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Abstract

A radial basis function approximation is a linear combination of translates of a fixed function
©:R* — R. Such functions possess many useful and interesting properties when the translates
are integers and ¢ is radially symmetric. We study the closely related problem for which the fixed
function is the shifted Gaussian ¢ = G/(- — ), where Gi(z) = exp(—A||z||3) and @ € R?. Specifically,

we exploit the theory of elliptic functions to establish the invertibility of the Toeplitz operator

(plati— k) ez

when « has no half-integer components; it is singular otherwise. This implies the existence of a
shifted Gaussian cardinal function, that is, a linear combination y of integer translates of the shifted
Gaussian satisfying x(j) = do;. We also study shifted cardinal functions when the parameter X tends
to zero. In particular, we discover their uniform convergence to the sinc function when the shift
vector « possesses no half-integer components. Qur methods are based in part on similar results
established by the first author when the basis function is the Hardy multiquadric. Several intriguing

links with the theory of shifted B-spline cardinal interpolation are described in the finale.
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1. Introduction

A radial basis function approximant is a linear combination of translates of a fixed function, or some

suitable limit of such approximants. Thus we consider

s) =Y ap(x —by), @R (1.1)

kezd

where (by,) e z4 is some fixed set of distinct points, or centres, in R?, and (ay)czq is a sequence of
real numbers satisfying conditions ensuring (1.1) is meaningful; for example, we might require the
scalar sequence to be finitely supported, or for the infinite series in (1.1) to be absolutely convergent
at every point 2z € R%. Such functions provide a flexible and useful approach to multivariate inter-
polation (see, for example, the survey articles [P, Bu3]). Much of the existing literature concentrates
on the special case when the centres form an infinite grid and ¢ is radially symmetric; we refer the
reader to the fundamental papers [Bul, Bu2] of Buhmann on cardinal interpolation. Here we study
the closely related problem of shifted (Gaussian cardinal interpolation, which means that our typical

approximant is

s(z) = Z arp(x +a— k), zeRY, (1.2)

kezd
where the shift « is a fixed vector in R% and the function ¢(x) = exp(—A||z||3) is a Gaussian. We
shall also allow the (positive) parameter A to vary. First, let us recall that the cardinal function y,

for the shifted Gaussian must satisfy

where
Xaol(2) = Z cr(@)p(z+a— k), e R (1.4)
ke Z4

Our main finding is that such cardinal functions exist when the shift vector « has no half-integer
components, the term half-integer connoting an element of 15 + Z in this paper, and we shall call
such shifts admissible. The technique is founded on analysis of the non-Hermitian Toeplitz operator

(99(0«+j - k))

jkezd

using its close links with the theory of Jacobian Theta functions developed by the first author in [B1].
This analysis is to be found in Section 2. In Section 3, we prove that admissibly shifted cardinal

functions converge uniformly to the sinc function as the parameter A tends to zero. Moreover, we
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also show that the admissibly shifted cardinal interpolants to a square-integrable function converge
to this function in the mean-square sense if and only if it is band limited. These studies indicate that
excellent accuracy can be attained when approximating band-limited functions by shifted (Gaussians
if the parameter X is suitably small. We suspect that this is mostly responsible for the favourable
results found in, say, the applications of Gaussian radial basis functions in neural net problems (see,
for instance [BL]).

The methods employed in Section 3 are based in part on similar results established by the first
author in [B2] when the basis function is the Hardy multiquadric o(z) = (||2[|3 + ¢*)'/? and the
parameter ¢ tends to infinity; we discuss this connection in Section 4. Furthermore, our (Gaussian
researches shed some light on shifted multiquadric interpolation, and these implications are also
outlined in Section 4. Finally, Section 5 describes the intriguing parallels between the theory of

shifted B-spline cardinal interpolation and this paper.

2. Shifted Gaussians, Toeplitz forms and Theta functions

Let A be a positive constant, let ¢: R — R be the Gaussian ¢(z) = exp(—Az?), € R, and define
the shifted Gaussian ¢, (2) = @(x + a), where a is a real number. We consider the bi-infinite

Toeplitz matrix

Ala) == (%(j - k)) . acRr, (2.1)

IHkEZ
as a linear operator on ?(Z). The classical theory of Toeplitz forms (see [W] or [GS]) studies A(«)

via the symbol function

G, =G Z 0o (k) exp(—iké), £eR, (2.2)

keZ

and we recall the well-known fact that A(a) : *(Z) — (*(Z) is invertible if and only if the symbol
function does not vanish [W, Theorem 1]. Following [B1], we find that (G, is a multiple of the Theta

function

Pz) =¥z, q) : Zq Z* z € C\ {0}, for g € C and |g| < 1. (2.3)
keZ

Specifically, some elementary algebraic manipulation reveals the identity
Ga(E,N) = q(’gﬁ(qme*"’f) where g = ¢ . (2.4)

Thus the invertibility of A(«) is determined by the zero structure of the associated Theta function.

Therefore we present below some salient properties of Theta functions needed later in the paper.

3



BAXTER AND SIVAKUMAR

Lemma 2.1. The Theta function enjoys the infinite product formula

#(z) =T(q) H(] + @ (1P, z € C\{0}, where T(q):= H(] —¢*"). (2.5)
k=0 /=1
Proof. See [WW, Section 21.3], [Be, Section 32]. |

Corollary 2.2. The zeros of 9 are given by {—q¢* : 0 € Z odd }.

Proof. Equation (2.5) implies that 9(z) = 0 if and only if 1 4+ ¢**+12*1 = 0 for some non-negative

integer k. ]

Proposition 2.3. The function {€ — |9(q*¥e )| : £ € R} is even, 2n-periodic, and decreases
Jor 0 <& <.

Proof. The function is evidently even and 27-periodic. Furthermore, (2.5) yields the infinite product

|79(q2(y677‘,£)|2 :T((]) (] +q2k+1+2(y 77£)(] +q2k+1+2(y 1£)(] +q2k+172(y 1£)(] +q2k+172(y 77£)

::18

k=0
— T(q) H(] 4 2q2k+1+2(y(,0q£ + q4k+2+4(y)(] + 2q2k+1 —2a ('()§£ + q4k+2 40/)
k=0
(2.6)
and we see that each of the terms in the final product is decreasing for 0 < & < 7. ]

Proposition 2.4. R9(¢**w) > 0 when |w| = 1 and o € [-1/2,1/2], with equality if and only if
w=—1and o = +1/2.

Proof. 1t suffices to prove this for 0 < a < 1/2 because of the equation 9(¢ *w) = W Now
the Theta function is a conformal mapping from the open annulus {z € C : ¢ < |z] < 1} onto the
domain whose boundaries are the images under 9 of the boundaries of the annulus. Tt is shown in
[B1, Lemma 2.7] that ¥ maps the unit circle {z € C : |z| = 1} onto the real interval [#(—1),9(1)].

Thus it suffices to prove that R (gw) > 0 when |w| = 1. But (2.5) supplies the expression

I qw) = T(q) [T+ ¢?*+2w) (1 + ¢* ) = (1 + ) \H 14 ¢
k=0
whence R (quw) = (1 +Rw)T(q)| TToZy (1 + ¢**w)|> > 0 with equality if and only if w = —1. |

All the results obtained hitherto will be used in the sequel. We commence with an invertibility

theorem for A(a).

Theorem 2.5. The symbol function G, defined by (2.2), has no zeros unless « is a half-integer.
Fquivalently, the bi-infinite Toeplitz matriz A(a) of (2.1) is invertible on (*(Z) if and only if « is

not a half-integer.
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Proof. Corollary 2.2 and (2.4) imply that the symbol function G, (&, A) = 0 if and only if 2« is an

odd integer and e ' = —1. The equivalence follows from [W, Theorem 1]. ]

This result. was found independently by R. A. Rahim [R], whose technique was quite different.
Given the invertibility of A(a) when o ¢ 1/24 Z | it is natural to consider the condition number

condy A() := || A(@) ]| ||A(@) ]| for such o (the norm used here is the operator norm on (*(Z)).

Theorem 2.6. lLet o = o + £, where |ag| < 1/2 and ( is an integer. Then

79(q2”°)

(',OndQA((]/,) = m

(2.7)

Proof. The spectrum of the bi-infinite Hermitian Toeplitz matrix A(a)*A(«) is given by the range
of its symbol function {|G,(&)]*> : —7 < & < 7w} (see [W, Theorem 17). Therefore ||A(a)*A(a)]|
= max{|G, ()] : —7 < & < =}, by [Bo, p. 175, Theorem 11(c)]. Furthermore, ||A(a)]|*> =
1A(0)* A(a)]| by [Bo. p. 157, Theorem 2], which yiclds | A(0)]| = max{|Gin(€)] : = < € < 7).
Similarly [1A(a) | = max{|Go(€)] " —7 < € < 1}, Thus

max{|Go(§)] - € € [-m, 7]}
oA = G @ e e )
max{|Gia(€)] : € € [ 7, 7])
min{|Goy (€] € € [ 7. 7))
max{|9(g*ow)| : w € C7 |w| =1}
min{|#(¢g>>ow)| :w € C,|w| =1}

D(q*)
D=q>)

77T]

(2.8)

1

by (2.2), (2.4) and Proposition 2.3. Finally, Proposition 2.4 entails the non-negativity of #(+¢>*°).

Equation (2.7) reflects the fact that conds A(«) is a 1-periodic function of the shift parameter

a. Our next result shows that the condition number increases as |a| grows from zero to half.

Theorem 2.7. The function {a — condy A(a) : —1/2 < o < 1/2} is even, increasing on [0,1/2),
and tends to infinity as o tends to 1/2.

Proof. Theorem 2.6 and .emma 2.1 provide the relations

9 2cv 00 1 2k+1¢ 2a —2 4542
conds A(a) = U0 ))_H +" N+ 4 g

79( P 1 — q2k+1 (qQO/ + q72o/) + q4k+2

H 14 2¢%*F+! cosh (2Xer) 4+ gtrt?
n — 2¢*%+1 cosh(2Ma) + ¢*F+27

(2.9)
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and this last expression is clearly an even function of «. Further, each term in the numerator of the
product increases for 0 < o < 1/2, whereas each term in the denominator decreases for 0 < o < 1/2.

Finally, as « tends to 1/2, the first term (k = 0) in the denominator tends to zero. |

It is interesting, but seemingly irrelevant, that the infinite product obtained in (2.9) is a multiple
of the Jacobian elliptic function dn.

We now take up the analysis of the semi-infinite Toeplitz matrix

Ap(@) = (@ali — k) jr>0, @ €TR, (2.10)

viewed as a linear operator on (?(Z,); here ¢, (z) = e Mrto)? 4nd (*(Z,) denotes the sequence
space {(ar)p>0 @ Yopeo lax]? < co}. The interaction between the symbol function and the semi-
infinite Toeplitz operator is more subtle than in the bi-infinite case. We recall that a semi-infinite
Toeplitz matrix associated with a continuous symbol o is invertible on (*(Z,) if and only if o is

nowhere zero and the curve {o(t) : —7 <t < 7} does not wind about zero [W, Theorem 5].

Proposition 2.8. Suppose « is not a half-integer. Then {G,(§) : —7 < & < 7} does not wind

about zero if and only if |a| < 1/2.

Proof. If || < 1/2, then Proposition 2.4 yields R9(¢**e €) > 0 for all ¢ € [-7w,7]. Hence
RG, (&) = q(’gﬁ?ﬁ(qme*’"f) is positive for all £ € [—7,7]; a fortiori {G,(§) : —7 < & < 7} does not
wind about zero.

Conversely, let. &« = a4+, where |ag| < 1/2 and £ € Z\{0}. Since GG, (&) = "¢, (€) by (2.2)
and {G,, (&) : —7 < & < 7} does not wind about the origin, we conclude that {G,(£) : —7 <& < rw}

winds about zero exactly £ times. [

Theorem 2.9. Suppose o € R. The following are equivalent:

(i) ol < 1/2;
(ii) G is nowhere zero and the winding number of the curve {G, (&) : —7 < & < 7w} about zero is

ZEeTo.

(iii) The semi-infinite Toeplitz matriz Ay («) defined in (2.10) is invertible on (*(Z,).

Proof. (i) < (i7) This follows from Theorem 2.5 and Proposition 2.8.
(i) < (i1i) This is [W, Theorem 5]. ]

We close this section with multivariate extensions of Theorems 2.5 and 2.6. Tet o(® (z) =

exp(—Al|z]|3), z € R% A > 0, and let cpgd) (2) := o (2 + a), @ € R Consider the multivariate

6
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Toeplitz matrix (see [BM])
A () == (oD (5 - k))ireza, o e R, (2.11)
as a linear operator on ¢2(Z%). The symbol function G of A () is given by

e =al = > (k) exp(—ik"€), ¢ e R (2.12)

kezd

Clearly ng) is a tensor product of univariate symbol functions, to wit

d
ng)(g):HGO/k(gk)v 52(517"'7£d)7 (]/,:((]/,17...7(]%)_
k=1

Consequently, Theorems 2.5 and 2.6 have multivariate analogues.

Theorem 2.10. The multivariate Toeplitz matrix Al deﬁned in (2.11) is invertible on (*(Z%) if

and only if no co-ordinate of the vector shift & = (an, ..., a4) is a half-integer.

Proof. In view of (2.4) and Corollary 2.2, ol &) =0,&= (&,...,&), if and only if 2a is an odd
integer and & is an odd integral multiple of & for some k € {1,...,d}. [
Theorem 2.11. Suppose o = vy + £, where ag € (—1/2,1/2)* and £ € Z*. Then

79 20/01«

condy Ald H I 2@0;« ag = (ao1,...,04), g=c¢€
k=1

-

Proof. The symbol function for A (a)* Al () is {|G£,d)(£)|2 e [-n, 7% = {HZ:1 |G, (E1)]*
€= (&,...,&) € [-7,m]"}. The remainder of the proof is a simple consequence of (2.8). |

3. Shifted Gaussian cardinal interpolation and entire functions of exponential type

Let A be positive and define the Gaussian ¢y (2) = exp(—A2?), 2 € R, and its shift o5 », = ©a(-+a),
o € R; we have changed notation slightly to emphasize dependence on the parameter A. We have
seen that the symbol function G, (-, A) does not vanish when « is not a half-integer, in which case

we can define the cardinal function x\ . associated with ¢, , by its Fourier transform:

P L @k,a(f)
XA,O/(E) T Ga(£7 A)v g € R7 (3])
where @y (&) = (ex(-+ @) (€). Tt is well known that
Vae(@) =) M a)grn(z— k),  z€R, (3.2)

keZ
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where
ceha) = 2m) " [ Gale ) Texp(—ike) e, ke Z, (3.3)
and

(d)

The multivariate cardinal function x\ 7 is defined similarly by its Fourier transform

) = Ll) ¢e R, (3.5)

provided the shift vector « is admissible, that is, none of its components is a half-integer. (Here
and elsewhere, cp(;zy(r) = @&d) (x + @), where @(Ad)(m) = exp(—Al|z]|2), z, @ € R?; also cﬁ&dzy(f) =
(D (- 4+ @) (&), and )A((Adzy(f) = ()((;]L())A(S)) Tn this section we shall study some properties of the

linear space

apan (L ) e 29

as the parameter A approaches zero.
(d)

The function Y ;, defined in (3.5) inherits the tensor-product structure from the Gaussian and

the corresponding symbol. Precisely, we have the useful relation

d

H(S;A(ylékfk) 52(517"'75d)7 (y:((]/,h...,(l/,d)- (36)
1 o )

Primarily because of this tensor-product relation, all of the multivariate results considered in this
section can be derived from their univariate counterparts. Therefore we address the univariate
topics first.

Poisson summation provides a useful alternative formula for the Fourier transform of the Gaus-

sian cardinal function:

- -1
XA,O/(E) — (] + Ek,(y(f)) ’ (37)
where
SOA 0/ g + 27Tk)
ol et T feR (3.8)
keg\:{o} P, 0/(5)

We shall often infer the behaviour of Yy, from that of F) ,. Tt will also be convenient to define

FJA = FJA’().
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Lemma 3.1. We have the inequalities

Fan(© < Ea(©) = 3 e lErm=eymn o cep (3.9)
keZ\{0}
and
Fr(&) < k(Ag) == Z e~ TR =1k /2o for |&] <m  and A< (3.10)
keZ\{0}
Furthermore,
lim Ky ,(§) =0, €| < =, (3.11)
A—0

and the convergence is uniform on compact subsets of the interval (—m, ).

Proof. Tnequality (3.9) is a straightforward consequence of the observation |@y (&) = |$A(§)]-
Moreover, we have the inequalities 7k? +&k > nk? —|¢k| > w(k* — |k|) for every integer k and every

¢ € [-m,w]. Consequently,
a6 = 3 e FRRA < 3T A < 3
keZ\{0} keZ\{0} keZ\{0}

for A < Ag.
Turning to the pointwise convergence, suppose £ € (—m,7) is fixed. TLet ¢ > 0 and choose a

sufficiently large integer N so that

$ erlleram’ e o

|k|>N

Now we can also choose A, < 1 so small that

Z e—((£+27rk)2752)/4k <, A<,
[k <N

Thus we have derived the bound
FJA(E)§2(7 ASAF§]7

and, since € > 0 was arbitrary, we have established (3.11). The uniform convergence on compacta
follows from Dini’s theorem (see, for example, [3, p. 78]): If we have a monotonic decreasing sequence
of continuous real-valued functions on a compact metric space with continuous limit function, then

the convergence is uniform. ]
The asymptotic pointwise behaviour of Y5, follows immediately from TLemma 3.1.

9



BAXTER AND SIVAKUMAR

Theorem 3.2. If a is not a half-integer and £ € (—=, 7)), then
lim (6 0m)) = fy, € 2 (3.12)
A—0

and the convergence is uniform on compact subsets of (—7, 7).

Proof. Equations (3.7) and (3.11) imply (3.12) when j = 0. When j # 0, we have

— . o ) 0/ —I—Qﬂ' e _ T2 _g?
IXna (€4 277) ] = [Xa.a ()] %@)7) = |oa(©)]e ((e+2mh)°—¢ )/4A7

which tends to zero as A — 0 because Ya..(&) — 1 and (€ 4+ 275)% — & > 0 for €] < 7 and

Jj # 0. Uniform convergence on compact subsets of (—m,x) follows from that of Fy ,(£) and

e ((&42mf)° =€) 4x -

Knowledge of the pointwise behaviour almost everywhere is not, sufficient for the integral limits
studied below. However, LLemma 3.3, and its consequence Corollary 3.4, will allow us to use the
dominated convergence theorem later. Once more the panoply of Theta function theory comes to

our aid, in particular the infinite product (2.5).

Lemma 3.3. Let ¢ < qo < 1 and let z = re'*, where r € [q,q7'] and |t| < x. Then we obtain the

inequalities

(i) 1zl > Tlaw), I <7/2, (3.13)

and

(17) |9(2, q)| > T(qo)” sin’t, /2 < |t <, (3.14)
using the notation of Lemma 2.1.

Proof.

(i) When [t| < 7/2, we have R (1 + g?FH exp(iit)) > 1. Hence every term in the infinite product
(2.5) has modulus exceeding one, which implies |?(q, z)| > T(¢). Furthermore, T'(q) > T(qy) for
q < qo, yielding (3.13).

(ii) For k > 1 and for any t € R, the triangle inequality provides

1

because ¢ < r < ¢~ '. Hence

[9(2,0)] > T(g0) (1 +gre™) (1 +gr ™ ™).

10
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Now |1 + grt! exp(dit)| > inf{|1 + pexp(Fit)| : p > 0} = |sint|, the last equation resulting from

elementary geometry; this proves (3.14). |

The preceding result can be used to derive a upper bound on the Fourier transform of the
shifted GGaussian cardinal function. Specifically, if the shift « is not a half-integer, then the Fourier

transform of the Gaussian cardinal function takes the form

— ?3,0(8) Qrkio —(m&/ Nk _—n k%)) ! —1
Xel(8) = — = E € € e =z, q) ', 3.15
© ZkeZ @A,Q(E‘FQﬂ'k) (kez ) (:9) ( )

where ¢ = exp(—7°/)\) and z = ¢%/Texp(2mia). Therefore the lower bounds of (3.13) and (3.14)

supply upper bounds for the modulus of ¥ .

Corollary 3.4. Suppose « is not a half-integer; let 0 < X < X and set qo = exp(—72/Xg),
q = exp(—72/X). There is a constant C'(a, Xg) for which

e (O < ClayXo), A< X, €< (3.16)

Proof. Tt suffices to restrict attention to o € (—1/2,1/2) because the function {& — |Y3 5| 1 v € R}
is 1-periodic; for |a| < 1/2, however, (3.16) follows from (3.13) and (3.14) via (3.15). |

Of course, C'(a, Ag) — 00 as o — +1/2.

Armed with these results, let us introduce the family of linear spaces

Vi == {Z apXno(-— k)t (ag)rez € fQ(Z)} , A> 0. (3.17)

keZ

The exponential decay of x» , for large argument implies the pointwise convergence of the series
for every square-summable sequence. In fact, as will have been immediate to readers familiar with
the theory of wavelets, very Vi , is a subspace of L2(R). More precisely, the integer translates

{Xr0(-— k) : k € Z} form a Riesz basis for L?(R), as we now demonstrate.

Proposition 3.5. Suppose « is not a half-integer and 0 < X < Xg. There exist constants Ky (o, Ag)
and Ky(a, Ag) for which

<Ko, o) Y lawl®,  (an)eez € P(2). (3.18)
keZ

Kl 20) 32 Jail? < | 32 awxao(- = h)

keZ keZ

2
12(R)

Proof. Tt suffices to prove (3.18) when the sequence (ay)rez is finitely supported, because such

sequences form a dense subset of (2(Z). Setting A(¢) = Y ez drexp(—ik{) and applying the

11
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Parseval-Plancherel theorem, we obtain

HZ (lkXA,a(‘ - k)‘ 2

— (27)" ./R|A<£>|2|m<5>|245

hez L.2(R)
=20 [ AP Y Iale + 2 de.
ST kez
Now
— o 2rk —
S IonEremhl = I @P (4 Y %%—Tf))‘)—|XA,Q<5>|2(1+EA/2<5>). (3.19)
kez ke zZ\{o} ~

Thus (3.10), (3.16) and Parseval’s theorem imply

HZ X0 — k)‘ 2 < (e, /\0)2(] + /4,(/\0/2)) Z a2,

12(R)
keZ kez
for A < Ag. Finally, (3.7), (3.9) and (3.10) provide the inequality

e () > (T4 5(N) 2 € <m, A< A,

whence the estimate

2
HZ%XA,@('*MHLQ(R) (T4 k(X)) Z|”k|2 A < Ao,

keZ kez
obtains from (3.19) and Parseval’s theorem. |
The foregoing result implies that the family of linear maps {Th ,: /*(Z) = L*(R) : 0 < A < Ao},

where

Tk,(y : (a’k)kGZ — Z a’ka,(y(' - k)7
kEZ

is uniformly bounded. It follows that the image of V) , under the Fourier transform F is given by
the succincet expression

Vi = Xoa 2=, 7, (3.20)
being the composition F o Ty (V) ). That is, every member of V/A\(, is an element of L2[—x, 7]
multiplied by Y .. (Here we are using the Riesz Fischer theorem to pair (*(Z) and L*[—n, x| via
the Fourier coefficient sequence.)

Now (3.12) implies the limiting relation

—

lim ﬂ\(, = {]?6 I*(R): ]?is supported by [-7, 7] } =: &, (3.21)
—0

We have chosen the notation E; because its inverse Fourier transform &£ is precisely the set of entire
functions of exponential type 7; this is the celebrated Paley-Wiener theorem (see, for instance, [SW,
pages 108ff]). Thus it is natural to ask whether V\ , — &: in some sense, and the answer to this
question is particularly elegant in L2(R). We shall need a specific form of the Poisson summation

formula.

12
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Lemma 3.6. et ]? € E; and define the continuous function f € L*(R) by the inverse Fourier

transform

i) = en ! [ f@ertae aer. (3.22)

Then we have the equation

STFE+2mk) =3 F(k) exp(—ike), (3.23)

keZ kez
the second series being convergent in I*(R).
Proof. See, for instance, [B2, .emma 3.2]. |

As an immediate corollary of L.emma 3.6, we find

S IwP =0 [ 1f@Pde < o (3.24)

keZ

Therefore the function

Dol =Y f(E)Xaal-— k) (3.25)

keZ

is an element of V) ,, by Proposition 3.5, and its Fourier transform is given by

o f(€ () flk)e ™ = an(€) Y F(€+ 2mk). (3.26)

kez keZ

Theorem 3.7. Let f € L*(R). If the shift o is not a half-integer, then limy_qdist o(f, Vi.4) =0
if and only if f € &,.

Proof. Suppose ]? € E; We shall prove that lim_q ||]?7 f;:fHLQ(R) = 0, which is equivalent to
limaso [[f =10 fllr2(r) = 0 by the Parseval-Plancherel theorem. Letting I denote the characteristic

function of the interval [—7, 7], we have

0T ol = /RIZ.J?(H?M)VIT(J T (O de
: keZ

s

— [C1Rorn P [CIFOP Y I e 620

- kez\{o0}

= [1 + [2.

Now (3.16) implies |f( WA = Xaa (O < |f( Y21+ Ca, Ag))? for €] < 7 and A < Ao.
Further, f is square integrable on [—7, 7] and lim y_0 [T — Xx..(£)|* = 0 by Theorem 3.2. Hence the

dominated convergence theorem implies Iy — 0 as A — 0.

13
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For I3, Lemma 3.1 provides the bound

L= FOr©! Prol€2mh) 12 e o, 2)? FO1F dg.
o= [ IR ) ke;\{o}‘ S < ot [ IROP Rl de

Now Fy 2(§) < £(Xo/2) for A < Xg by (3.10), and limy_o Iy 2(§) = 0 for every £ € (—7, 7). Hence
a second application of the dominated convergence theorem implies Iy, — (0 as A — 0, and we have
shown that limy_odist o(f,&;) = 0.

Conversely, assume limy_odist o(f,Vyn) = 0 and choose functions f\ € V), for which

limaso [[f — fallr2(r) = 0. Using (3.20) we obtain the representation

—

A =00 (©OANE),  CeR, (3.28)

where each A, is a 2x-periodic function square-integrable on [—7, 7]. We shall show that

lim / F(€ 4+ 2mj)] de = 0

A=0

for every nonzero integer 7, which implies ]?6 £.

Now (3.28) and the Cauchy-Schwarz inequality provide the relations
/ |}:(E+2ﬂj)|d5: / |ff;(5)|ef((£+27r.7')2—£2)/4x de

<A llrep—r,m (/

o =T

- ((E42m)? - €%) /22 45)1/2.
However, || fAll72[—r,q < ||]?||LQ(R) + £ — ]2‘\||LQ(R) = ||]/C\||LQ(R) + o(1), as A — 0, whereas direct

calculation implies

lim / e (ER2m =2 ge — o, je 2\ {0}

A=0

Hence
m/ﬂ [Fr(E+2mj)lde=0,  jez\{o}.

But the triangle inequality and a second application of Cauchy-Schwarz now reveals

[ Feramilde < [ Ifie+2mi) - e omilaer [ IR +2n) e
< 20" f — Fllizr) +o(1) = o(1),
as A — 0, which completes the proof. [

An almost identical argument yields a result on uniform convergence.

14
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Theorem 3.8. Suppose ]?6 E; The functions {I\ of : A > 0} converge uniformly to f as A — 0.

Proof. Let g and F be given by (3.23) and (3.9), respectively. We have the relations

L= [ 15©laed= [ (SImeremb) @l @29

T kez

Since g € L?’[-m, 7] C L'[-m, 7], and 3, o2 IXaa(§+27k)] = X3 ()] (1 + FA(€)) € L7, 7]
by (3.16) and (3.10), equation (3.29) implies that f;:f € L'(R). So the Fourier inversion theorem

yields the equation

£ = o) = (2m) " [ 57 (e 2mby (1(6) ~ X 0)) expling)

keZ

where I denotes the characteristic function of the interval [—7, w]. Consequently,

flz) = Lo f(2)

< (2m)"! / IZ‘ €+ 27k — x’;,(£+27rk)‘dg
keZ
—(277)1/ IFEIN — an ()] de+ (2m) ! / G ‘m(£+2wk) g (3:30)
o Jor ke2\{0}
::[1+'bv

and the similarities between (3.27) and (3.30) are evident.

For Iy, we note that limy_o(1 — Yo (&) = 0 for |£] < ® by Theorem 3.2, and |1 — yy 5 (§)| <
14+ C(a, X)) for A < XA by (3.16). Moreover, ]? is absolutely integrable on [—m,x]. Thus the
dominated convergence theorem allows us to conclude that limy_ ., 1 = 0.

For Iy, we have

N o€+ 2mk)| = [ (€)

keZ\{0}

e, fe[oma). (3.31)

Now |Ya.a(&)|Fr(€) is bounded for A < Xy and |£| < = by (3.10) and (3.16). Further, ()
converges to zero for |£| < 7 by (3.11). Once more the dominated convergence theorem implies

Ih - 0as A — 0. [ |

One noteworthy consequence of this theorem is the uniform convergence of the shifted (zaussian

cardinal functions to the sinc function as A tends to zero: we simply let f be the sinc function,

namely f(x) =sin(rz)/(7z).

15
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Proceeding now to the multivariate case, we recall that a vector shift & = (ay,...,a,) € R?

is said to be admissible if no a4 is a half-integer. We have seen (cf. (3.6)) that the multivariate
(d)

cardinal function x5 | is simply a tensor product of univariate cardinal functions, that is
.

d
1) = H Xnop (T8)s = (21,...,24) € R?, (3.32),

or, in the Fourier transform domain,

d
W :H DA ap(&r), E=(6—1,...,&) e R (3.33)

These relations imply that the multivariate analogues of our univariate results require rather simple
modifications. Therefore we shall only sketch further development.

Equation (3.33) implies the multivariate form of Theorem 3.2:
() N s : d d
lim S (E+2mf) =005, jE€Z% L€ (-mm), (3.34)
— ? ’

the convergence being uniform on compact subsets of (—m, 7)% Similarly, the shifts {X(Adzy( — k) :

k € 2%} form a Riesz basis for L?(R?), so generalizing Lemma 3.11. Thus the linear spaces

VI =15 (- k) s (an)pezs € C(EDY A >0, (3.35)

kezd

are subspaces of I2(R?) for every admissible shift. Following (3.21), we introduce

(‘?7(;]) = {]?6 LA(RY) - ]?is supported by [-7, 7] }, (3.36)

and observe that every f € £(?) possesses an interpolant

d d
10 =3 FS k)
kezd
that is a member of Vk(d'(l. The multivariate incarnations of Theorem 3.7 and Theorem 3.8 are then
as follows.
Theorem 3.9. let f € L2(RY). If a € R? is an admissible shift, then limy_ dist o(f, V. (y) =0

if and only if f € gl

Theorem 3.10. Suppose ]? € ﬂrd). The functions {T;d()yf : A > 0} converge uniformly to f as
A—=0.

16
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4. Shifted multiquadrics

Let ¢ be a non-negative constant. The shifts of the Hardy multiquadric ¢.(z) = (22 +c2)"/?, 2 € R

generate bi-infinite multivariate Toeplitz matrices

Ala) == (peali = K))jkez, @ €R,  @oal) :=wo(-+a), (4.1)

which do not act as linear operators on £2(Z). However, it is still possible to analyze their behaviour

via the associated tempered distribution symbol function. In particular, it is shown in [B1] that

@@w—lmef”“wﬁw“thmu» e R\ {0}, (4.2)

where
prle) =+ [0, s e R, (4.3)

and it is easily checked that the positive Borel measure p is given by du(t) = exp(—ct) (4xt) ="/ dt.

Thus the symbol function for A(a) is the sum of tempered distributions

Toal) =D Bonlé+2mk) =~ /Om Go(&, 0t du(t), (4.4)

keZ

using the Poisson summation formula

(r/)! 237 e (T €T = G (€, 1). (4.5)

keZ
If o is not a half-integer, then RG,(£,t) > 0 for every t € (0,00), by Proposition 2.4. Thus

Ro. (&) < 0 forall £ € R and, following [Bu2], we can define the cardinal function by its Fourier

transform

Xew(§) = @enl(8)/00al(l), C€R, adl/24Z, (4.6)

because the denominator does not vanish.
Formulae (4.2) and (4.3) admit multivariate analogues (see [B1]); specifically,
) =~ / e W Gy 2 dp(r), ¢ e RM\ {0}, (4.7)
Jo

()

where the measure du(t) is given as before. Consequently the multivariate symbol o¢4 can be

expressed as

e = [ e au,  aer (45)
Jo
where ng) is the multivariate Gaussian symbol defined in (2.12).

17
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In fact, (4.7) and (4.8) are valid for a large subclass of conditionally negative definite functions
of order one; see [B1, Theorem 3.6]. However, we prefer to concentrate on the single concrete
example of the multiquadric in this study.

Now suppose & = (ay,...,a4) is an inadmissible shift, so that some component, ay, say, is
a half-integer. Then for every ¢ > 0, G (&,t) = 0 when &, an odd integral multiple of 7 (see
Theorem 2.11). Therefore (Tﬁd(),(f) is also zero for such « and &, by (4.8). Conversely, if « is an
admissible shift and £ € (—m, 7)9, then RGLD (&,1) is no longer positive for all £ > 0. So, unlike the
univariate case, we cannot conclude that (Tﬁd(), (&) # 0 for such & and a. However, it is interesting

to note that for a fired ¢ € (—7x,7)* and an admissible shift «, there exists a ¢ := ¢(€) such that

(Tﬁd(), (&) # 0 for all ¢ > ¢. For, we have the relations

~(d)
: vy wy Pe,al& + 27k)
A= 3 Bt omm =g (14 3 Ealer 2k (1.9)
Lezd ke Z4\{0} Pe, (5)
and )
~(d) ~(d
e, 21k e +2ﬂ-k
Pe, A(f];r L @"Oﬁ) ) . ke zd (4.10)
Pe.or(€) Peo (&)
Since (see [B2, equation (2.2)])
(4) T e [T eslelle 2y
[N | — / emesllEllo (g2 )42 gs 5 0, 401
O rram ), . )
and (see [B2, equation (2.5)])
~(d)
. + 27k
lim % =0, ¢e(—m,m°, (4.12)
e kezd\{0} De0(8)
equation (4.9) provides the estimate
ol ()] > 0, (4.13)
for large c.
Knowledge of the exact zero structure of the multivariate symbol (Tﬁd(), eludes the writers af
present, and for the duration of the section we shall assume o = 0; that is, discussion will be
()

restricted to the unshifted multiquadric ¢,

In Section 3 we studied several convergence properties of (Gaussian cardinal interpolants by
allowing the parameter A to tend to zero. Comparable results for multiquadrics can be obtained
by allowing the parameter ¢ to tend to infinity, as was first observed in [B2]. The following results

supplement the ones already proved therein; the proofs of these results are similar to those in Section
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3 and are omitted. However, it is important to understand that relation (4.11) provides the crucial

inequality
~(d)
S«Qc,(y(g)
| < expl=c(llgl = [,
when [IE]| > {[nll > 0.
Lemma 4.1. et (d)
» B (¢ ,
W) = (d)( : . feR"

N Zkezd @e(E427k)

Then
lim (€ +27j) = b0, e (—m,m)" je z9
C—00 -

and the convergence is uniform on compact subsets of (—m,7)%.

Theorem 4.2. let

ViD= Z apx\ D (- = k)t (ap) ez € C(27)

kezd

Then VIV c 12 (R for ¢ > cq. Furthermore, if f € L>(R%), then lim._, ., dist o(f, Vc(d)) =0 if

and only if ]? is zero almost everywhere outside [—7, 7]".

5. Connections with cardinal splines

As indicated in the introductory section, there are several strong semblances between the theory
of Gaussian cardinal interpolation (as studied in this paper) and cardinal-spline analysis. These
connections will be brought out below.

Suppose n > 2 and let M,, denote the centred cardinal B-spline of order n, i.e., M, is the n-fold
convolution of the characteristic function of the interval (—1/2,1/2) with itself. Define o, , to be

the shifted B-spline symbol

Tnal(€) = > M, (k + o) exp(—ikg), o, & eR.

keZ

In complete analogy with Propositions 2.3 and 2.4 of the present paper, we have the following results
concerning o, ,: For fixed n and «a, the function {£ — 0, ,(£) : £ € R} has non-negative real part,
and its modulus |0, ,(§)| decreases on the interval 0 < & < m. The first of these results follows
quite easily from [JRS, Proposition 3.1], whilst the second was established in [JRS, Theorem 3.2].

Furthermore, Theorem 2.5 of this paper also holds for the bi-infinite Toeplitz matrix generated by
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the shifted B-spline ([M] and [BS]); indeed, the zero structure of the shifted B-spline symbol a,, , ()
is precisely the same as that of the shifted Gaussian symbol G, (&, A) (compare Theorem 2.5 of this
paper with Theorem 2.2 of [S]). As for semi-cardinal interpolation, our Theorem 2.9 for shifted
(GGaussians is an exact analogue of the corresponding result for shifted B-splines; the latter may be
derived as a consequence of [JRS, Proposition 3.1], via [W, Theorem 5].

It was shown in [deB, Theorem 1] and [JRS, Theorem 3.4] that for fixed £ and n, the even
function {a — |0, 4(&)| : @ € R} decreases on the interval 0 < o < 1/2. We now prove an entirely
analogous theorem for (7,. Tt is interesting to note that, in stark contrast to the B-spline results,

the result for the Gaussian (vide infra) is a simple extension of our earlier analysis.

Proposition 5.1. The function {a — |G, (&, A)| : a € R} is even, I-periodic, and decreases on

0 < a<1/2 for every fized £ € R and A > 0.

Proof. That |G, (&, A)| is an even, 1-periodic function of « is a ready consequence of (2.2). Moreover,

the Poisson summation formula implies

Gol€,)) = Z e*k(k—l—(y)gefikf _ (ﬂ//\)uz Z ef(£+27rk)2/(4k)ei(y(£+27rk).

keZ 7 kez

Setting £ =: 2xn and § := 2w, we obtain

Gol€,2) = (m/A)!/2e P Z o (77 IN (4 k)? =ik
keZ

= (/N PTG (3,7 )

_ (7T//\)1/2677‘,;377677977/A79(6727r?77/xeﬂ:ﬁ7 eﬂr?/x)

1

by (2.4), and hence
(Go(€, N)] = (m/A) V26T 1 (e 27 1018 = ).

We have shown in Proposition 2.3 that {§ — |79(e*27r277/ke*"ﬂ7 e*WQ/A)| :0 < 8 < 7}isadecreasing
function for every fixed n € R and A > 0. Therefore the function a — |G, (&, A)| decreases on
0 < a < 1/2forevery fixed £ € R and A > 0. |

A prominent theme in the study of univariate cardinal splines has been that of convergence of
cardinal spline interpolants as the degree of the underlying spline tends to infinity. Attempts to
extend this theory to multivariate splines have led to several interesting results (see, for example,

[BHR2, Chapter 5]), including some fascinating connections with problems of tiling [BH]. The studies
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reported in Sections 3 and 4 of our paper, as well as those carried out in [B2], reveal that the notions

of “X tending to zero” in (Gaussian cardinal interpolation and “c tending to infinity” in multiquadric

interpolation are natural counterparts of the notion of “degree tending to infinity” in cardinal-spline

analysis. As a sample, the reader is invited to compare Theorems 3.13 and 4.2 of the present paper

with the main theorem in [BHR1].
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