry, by the Fourier inversion theorem.

(ii) The non-negativity of Ĝ provides the relations

|G(x)| =
∣

∣

∣
(2π)−d

∫

Rd

Ĝ(ξ)e−ixξ dξ
∣

∣

∣
≤ (2π)−d

∫

Rd

Ĝ(ξ) dξ = G(0) = 1.
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(iii) The condition Ĝ ∈ L1(Rd) implies the validity of (2.5) for ϕ replaced by G, whence

∑

j,k∈Zd

yjykG(xj − xk) = (2π)−d

∫

Rd

∣

∣

∣

∑

j∈Zd

yje
ixjξ

∣

∣

∣

2

Ĝ(ξ) dξ ≥ 0,

as required.

We remark that the first two parts of Lemma 2.5 are usually deduced from the requirement

that G be a positive definite function in the Bochner sense (see Katznelson (1976), p.137). We have

presented our material in this order because it is the non-negativity condition on Ĝ which forms

our starting point.

We now define the set A(G) of functions of the form

ϕ(x) = c +

∫ ∞

0

[1 − G(t1/2x)]t−1 dα(t), x ∈ Rd, (2.21)

where c is a constant and α: [0,∞) → R is a non-decreasing function such that

∫ ∞

1

t−1 dα(t) < ∞ and

∫ 1

0

tκ/2−1 dα(t) < ∞. (2.22)

Let us show that (2.21) is well-defined. From (2.19) we have the bound

∫ ∞

1

∣

∣

∣
1 − G(t1/2x)

∣

∣

∣
t−1 dα(t) ≤ 2

∫ ∞

1

t−1 dα(t) < ∞. (2.22)

Moreover, applying condition (2.17) we obtain

∫ 1

0

∣

∣

∣
1 − G(t1/2x)

∣

∣

∣
t−1 dα(t) ≤ C‖x‖κ

∫ 1

0

tκ/2−1 dα(t) < ∞. (2.23)

Therefore we have shown that the integral of (2.21) is finite and ϕ is a function of polynomial growth.

A simple application of the dominated convergence theorem reveals that ϕ is also continuous, so

that we may view it as a tempered distribution.

The reader will find the following definition convenient.

Definition 2.6. We shall say that a real sequence (yj)j∈Zd of finite support is zero-summing if
∑

j∈Zd yj = 0.

An important property of A(G) is that it consists of conditionally negative definite functions

of order 1 on Rd, that is whenever ϕ ∈ A(G)

∑

j,k∈Zd

yjykϕ(xj − xk) ≤ 0 (2.24)
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for every zero-summing sequence (yj)j∈Zd and for any points (xj)j∈Zd in Rd. Indeed, (2.21)

provides the equation

∑

j,k∈Zd

yjykϕ(xj − xk) = −

∫ ∞

0

∑

j,k∈Zd

yjykG(t1/2(xj − xk)) t−1 dα(t), (2.25)

and the right hand side is non-positive because G is positive definite in the Bochner sense (Lemma

2.5 (iii)).

We now fix attention on a particular element G ∈ G and a function ϕ ∈ A(G).

Theorem 2.7. Let (yj)j∈Zd be a zero-summing sequence. Then, for any points (xj)j∈Zd in Rd,

we have the equation

∑

j,k∈Zd

yjykϕ(xj − xk) = −(2π)−d

∫

Rd

∣

∣

∣

∑

j∈Zd

yje
ixjξ

∣

∣

∣

2

H(ξ) dξ, (2.26)

where

H(ξ) =

∫ ∞

0

Ĝ(ξ/t1/2)t−d/2−1 dα(t), ξ ∈ Rd. (2.27)

Furthermore, this latter integral is finite for almost every ξ ∈ Rd.

Proof. Applying the Fourier inversion theorem to G in (2.25), we obtain

∑

j,k∈Zd

yjykϕ(xj − xk) = −(2π)−d

∫ ∞

0

∫

[0,2π]d

∣

∣

∣

∑

j∈Zd

yj exp(it1/2ηxj)
∣

∣

∣

2

Ĝ(η)t−1 dη dα(t)

= −(2π)−d

∫ ∞

0

∫

[0,2π]d

∣

∣

∣

∑

j∈Zd

yje
ixjξ

∣

∣

∣

2

Ĝ(ξ/t1/2)t−d/2−1 dξ dα(t),

(2.28)

and we have used the substitution ξ = t1/2η. Because the integrand in the last line is non-negative,

we can exchange the order of integration to obtain (2.26). Of course the left hand side of the last

equation is finite, so the integrand of (2.25) is an absolutely integrable function, which implies that

it is finite almost everywhere. But, by Lemma 2.1, |
∑

j yje
ixjξ|2 6= 0 for almost every ξ ∈ Rd if

the sequence (yj)j∈Zd is non-zero. Therefore H is finite almost everywhere.

Corollary 2.8. Given the same hypotheses as Theorem 2.7, we have the equation

F (x) = −(2π)−d

∫

Rd

∣

∣

∣

∑

j∈Zd

yje
ixjξ

∣

∣

∣

2

H(ξ)eixξ dξ, x ∈ Rd, (2.29)

where F is given by (2.1). Consequently, ϕ̂(ξ) = −H(ξ) for almost every ξ ∈ Rd, that is

ϕ̂(ξ) = −

∫ ∞

0

Ĝ(ξ/t1/2)t−d/2−1 dα(t). (2.30)
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Proof. It is straightforward to deduce the relation

F (x) = −(2π)−d

∫ ∞

0

∫

[0,2π]d

∣

∣

∣

∑

j∈Zd

yje
ixjξ

∣

∣

∣

2

eixξĜ(ξ/t1/2)t−d/2−1 dξ dα(t),

which is analogous to (2.28). Now the absolute value of this integrand is precisely the integrand in

the second line of (2.28). Thus we may apply Fubini’s theorem to exchange the order of integration,

obtaining (2.29).

Next we prove that ξ 7→ −|
∑

j yje
ixjξ|2H(ξ) is the Fourier transform of F . Indeed, let ψ:Rd →

R be an infinitely differentiable function whose partial derivatives enjoy supra-algebraic decay. We

must show that
∫

Rd

ψ̂(x)F (x) dx = −

∫

Rd

ψ(ξ)
∣

∣

∣

∑

j∈Zd

yje
ixjξ

∣

∣

∣

2

H(ξ) dξ. (2.31)

Applying (2.29) and Fubini’s theorem, we get
∫

Rd

ψ̂(x)F (x) dx = −(2π)−d

∫

Rd

∫

Rd

ψ̂(x)
∣

∣

∣

∑

j∈Zd

yje
ixjξ

∣

∣

∣

2

eixξH(ξ) dξ dx

= −

∫

Rd

∣

∣

∣

∑

j∈Zd

yje
ixjξ

∣

∣

∣

2

H(ξ)

(

(2π)−d

∫

Rd

ψ̂(x)eixξ dx

)

dξ

= −

∫

Rd

∣

∣

∣

∑

j∈Zd

yje
ixjξ

∣

∣

∣

2

H(ξ)ψ(ξ) dξ,

which establishes (2.30). However, (2.3) implies that the Fourier transform F̂ (ξ) is almost ev-

erywhere equal to |
∑

j yje
ixjξ|2ϕ̂(ξ). Choosing a nonzero real sequence (yj)j∈Zd , we conclude

from Lemma 2.1 that
∑

j yje
ixjξ 6= 0 for almost all ξ ∈ Rd, which implies that ϕ̂ = −H almost

everywhere.

3. Pólya frequency functions

For every real sequence (aj)
∞
j=1 such that

∑∞
j=1 a2

j < ∞, and any non-negative constant γ, we set

E(z) = e−γz2

∞
∏

j=1

(1 − a2
jz

2), z ∈ C. (3.1)

This is an entire function which is nonzero in the vertical strip

|ℜz| ≤ ρ := 1/ sup{|aj | : j = 1, 2, . . .}.

Thus there exists a function Λ:R → R such that
∫

R

Λ(t)e−zt dt =
1

E(z)
, |ℜz| ≤ ρ. (3.2)
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This function Λ is what Schoenberg (1951) calls a Pólya frequency function. We have restricted

ourselves to Pólya frequency functions Λ which are even, that is

Λ(t) = Λ(−t), t ∈ R. (3.3)

Also, it is obvious that
∫

R

Λ(t) dt = 1. (3.4)

According to (3.1) the Fourier transform of Λ is given by

Λ̂(ξ) =
1

E(iξ)
=

e−γξ2

∏∞
j=1(1 + a2

jξ
2)

, ξ ∈ R. (3.5)

Thus Λ(·)/Λ(0) is a member of the set G described in Definition 2.4 for d = 1. Applying Lemma

2.5 we obtain

|Λ(t)| ≤ Λ(0), t ∈ R. (3.6)

However, much more than (3.6) is true. Schoenberg (1951) proved that

det(Λ(xj − yk))n
j,k=1 ≥ 0 (3.7)

whenever x1 < · · · < xn and y1 < · · · < yn. This fact will be used in an essential way in Section 4.

For the moment we observe that

Λ(t) ∈ [0,Λ(0)], t ∈ R. (3.8)

Let us use P to denote the class of functions Λ:R → R that satisfy (3.2) for some γ ≥ 0 and

sequence (aj)
∞
j=1 satisfying

∑∞
j=1 a2

j < ∞. For any a > 0 the function

Sa(t) =
1

2|a|
e−|t/a|, t ∈ R, (3.9)

is in P since
∫

R

Sa(t)e−zt dt =
1

1 − a2z2
, |ℜz| < a−1. (3.10)

Let E = {Sa : a > 0}. These are the only elements of P that are not in C2(R), because all other

members of P have the property that Λ̂(t) = O(t−4) as |t| → ∞. Hence there exists a constant κ

such that

|Λ(0) − Λ(t)| ≤ κt2, for t ∈ R and Λ ∈ P \ E , (3.11)

or

|Λ(0) − Λ(t)| ≤ κ|t|, t ∈ R, Λ ∈ E . (3.12)

11
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We note also that every element of P decays exponentially for large argument (see Karlin (1968),

p. 332).

We are now ready to define the multivariate class of functions which interest us. Choose any

Λ1, . . . ,Λd ∈ P and define

G(x) =
d

∏

j=1

Λj(xj)

Λj(0)
, x = (x1, . . . , xd) ∈ Rd. (3.13)

Clearly, every such G decays exponentially at infinity. Further, according to (3.11) and (3.12),

there is a constant C ≥ 0 such that

1 − G(t1/2x) ≤ Ct‖x‖2
2, (3.14)

when Λj /∈ E for every factor Λj in (3.11). In the contrary case we only have

1 − G(t1/2x) ≤ Ct1/2‖x‖2 + Dt‖x‖2
2, (3.15)

for certain constants C and D. Since the Fourier transform of G is given by

Ĝ(ξ) =
d

∏

j=1

Λ̂j(ξj)

Λj(0)
, ξ = (ξ1, . . . , ξd) ∈ Rd, (3.16)

we conclude that G is a member of the class G of Definition 2.4. We can now construct the set

A(G) for G of the form (3.13). To this end, let α: [0,∞) → R be a non-decreasing function such

that
∫ ∞

1

t−1 dα(t) < ∞, (3.17)

and for any constant c ∈ R define ϕ: [0,∞) → R by (2.21). Thus we see that as long as we require

the measure dα to satisfy the extra condition

∫ 1

0

t−1/2 dα(t) < ∞ (3.18)

whenever one of the factors in (3.11) is an element of E , then ϕ is a continuous function of polynomial

growth and the results of Section 2 apply. We let C denote the class of all functions of the form

(2.21) where G is given by (3.13) when α satisfies (3.17) and (3.18).

Let us note that C contains the following important subclass of functions. In 1938, I. J.

Schoenberg proved that a continuous radially symmetric function ϕ:Rd → R is conditionally

negative definite of order 1 on every Rd if and only if it has the form

ϕ(x) = ϕ(0) +

∫ ∞

0

(

1 − exp(−t‖x‖2)
)

t−1 dα(t), x ∈ Rd,

12
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where α: [0,∞) → R is a non-decreasing function satisfying (3.17). Now G(x) = is clearly of

the form (3.13), implying that we do indeed have a subclass of C. It is this subclass of C which

is studied in Baxter (1991). Further, we have established Theorem 2.7 and Corollary 2.8 under

weaker conditions than those assumed in Baxter (1991).

Our class C also contains functions of the form

ϕ(x) = c +

∫ ∞

0

(

1 − exp(−t1/2‖x‖1)
)

t−1 dα(t), x ∈ Rd,

where α: [0,∞) → R is a non-decreasing function satisfying (3.17) and (3.18), and ‖x‖1 =
∑d

j=1 |xj |

for x = (x1, . . . , xd) ∈ Rd. For instance, using the easily verified formula

γ

Γ(1 + 2γ)

∫ ∞

0

(

1 − e−t1/2σ
)

tγ−1e−δt dt = δ−2γ − (δ + σ)−γ , γ > 0,

which is valid for δ > 0 and γ > −1/2 or δ = 0 and −1/2 < γ < 0, we see that either ϕ(x) = ‖x‖τ
1 ,

for 0 < τ < 1, or ϕ(x) = τ(δ + ‖x‖1)
τ , for δ > 0 and τ < 1, are in our class C.

Let us now discuss some additional properties of the Fourier transform of a function ϕ ∈

C. First, observe that (3.5) implies that Λ̂ is a decreasing function on [0,∞) for every Λ in P.

Consequently every G ∈ G satisfies the inequality Ĝ(ξ) ≤ Ĝ(η) for ξ ≥ η ≥ 0. This property is

inherited by the function H of (2.27), that is

H(ξ) ≤ H(η) whenever ξ ≥ η ≥ 0, (3.19)

which allows us to strengthen Theorem 2.7.

Proposition 3.1. For every G ∈ G, the function H given by (2.27) is continuous on (R \ {0})d.

Proof. We first show that H is finite on (R \ {0})d. From Corollary 2.8, we know that ϕ̂ = −H

almost everywhere, which implies that every set of positive measure contains a point at which H is

finite. In particular, let δ be a positive number and set Uδ = {ξ ∈ Rd : 0 < ξj < δ, j = 1, . . . , d}.

Thus there is a point η ∈ Uδ such that H(η) < ∞. Applying (3.19) and recalling that H is a

symmetric function, we deduce the inequality

H(ξ) ≤ H(η) < ∞, ξ ∈ Fδ, (3.20)

where Fδ := {ξ ∈ Rd : |ξj | ≥ δ, j = 1, . . . , d }. Since δ > 0 is arbitrary, we see that H is finite in

(R \ {0})d.

To prove that H is continuous in Fδ, let (ξn)∞n=1 be a convergent sequence in Fδ with limit ξ∞.

By (3.20), the functions

{t 7→ Ĝ(ξnt−1/2)t−d/2−1 : n = 1, 2, . . .}

13
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are absolutely integrable on [0,∞) with respect to the measure dα. Moreover, they are dominated

by the dα-integrable function t 7→ Ĝ(ηt−1/2)t−d/2−1. Finally, the continuity of Ĝ provides the

equation

lim
n→∞

Ĝ(ξnt−1/2)t−d/2−1 = Ĝ(ξ∞t−1/2)t−d/2−1, t ∈ [0,∞),

and thus limn→∞ H(ξn) = H(ξ∞) by the dominated convergence theorem. Since δ was an arbitrary

positive number, we conclude that H is continuous on (R \ {0})d.

The remainder of this section requires a distinction of cases. The first case (Case I) is the

nicest. This occurs when every factor Λj in (3.13) has a positive exponent γj in the Fourier

transform formula (3.5). We let Case II denote the contrary case.

For Case I we have the bound

Ĝ(ξ) ≤ A exp(−B‖x‖2), ξ ∈ Rd,

for some positive constants A and B, which implies the limit

lim
t→0

Ĝ(ξt−1/2)t−d/2−1 = 0, ξ 6= 0.

Thus the function t 7→ Ĝ(ξt−1/2)t−d/2−1 is continuous for t ∈ [0,∞) when ξ is nonzero, which

implies that
∫ 1

0

Ĝ(ξt−1/2)t−d/2−1 dα(t) < ∞, ξ 6= 0.

Moreover, since
∫ ∞

1

Ĝ(ξt−1/2)t−d/2−1 dα(t) ≤ A

∫ ∞

1

t−1 dα(t) < ∞,

we have H(ξ) < ∞ for every ξ ∈ Rd \ {0}. A simple extension of the proof of Proposition 3.1 shows

that H is continuous on Rd \ {0}. Furthermore, we can prove that for H ∈ C∞(Rd \ {0}) in Case

I. For this purpose, we note that it is sufficient to show that every derivative of Ĝ(ξt−1/2)t−d/2−1

with respect to ξ is an absolutely integrable function with respect to the measure dα on [0,∞),

because then we are justified in differentiating under the integral sign in (2.27). By Definition 3.13,

we only need to show that every derivative of Λ̂, where Λ̂ is given by (3.5) with γ > 0, enjoys faster

than algebraic decay for large argument. To this end we claim that for every C < 1/ sup{|aj | : j =

1, 2, . . .} there is a constant D such that

∣

∣

∣
Λ̂(ξ + iη)

∣

∣

∣
≤ De−γξ2

, ξ ∈ R, |η| ≤ C. (3.21)

14
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To verify the claim, observe that when |η| ≤ C ≤ |ξ| we have the inequalities

∣

∣

∣
e−γ(ξ+iη)2

∣

∣

∣
≤ eC2γe−γξ2

and |1 + a2
j (ξ + iη)2| ≥ 1 + a2

j (ξ
2 − η2) ≥ 1.

Thus, setting M = max{|Λ̂(ξ + iη)|eγξ2

: |ξ| ≤ C, |η| ≤ C}, we conclude that D := max{M, eC2γ}

is suitable in (3.21). Now, we apply the Cauchy integral formula to estimate the kth derivative

Λ̂(k)(ξ) =
1

2πik!

∫

Γ

Λ̂(ζ)

(ζ − ξ)k+1
dζ,

where Γ : [0, 2π] → C is given by Γ(t) = reit and r < C is a constant to obtain the bound

∣

∣

∣
Λ̂(k)(ξ)

∣

∣

∣
≤ (D/αk)e−γ min{(ξ−r)2,(ξ+r)2}, ξ ∈ R,

and the desired supra-algebraic decay. We now state this formally.

Proposition 3.2. In Case I, the function H of (2.27) is a member of C∞(Rd \ {0}. Moreover

H = −ϕ̂ on Rd \ {0}.

Proof. It remains to identify −H with ϕ̂ on Rd \ {0}. Let ψ:Rd → R be an infinitely differentiable

function whose support is a compact subset of Rd \ {0}. By definition of ϕ̂ we have

〈ϕ̂, ψ〉 =

∫

Rd

ψ̂(x)ϕ(x) dx, (3.22)

where 〈ϕ̂, ψ〉 denotes the value of a tempered distribution ϕ̂ on a test function ψ. Substituting the

expression for ϕ given by (2.21) into the right hand side of (3.22) and using the fact that

0 = ψ(0) = (2π)−d

∫

Rd

ψ̂(ξ) dξ (3.23)

gives

〈ϕ̂, ψ〉 = −

∫

Rd

(
∫ ∞

0

ψ̂(x)(1 − G(t1/2x))t−1 dα(t)

)

dx.

We want to swap the order of integration here. This will be justified by Fubini’s theorem if we can

show that
∫

Rd

(
∫ ∞

0

|ψ̂(x)|(1 − G(t1/2x))t−1 dα(t)

)

dx < ∞. (3.24)

We defer the proof of (3.24) and press on. Swapping the order of integration and recalling (3.23)

yields

〈ϕ̂, ψ〉 = −

∫ ∞

0

(
∫

Rd

ψ̂(x)G(t1/2x) dx

)

t−1 dα(t)

= −

∫ ∞

0

(
∫

Rd

ψ(ξ)Ĝ(ξt−1/2) dξ

)

t−d/2−1 dα(t)

15
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using Parseval’s relation in the last line. Once again, we want to swap the order of integration and,

as before, this is justified by Fubini’s theorem if a certain integral is finite, specifically

∫ ∞

0

(
∫

Rd

|ψ(ξ)| Ĝ(ξt−1/2) dξ

)

t−d/2−1 dα(t) < ∞. (3.25)

The proof of (3.25) will also be found in Lemma 3.3 below. After swapping the order of integration

we have

〈ϕ̂, ψ〉 = −

∫

Rd

ψ(ξ)H(ξ) dξ, (3.26)

which implies that ϕ̂ = −H in Rd \ {0}.

Our final task is to show that inequalities (3.24) and (3.25) are valid. For (3.24), we have by

(3.14) and the fact that G is nonnegative

∫

Rd

(
∫ ∞

0

|ψ̂(x)|(1 − G(t1/2x))t−1 dα(t)

)

dx

≤

∫

Rd

(

κ

∫ 1

0

|ψ̂(x)|‖x‖2 dα(t)

)

dx +

∫

Rd

(
∫ ∞

1

|ψ̂(x)|t−1 dα(t)

)

dx

= κ(α(1) − α(0))

∫

Rd

|ψ̂(x)|‖x‖2 dx +

(
∫ ∞

1

t−1], dα(t)

) (
∫

Rd

|ψ̂(x)| dx

)

< ∞,

since ψ̂ must enjoy faster than algebraic decay because ψ is an infinitely differentiable function.

For (3.25), the substitution η = ξt−1/2 provides the integral

I :=

∫ ∞

0

(
∫

Rd

|ψ(ηt1/2)|Ĝ(η) dη

)

t−1 dα(t).

Now there is a constant D such that |ψ(y)| ≤ D‖y‖2 for every y ∈ Rd, because the support of ψ is

a closed subset of Rd \ {0}. Hence

I ≤

∫ 1

0

D

(
∫

Rd

Ĝ(η)‖η‖2 dη

)

dα(t) + (2π)dG(0)‖ψ‖∞

∫ ∞

1

t−1 dα(t)

< ∞.

The proof is complete.

4. Lower bounds on eigenvalues

Let ϕ:Rd → R be a member of C and let (yj)j∈Zd be a zero-summing sequence. An immediate

consequence of (2.26) is the equation

∑

j,k∈Zd

yjykϕ(j − k) = (2π)−d

∫

Rd

∣

∣

∣

∑

j∈Zd

yje
ijξ

∣

∣

∣

2

ϕ̂(ξ) dξ, (4.1)
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where ϕ̂(ξ) = −H(ξ) for almost all ξ ∈ Rd and H is given by (2.27). Moreover, (2.6) is valid, that

is
∑

j,k∈Zd

yjykϕ(j − k) = (2π)−d

∫

[0,2π]d

∣

∣

∣

∑

j∈Zd

yje
ijξ

∣

∣

∣

2

σ(ξ) dξ, (4.2)

where σ is given by (2.7). Applying (2.30), we have

|σ(ξ)| =
∑

k∈Zd

∣

∣

∣
ϕ̂(ξ + 2πk)

∣

∣

∣

=

∫ ∞

0

∑

k∈Zd

Ĝ(t−1/2(ξ + 2πk)) t−d/2−1 dα(t).
(4.3)

As in Section 2, we consider essential upper and lower bounds on σ. Let us begin this study by

fixing t > 0 and analysing the function

τ(ξ) =
∑

k∈Zd

Ĝ(t−1/2(ξ + 2πk)), ξ ∈ Rd. (4.4)

By (3.14), we have

τ(ξ) =
d

∏

j=1

Ej(ξj)

Λj(0)
, ξ ∈ Rd, (4.5)

where

Ej(x) =
∑

k∈Z

Λ̂j((x + 2πk)t−1/2), x ∈ R, j = 1, . . . , d. (4.6)

We now employ the following key lemma.

Lemma 4.1. Let Λ ∈ P and let

E(x) =
∑

k∈Z

Λ̂((x + 2πk)t−1/2), x ∈ R.

Then E is an even function and E(0) ≥ E(x) ≥ E(y) ≥ E(π) for every x and y in R with

0 ≤ x ≤ y ≤ π.

Proof. The exponential decay of Λ and the absolute integrability of Λ̂ imply that the Poisson

summation formula is valid, which gives the relation

E(x) = t1/2
∑

k∈Z

Λ(kt1/2)eikx, x ∈ R. (4.7)

Now the sequence ak := Λ(kt1/2), k ∈ Z, is an even, exponentially decaying Pólya frequency

sequence, that is every minor of the Toeplitz matrix (aj−k)j,k∈Z is non-negative definite (and we

see that this is a consequence of (3.7)). By a result of Edrei (1953),
∑

k∈Z akzk is a meromorphic

17
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function on an annulus {z ∈ C : 1/R ≤ |z| ≤ R}, for some R > 1, and enjoys an infinite product

expansion of the form

∑

k∈Z

akzk = Ceλ(z+z−1)
∞
∏

j=1

(1 + αjz)(1 + αjz
−1)

(1 − βjz)(1 − βjz−1)
, z 6= 0, (4.8)

where C ≥ 0, λ ≥ 0, 0 < αj , βj < 1 and
∑∞

j=1 αj + βj < ∞. Hence

E(x) = Ct1/2e2λ cos x
∞
∏

j=1

1 + 2αj cos x + α2
j

1 − 2βj cos x + β2
j

, x ∈ R. (4.9)

Observe that each term in the product is an even function which is decreasing on [0, 2π], which

provides the required inequality.

In particular, Ej(x) ≥ Ej(π) for j = 1, . . . , d, where Ej is given by (4.6). Hence

τ(ξ) ≥ τ(πe), ξ ∈ Rd, (4.10)

and applying (4.3) we get

|σ(ξ)| ≥ |σ(π)|, ξ ∈ Rd. (4.11)

We now come to our principal result.

Theorem 4.2. Let (yj)j∈Zd be a zero-summing sequence and let ϕ ∈ C. Then we have the in-

equality
∣

∣

∣

∑

j,k∈Zd

ykykϕ(j − k)
∣

∣

∣
≥ |σ(πe)|

∑

j∈Zd

y2
j . (4.12)

Proof. Equation (4.2) and the Parseval relation provide the inequality

∣

∣

∣

∑

j,k∈Zd

ykykϕ(j − k)
∣

∣

∣
≥ |σ(πe)|(2π)−d

∫

[0,2π]d

∣

∣

∣

∑

j∈Zd

yje
ijξ

∣

∣

∣

2

dξ = |σ(πe)|
∑

j∈Zd

y2
j ,

as in inequality (2.10).

Of course, we are interested in showing that (4.12) cannot be improved, that is |σ(πe)| cannot

be replaced by a larger number independent of (yj)j∈Zd . Recalling Proposition 2.2, this is true if

σ is continuous at πe. In fact, we can use Lemma 4.1 to prove that σ is continuous everywhere in

the set (0, 2π)d. We first collect some necessary preliminary results.
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Lemma 4.3. The function τ given by (4.4) is continous for every t > 0 and satisfies the inequality

τ(ξ) ≤ τ(η) for 0 ≤ η ≤ ξ ≤ πe. (4.13)

Furthermore,

τ(πe + ξ) = τ(πe − ξ) for all ξ ∈ (−π, π)d. (4.14)

Proof. The definition of G, (4.5) and (4.7) provide the Fourier series

τ(ξ) = td/2
∑

k∈Zd

G(kt1/2)eikξ, ξ ∈ Rd, (4.15)

and the exponential decay of G implies the uniform convergence of this series. Hence τ is continuous,

being the uniform limit of the finite sections of (4.15).

Applying the product formula (4.5) and Lemma 4.1, we obtain (4.13) and (4.14).

Proposition 4.4. σ is continuous on (0, 2π)d.

Proof. Equation (4.2) implies that
∣

∣

∣

∑

j∈Zd yje
ijξ

∣

∣

∣

2

|σ(ξ)| < ∞ for almost every ξ ∈ [0, 2π]d. Con-

sequently, σ is finite almost everywhere, by Lemma 2.1. Thus every non-empty open subset of

[0, 2π]d contains a point at which σ is finite. Specifically, let δ ∈ (0, π) and define the closed set

Kδ := [δ, 2π − δ]d. Thus the open set [0, 2π]d \ Kδ contains a point, η say, for which

∞ > |σ(η)| =

∫ ∞

0

∑

k∈Zd

Ĝ((η + 2πk)t−1/2) t−d/2−1 dα(t). (4.16)

Let us show that σ is continuous in Kδ. To this end, choose any convergent sequence (ξn)∞n=1 in

Kδ and let ξ∞ denote its limit. We must prove that limn→∞ σ(ξn) = σ(ξ∞). Now Lemma 4.3 and

(4.16) supply the bound

|σ(ξn)| ≤ |σ(η)| < ∞, n = 1, 2, . . . ,

that is the functions

{t 7→
∑

k∈Zd

Ĝ((ξn + 2πk)t−1/2)t−d/2−1 dα(t) : n = 1, 2, . . . }

are absolutely integrable on [0,∞) with respect to the measure dα. Moreover, they are dominated

by the absolutely integrable function t 7→
∑

k∈Zd Ĝ((η+2πk)t−1/2)t−d/2−1. However, the continuity

of τ proved in Lemma 4.3 allows to deduce that

lim
n→∞

∑

k∈Zd

Ĝ((ξn + 2πk)t−1/2)t−d/2−1 =
∑

k∈Zd

Ĝ((ξ∞ + 2πk)t−1/2)t−d/2−1, t > 0.

Thus the dominated convergence theorem implies that limn→∞ σ(ξn) = σ(ξ∞). Since δ ∈ (0, π)

was arbitrary, we conclude that σ is continuous in all of (0, 2π)d.

Corollary 4.5. Inequality (4.12) cannot be improved for ϕ ∈ C.
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