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1. Introduction

This is my collection of miscellanies, most of which are for teaching.

Version: 202401251231
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2. Roots of Unity

Example 2.1. Let ω = e2πi/3. Thus 1, ω, ω2 are the three cube roots of unity.
Then it is easily checked that |1− ω| = |1− ω2| =

√
3, so that

|1− ω||1− ω2| = 3.

Example 2.2. Suppose we take the 4 points ±1 and ±i. Then |1 − i| =
√

2, so
that

|1− i||1− (−1)||1− (−i)| = 4.

These examples lead to a conjecture:

(1)

n−1∏
k=1

|1− ωk| = n,

where ω = e2πi/n and n ≥ 2, and here is the Matlab code to check this.

I=sqrt(-1);

n=5;omega=exp(2*pi*I/n); P=1; for k=1:n-1, P=P*abs(1-omega^k); end; P

In fact, we shall see that a stronger statement is true:
Let n > 1 be an integer and let ω = e2πi/n. Thus the complex numbers {ωk :

k = 0, 1, . . . , n− 1} are the nth roots of unity. Thus

zn − 1 = (z − 1)

n−1∏
k=1

(
z − ωk

)
.

Hence
n−1∏
k=1

(
1− ωk

)
= lim
z→1

zn − 1

z − 1
= n,

by de L’Hôpital’s rule.
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3. Stereographic Projection

3.1. Stereographic Projection as a Möbius mapping. We let S : R → ∂∆
denote stereographic projection from the real line to the unit circle, with i as the
pole. Thus given t ∈ R, the correponding point (x, y) ∈ ∂∆ satisfies

(2) 0 = det

 1 0 1
1 x y
1 t 0

 = −yt+ t− x,

or

(3) x = t(1− y).

Theorem 3.1. Stereographic projection S : R→ ∂∆ is given by the Möbius map

(4) S(t) =
it+ 1

t+ i
=

t− i
−it+ 1

, for t ∈ R.

Proof. Squaring (3) and using x2 + y2 = 1, we obtain the quadratic

1− y2 = x2 = t2 (1− y)
2
,

that is,

(5) 0 =
(
1 + t2

)
y2 − 2t2y2 + t2 − 1.

The roots of this quadratic satisfy

y =
t2 ± [t4 − (t2 + 1)(t2 − 1)]1/2

t2 + 1
= 1 or

t2 − 1

t2 + 1
.

Substituting y = (t2 − 1)/(t2 + 1) in (3) yields

(6) x =
2t

t2 + 1
.

Thus stereographic projection is given by

S(t) =
2t

t2 + 1
+ i

(
t2 − 1

t2 + 1

)
=
it2 + 2t− i
t2 + 1

.

Numerator and denominator vanish when t = i, and dividing by the common factor
t− i yields

S(t) =
it+ 1

t+ i
, t ∈ R.

�

By Theorem 13.9.1 of [1], S corresponds to the 90o rotation of the Riemann
sphere, with axis ±1, sending i to 0.

3.1.1. Inversion in the Origin. Let T (z) = −z. We want to compute the induced

map T̃ = S−1TS, to see its action on R. The corresponding 2× 2 matrices are

S ∼
(

i 1
1 i

)
, S−1 ∼

(
i −1
−1 i

)
and T ∼

(
−1 0

0 1

)
.

Thus

T̃ = S−1TS ∼
(

i −1
−1 i

)(
−1 0

0 1

)(
i 1
1 i

)
=

(
0 −1
1 0

)
In other words, zT̃ (z) = −1.
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3.2. Quasi-inversion in ia. Let a ∈ (−1, 1). Given any point u1 = S(t1) ∈ ∂∆,
we want the corresponding point u2 = S(t2) ∈ ∂∆ for which u1, u2 and ia are
collinear. Thus we have the equation

0 = det

 1 0 a

1 2t1
1+t21

t21−1
t21+1

1 2t2
1+t22

t22−1
t22+1

.

 ,

i.e.

0 = det

 1 0 a
1 + t21 2t1 t21 − 1
1 + t22 2t2 t22 − 1.

 .

Subtracting the second row from the third row and factorizing, we obtain

0 = 2(t2 − t1) det

 1 0 a
1 + t21 t1 t21 − 1
t1 + t2 t2 t1 + t2.

 = 2(t2 − t1)(t1t2(1− a) + 1 + a).

Thus the corresponding map is

t1t2 =
a+ 1

a− 1
.
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4. The Length of the Day

4.1. The Length of the Day at the Solstices. We shall compute the length
of the day at the Summer solstice in the northern hemisphere. The origin of our
coordinate system will be at the centre of the Earth, the x-axis will point directly
towards the Sun, and the z-axis will be perpendicular to the Earth’s orbital plane
and will be directed into the northern hemisphere. We need the following orthonor-
mal vectors to describe the motion of a point on the Earth’s surface:

(7) u1 =

 cosα
0

− sinα

 ,u2 =

 0
1
0

 , and u3 =

 sinα
0

cosα

 ,

where α = 23.5 degrees approximately for the Earth.
The motion of a point at latitude θ is then

(8)

 x(t)
y(t)
z(t)

 = (u1 cos t+ u2 sin t) cos θ + sin θu3.

In particular, we have

x(t) = cos θ cosα cos t+ sin θ sinα

y(t) = cos θ sin t.(9)

At the Summer solstice, day corresponds to x(t) > 0. Thus, solving x(t) = 0, we
obtain the length of day as a function of the latitude θ:

(10) L(θ) = 2 cos−1 (− tan θ tanα) , |θ| ≤ 90− α,
and this gives the length of the day in degrees. Thus the length of the day in hours
is given byLh(θ) = (24/360)L(θ) = (1/15)L(θ), i.e.

(11) Lh(θ) =
2

15
cos−1 (− tan θ tanα) , |θ| ≤ 90− α,

For θ ∈ (90− α, 90), Lh(θ) = 24; similarly L(θ) = 0 for θ ∈ (−90,−90 + α).
The following Matlab code generates the ratio of the longest day to the shortest

day.

alpha= 23.5*pi/180;

theta=0:pi/100:(pi/2) - alpha;

y = acos(-tan(alpha)*tan(theta));

R = y ./ (pi - y);

plot(theta,R)

plot((180/pi)*theta,R)

grid

4.2. The variation in the length of the day during the year. We solve the
equation

(12)

(
x(t)
y(t)

)T (
cosu
sinu

)
= 0,

where 0 ≤ u ≤ 360 measures orbital time in degrees, i.e. one year corresponds to
360 degrees. Expanding (12), we obtain

(13) cos θ cosα cosu cos t+ cos θ sinu sin t = − sin θ sinα cosu,

or

(14) cos (t− β) =
sin θ sinα cosu

γ
,
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Figure 1. Annual variation in day-length at 51 degrees North

where

(15) γ2 = cos2 θ cos2 α cos2 u+ cos2 θ sin2 u.

Hence the sunrise and sunset times are given by

(16) t± − β = ± cos−1
(
− sin θ sinα cosu

γ

)
,

and the length of the day is then

(17) t+ − t− = 2 cos−1
(
− sin θ sinα cosu

γ

)
,

%

% Displays the yearly variation in the length of the day

% (in hours) at latitude theta, where |theta| < pi/2 - alpha.

%

alpha= 23.5*pi/180;

theta=51*pi/180;

u=0:pi/1000:2*pi;

A = -sin(theta)*sin(alpha)*cos(u);

B = cos(theta)*sqrt( (cos(alpha)^2)*(cos(u).^2) + (sin(u).^2) );

D = 2*acos(A ./ B)*12/pi;

plot(u,D)

%

% D is quite close to sinusoidal

%

%hold on

%plot(u, 12+(max(D)-12)*cos(u),’r’)

%hold off
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5. Regular Pentagons and the Golden Ratio

Let ω = exp(2πi/5), so that 1, ω, ω2, ω3, ω4 are the fifth roots of unity. The aim

here is to prove that the Golden Ratio φ = (1 +
√

5)/2 satisfies

(18) φ = 2 cosπ/5 =

∣∣1− ω2
∣∣

|1− ω|
.

Indeed,

(19)
∣∣1− ωk∣∣2 =

(
1− ωk

) (
1− ω−k

)
= 2− 2 cos(2kπ/5) = 4 sin2 kπ/5,

for 0 ≤ k ≤ 4. Hence

(20)

∣∣1− ω2
∣∣

|1− ω|
=

sin 2π/5

sinπ/5
= 2 cosπ/5.

Now, setting α = eπi/5, i.e. the principal tenth root of unity, and

β = 2 cosπ/5 = α+ α−1,

we obtain

(21) 1 + α2 + α4 + α6 + α8 =
1− α10

1− α2
= 0.

However

1 + α2 + α4 + α6 + α8

= 1 + α2 + α8 + α4 + α6

= 1 + α2 + α−2 + α5
(
α−1 + α

)
= 1 + α2 + α−2 −

(
α−1 + α

)
= 1 +

(
α+ α−1

)2 − 2−
(
α−1 + α

)
= β2 − β − 1.

Thus β = φ.
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6. Distance seen and Height

If we take the Earth to be a perfect sphere of radius R, then the distance seen
D at height H is given by

(22) D = Rθ

where

(23) (R+H) cos θ = R.

It’s useful to define

(24) h =
H

R
.

Thus (22) and (23) become

(25) (1 + h) cos θ = 1

and

(26) cos θ =

[
1

1 + h

]
.

If h is small, then θ must also be small, so we have

(27) 1− θ2/2 + · · · = 1− h+ · · · ,
or

(28) θ2 ≈ 2h.

Returning to our original variables, we find

(29) D2 ≈ 2HR.

Example 6.1. Taking R = 6.4× 106 m and H = 100 m. Then
√

2HR ≈ 36 km.

Example 6.2. Here is some MATLAB code to illustrate the approximation’s worth.

R=6.4e6; h = 0:100:100000;

dtrue = R*acos((1 + h/R).^(-1));

dapprox = (2*R*h).^(1/2);
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7. The Railway problem

This is a very old chestnut indeed. We imagine a straight piece of rail of unit
length which, under thermal expansion, becomes a circular arc of length 1 + δ,
where 1� δ > 0. The rail will bow upwards, attaining a maximum height h at its
centre, and the problem is to determine h, which is surprisingly large.

If we let R denote the radius of the circular arc after expansion, and θ denote
the half-angle subtended at the centre of the circle, then we have the equations

2Rθ = 1 + δ,(30)

R− h = R cos θ,(31)

1

2
= R sin θ.(32)

Of course

(33) h = R (1− cos θ) .

Eliminating R from (30) and (32), we obtain

sin θ

2θ
=

1/2

1 + δ
or

(34)
sin θ

θ
=

1

1 + δ
.

Now 0 < δ � 1 implies that θ is also small, so that

(35)
sin θ

θ
= 1− 1

6
θ2 + · · · = 1− δ + · · · ,

or

(36) θ2 ≈ 6δ.

Substituting this approximation in (30) yields

(37) R =
1 + δ

2θ
≈ 1 + δ

2
√

6δ
.

Substituing (37) in (33) then provides

h ≈ Rθ2/2 ≈
(

1 + δ

2
√

6δ

)
6δ

2
=

√
6δ (1 + δ)

4

i.e.

(38) h ≈
√

3δ/8.

This is at the root of the surprising size of h:
√
δ dominates δ for small δ.

Example 7.1. Suppose δ = 10−4, which corresponds to expansion of 10 cm for a
rail of length one kilometre. In this case h =

√
3× 10−4/8 = 6.1m.
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8. A derivation of the FFT

We choose n = 2M and illustrate the Fast Fourier Transform algorithm, which
computes the DFT in O(M2M ) operations.

Our primary data are the values {f(2πj/2M ) : j = 01, 2, . . . , 2M − 1} of our
function evaluated at the 2M -th roots of one. For each m ∈ {0, 1, . . . ,M}, we
define

(39) F
(m)
jk =

2m−1∑
p=0

f
(
e2πi(

p
2m + k

2M
)
)
e−2πijp/2

m

.

for j = 0, 1, . . . , 2m − 1 and k = 0, 1, . . . , 2M−m − 1. Thus F (m) ∈ C2m×2M−m

. In
other words, each F (m) contains 2M numbers, but their sizes are as follows:

F (0) is 1× 2M ;

F (1) is 2× 2M−1;

F (2) is 22 × 2M−2;

...

F (M−1) is 2M−1 × 2;

F (M) is 2M × 1.

In other words, F (0) is a row vector, F (m) has twice the number of rows as F (m−1),
but half the number of columns, and F (M) is a column vector.

Example 8.1. When M = 3 and m = 2, there are 2 4-transforms.

Example 8.2. When M = 3 and m = 1, there are 4 2-transforms.

We now define a mapping constructing F (m) from F (m−1). Specifically, we divide
the sum over p in (39) into even p and odd p, as follows

(40) F
(m)
jk = Em +Om,

where

(41) Em =

2m−1−1∑
q=0

f(exp(2πi

(
q

2m−1
+

k

2M

)
exp(−2πijq/2m−1)

and
(42)

Om =

2m−1−1∑
r=0

(
f(exp(2πi

(
r

2m−1
+
k + 2M−m

2M

)
exp(−2πijr/2m−1)

)
exp(−πij/2m−1).

Now F (m−1) is a 2m−1×2M−m+1 matrix, but it is useful to slightly abuse notation

noting that Z 3 j 7→ F
(m−1)
jk is a 2m−1-periodic sequence. With this abuse of

notation in mind, we obtain

(43) F
(m)
jk = F

(m−1)
jk + e−πij/2

m−1

F
(m−1)
j,k+2M−m ,

for j = 0, 1, . . . , 2m − 1, k = 0, 1, . . . , 2M−m − 1.
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9. Schur Products

In this note we provide a (possibly) new slant on a theorem of I. Schur.
It is well known that a self-adjoint matrix A ∈ Cn×n is non-negative definite if

and only if there are elements (fk)nk=1 in a Hilbert space H for which

Ajk = (fj , fk)H , j, k = 1, . . . , n,

where (·, ·)H denotes the inner product of the Hilbert space. Of course the usual
choice is H = Cn, but we shall take H = L2(T), the vector space of 2π-periodic
square-integrable functions. Thus the elements of any self-adjoint, non-negative
definite matrix A ∈ Cn×n can be expressed by the equations

Ajk =
1

2π

∫ π

−π
fj(x)fk(x) dx, j, k = 1, . . . , n.

Let us now recall that the Schur product A ∗B of any two complex n× n matrices
A and B is defined by (A ∗B)jk := AjkBjk. We now state our main result.

Theorem 9.1. The Schur product of non-negative definite self-adjoint matrices is
also non-negative definite.

Proof. Following the remarks above, we have

Ajk =
1

2π

∫ π

−π
fj(x)fk(x) dx and Bjk =

1

2π

∫ π

−π
gj(y)gk(y) dy, j, k = 1, . . . , n,

whenever A and B are non-negative definite and self-adjoint. Thus the elements of
the Schur product A ∗ B are inner products in L2([−π, π]2) of tensor products of
the functions (fj)

n
1 and (gk)n1 . Specifically, we have

(A ∗B)jk = (2π)−2
∫
T2

fj ⊗ gj(x, y)fk ⊗ gk(x, y) dx dy, j, k = 1, . . . , n,

where fj ⊗ gj(x, y) := fj(x)gk(y). Hence A ∗B is non-negative definite. �
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10. Constrained Optimization

Suppose we are considering investing money in two assets whose returns are
independent random variables X1 and X2. Their distribution is unknown, but we
do know the mean µk = EXk and the variance σ2

k = varXk, for k = 1, 2, and we
shall assume that these variances are strictly positive.

Being risk-averse, we want to divide our investment between the two assets to
minimize our risk. More formally, we have

(44) Y = s1X1 + s2X2, where s1 + s2 = 1.

Now, by the independence of X1 and X2, we have

(45) varY = f(s) = s21σ
2
1 + s22σ

2
2 , s = (s1, s2)

T ∈ R2.

Thus our problem is as follows:

(46)
minimize f(s)
subject to g(s) = 1,

where

(47) g(s) = s1 + s2, s = (s1, s2)
T ∈ R2.

Now the function f(s) satisfies

∇f(s) =

(
2σ2

1s1
2σ2

2s2

)
and

D2f(s) =

(
2σ2

1 0
0 2σ2

2

)
,

and all higher derivatives vanish. In other words, f(s) is a quadratic and satisfies

(48) f(s + h) = f(s) + hT∇f(s) +
1

2
hTD2f(s)h.

Further, the constraint function g(s) is linear and satisfies

(49) g(s + h) = g(s) + hT∇g(s) = g(s) + hTe,

where

(50) ∇g(s) ≡ e =

(
1
1

)
.

One way to understand such problems is via line search: we choose a point
s ∈ R2 and a search direction d ∈ R2 and consider the univariate function

(51) φ(t) = f(s + td), t ∈ R.
Thus

(52) φ(t) = f(s) + tdT∇f(s) +
1

2
t2dTD2f(s)d,

but we also require the search direction to satisfy the linear constraint:

(53) 1 = g(s + td) = g(s) + tdT∇g(s) = 1 + tdT∇g(s),

or

(54) dT∇g(s) = 0

When do we know we are at a minimum? In this case, we must have φ′(0) = 0 for
any d satisfying (54). Hence

(55) dT∇f(s) = dT∇g(s) = 0,

which implies that

(56) ∇f(s) = λ∇g(s),



MISCELLANY 15

for some λ ∈ R. In other words, we have

(57)

(
2σ2

1s1
2σ2

2s2

)
= λ

(
1
1

)
,

which imply that

(58) sk =
1

2
λσ−2k , k = 1, 2, and s1 + s2 = 1.

Thus

λ =
2

σ−21 + σ−22

and

(59) sk =
σ−2k

σ−21 + σ−22

, k = 1, 2.

The resulting minimal variance is then given by

σ2 ≡ f(s)

= σ2
1

σ−41(
σ−21 + σ−22

)2 + σ2
2

σ−42(
σ−21 + σ−22

)2
=

1

σ−21 + σ−22

,

or

(60) σ−2 = σ−21 + σ−22 .

Example 10.1. When σ2
1 = 1/10 and σ2

2 = 1/5, the minimal variance is given by
σ−2 = 10 + 5 = 15, or σ2 = 1/15.

In general, we have

Y = s1X1 + s2X2 =
σ−21 X1 + σ−22 X2

σ−21 + σ−22

and

EY = s1µ1 + s2µ2 =
σ−21 µ1 + σ−22 µ2

σ−21 + σ−22

Thus, if σ1 � σ2, then EY ≈ µ2, which is to be expected, whilst σ1 = σ2 implies
EY = (µ1 + µ2)/2.

10.1. Lagrange Multipliers. The above technique is much more general. Sup-
pose we have a risk-metric for investments in n assets which is given by

(61) f(s) = sTAs, s ∈ Rn,

where A ∈ Rn×n is a symmetric, positive definite matrix. We want to solve the
constrained optimization problem

(62)
minimize f(s)
subject to g(s) = 1,

where

(63) g(s) = wT s, s ∈ Rn,

where w ∈ Rn is some fixed vector. Then a similar argument implies that

(64) ∇f(s) = λ∇g(s),
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where

(65) ∇f(s) = 2As and ∇g(s) = w.

Hence

(66) s =
1

2
λA−1w and 1 = wT s,

which implies

(67) λ =
2

wTA−1w
and

(68) s =
A−1w

wTA−1w
.

Exercise 10.1. Prove that (68) implies that the corresponding minimal risk-metric
is given by

(69) f(s) = wTA−1w.
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11. The Cholesky Factorization

Let Pn denote the set of all non-negative definite symmetric matrices in Rn×n.
Given any An ∈ Pn, there is a unique lower triangular matrix Ln ∈ Rn×n, with
positive diagonal elements, for which An = LnL

T , and this is called the Cholesky
factorization. This section provides a constructive proof of this result, the factor-
ization being obvious when n = 1.

Let us now consider the problem of computing the Cholesky factorization An+1 =
Ln+1L

T
n+1, where

(70) An+1 =

(
An a
aT b

)
∈ R(n+1)×(n+1),

where a ∈ Rn, b ≥ 0 and we assume that we have already computed the Cholesky
factorization An = LnL

T
n . We define

(71) Ln+1 =

(
Ln 0
pT q

)
,

where p ∈ Rn and q ≥ 0 are to be determined. Then

(72) An+1 =

(
An a
aT b

)
=

(
Ln 0
pT q

)(
LTn p
0T q

)
,

and p and q must therefore satisfy the equations

(73) Lnp = a

and

(74) ‖p‖2 + q2 = b.

It is (74) that presents the difficulty: we must prove that

(75) b ≥ ‖p‖2 = ‖L−1n a‖2

to ensure that q2 ≥ 0. To this end, we shall first deal with the simpler case when
An = In.

Lemma 11.1. Let An = In. Then b ≥ ‖a‖2.

Proof. For any v ∈ Rn and w ∈ R we have

0 ≤
(

v
w

)T (
In a
aT b

)(
v
w

)
= vTv + 2wvTa + bw2

= ‖v + wa‖2 +
(
b− ‖a‖2

)
w2.

Setting w = 1 and v = −a, we obtain 0 ≤ b− ‖a‖2, as desired. �

To extend this result to the original case, we use the following trick to relate the
general An+1 to the case where An = In.(

L−1n 0
0T 1

)(
An a
aT b

)(
L−Tn 0
0T 1

)
=

(
L−1n AnL

−T
n L−1n a(

L−1n a
)T

b

)
=

(
In L−1n a(

L−1n a
)T

b

)
.



18 BRAD BAXTER

Hence Lemma 11.1 implies that

b ≥ ‖L−1n a‖2,
which is (75), as required.

Students are often be more familiar with the square-root defined by A1/2 =
QD1/2ATQ, where A = QDQT is the spectral factorization of A, rather than
the Cholesky factorization A = LLT . Thus (A1/2)2 = LLT , and it can be shown
that L = A1/2W , where W is an orthogonal matrix. [Essentially the argument is as
follows. If we compute the SVD L = USV T , where U and V are orthogonal matrices
and S is the diagonal matrix of singular values of L, then LLT = (USV T )(V SUT ) =
US2UT = A = QDQT . Hence U = Q and S = D1/2. Thus L = QD1/2V T =
A1/2W , where W = QV T .]

With this in mind, we see that (75) becomes

(76) b ≥ ‖L−1n a‖2 = ‖A−1/2n a‖2 = aTA−1n a.

Once we know condition (76), it’s possible to remove all of the scaffolding used
above, although I believe most readers will find the more circuitous route described
above useful: it’s often good to leave some scaffolding in place!

Lemma 11.2. Let An ∈ Rn×n be any symmetric non-negative definite matrix and
define An+1 ∈ R(n+1)×(n+1) by (70). Then An+1 is non-negative definite if and
only if

(77) b ≥ aTA−1n a.

Proof. For any v ∈ Rn and w ∈ R we have

0 ≤
(

v
w

)T (
An a
aT b

)(
v
w

)
= vTAnv + 2wvTa + bw2

= ‖A1/2
n v + wA−1/2n a‖2 +

(
b− aTA−1n a

)
w2.

[How did I complete the square here? The key point is that vTAnv = (A
1/2
n v)T (A

1/2
n v),

which implies that we must then write the second term as vTa = (A
1/2
n v)T (A

−1/2
n a).]

If An+1 is non-negative definite, then setting w = 1 and v = −a we obtain
0 ≤ b − aTA−1n a. Conversely, if b − aTA−1n a ≥ 0, then An+1 is non-negative
definite. �
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12. The Multivariate Beta Function

The classical Beta function is defined by

(78) B(α1, α2) =

∫ 1

0

tα1−1(1− t)α2−1 dt,

for positive α1 and α2, and satisfies the well-known relation

(79) Γ(α1)Γ(α2) = Γ(α1 + α2)B(α1, α2).

This note provides a multivariate generalization of (78) and (79), together with a
short derivation of Dirichlet’s integral as a bonus.

I shall define the n-variate Beta function by

(80) B(α1, . . . , αn) = n−1/2
∫
co(e1,...,en)

tα1−1
1 tα2−1

2 · · · tαn−1
n dn−1(t),

where α1, . . . , αn can be any positive numbers and dn−1(t) denotes (n−1)-dimensional
Lebesgue measure on the closed convex hull co(e1, . . . , en) of the coordinate vec-
tors e1, . . . , en ∈ Rn. The n−1/2 factor ensures that this definition agrees with the
classical Beta function when n = 2.

There is a natural generalization of (79):

Lemma 12.1. If α1, . . . , αn > 0, then

(81) Γ(α1) · · ·Γ(αn) = Γ(α1 + · · ·+ αn)B(α1, . . . , αn).

Proof. We have

Γ(α1) · · ·Γ(αn)

=

∫
[0,∞)n

e−(t1+···+tn)tα1−1
1 · · · tαn−1

n dt

=

∫ ∞
0

e−u

(
n−1/2

∫
co(ue1,...,uen)

vα1−1
1 · · · vαn−1

n dn−1(v)

)
du

=

∫ ∞
0

e−uun−1+α1−1+···+αn−1

(
n−1/2

∫
co(e1,...,en)

wα1−1
1 · · ·wαn−1

n dn−1(w)

)
du

=

∫ ∞
0

e−uuα1+···+αn−1

(
n−1/2

∫
co(e1,...,en)

wα1−1
1 · · ·wαn−1

n dn−1(w)

)
du

= Γ(α1 + · · ·+ αn)B(α1, . . . , αn).

�

Theorem 12.2. Let f : [0,∞)→ R be a continuous function. Then∫
Sn

f(t1 + · · ·+ tn)tα1−1
1 · · · tαn−1

n dt = B(α1, . . . , αn)

∫ 1

0

f(u)uα1+···+αn−1 du

=
Γ(α1) · · ·Γ(αn)

Γ(α1 + · · ·+ αn)

∫ 1

0

f(u)uα1+···+αn−1 du.(82)

Proof. Immediate. �
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13. Conics

13.1. The Ellipse and Hyperbola. Let’s begin with the ellipse and the hyper-
bola, which we shall define as contours of the functions

(83) f±(x) = ‖x + s‖ ± ‖x− s‖, x ∈ Rn.
The key trick is to observe that

(84) 4xT s = ‖x + s‖2 − ‖x− s‖2 = f+(x)f−(x).

If f+(x) = α, then f−(x) = 4xT s/α. Adding these equations gives

(85) f+(x) + f−(x) = 2‖x + s‖ = α+
4xT s

α
=
α2 + 4xT s

α
,

and squaring both sides yields the quadratic form

(86) 4‖x + s‖2 =

(
α2 + 4xT s

α

)2

.

The matrix occurring in this quadratic form is

(87) M = 4

(
In −

4

α2
ssT
)
.

Similarly, if f−(x) = α, then f+(x) = 4xT s/α and adding them yields (86) and
(87). The distinction between the contours of f± lies in the eigenvalues of M , which
are 1 (with multiplicity n− 1) and

λ = 4

(
1− 4‖s‖2

α2

)
.

If f+(x) = α, then the triangle inequality implies that

‖s‖ ≤ 1

2
(‖s + x‖+ ‖s− x‖) =

α

2
,

i.e.
4‖s‖2 ≤ α2,

which implies λ ≥ 0, with inequality if and only if x and ±s are collinear. Thus
M is non-negative definite on contours of f+ and M is positive definite when the
contour is not the line segment joining ±s.

In contrast, the triangle inequality also implies that

α = ‖x + s‖ − ‖x− s‖ ≤ ‖x + s− (x− s) ‖ = 2‖s‖,
or 4‖s‖2/α2 ≥ 1 on contours of f−, i.e. λ ≤ 0.

13.2. The Reflector Property. We have

(88) ∇f±(x) =
x + s

‖x + s‖
± x− s

‖x− s‖
.

Then

(89)

(
x + s

‖x + s‖

)T
∇f±(x) = 1± (x + s)

T
(x− s)

‖x + s‖‖x− s‖
.

and

(90)

(
x− s

‖x− s‖

)T
∇f±(x) =

(x + s)
T

(x− s)

‖x + s‖‖x− s‖
± 1.

Thus

(91)

(
x + s

‖x + s‖

)T
∇f±(x) = ±

(
x− s

‖x− s‖

)T
∇f±(x),

which is the reflector property for the ellipse and hyperbola.
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13.3. Conic sections really are conic sections. Let us take a cone of semi-angle
θ in Rn whose axis is the line generated by a unit vector u ∈ Rn, i.e.

(92) C = {x ∈ Rn :
uTx

‖x‖
= ± cos θ}.

In other words, the equation for the cone is

(93)
(
uTx

)2
= ‖x‖2 cos2 θ,

or

(94) xT
(
In cos2 θ − uuT

)
x = 0.

Now let v1,v2, . . . ,vn be any orthonormal basis for Rn and consider the hyperplane
P with normal vector vn at signed distance zn from the origin. In other words,

(95) P = {x =

n∑
k=1

zkvk : z1, z2, . . . , zn−1 ∈ R}.

If we let V ∈ Rn×n be the orthogonal matrix with columns v1, . . . ,vn and substitute
x = V z in (93), then we obtain

(96)
(
zTV Tu

)2
= ‖z‖2 cos2 θ.

Setting

(97) U = V Tu,

we see that (96) becomes

(98)

(
n∑
k=1

zkUk

)2

=

(
n∑
k=1

z2k

)
cos2 θ,

or

(99)

n−1∑
k,`=1

zkz`UkU` + 2znUn

n−1∑
k=1

zkUk + z2nU
2
n =

(
n−1∑
k=1

z2k

)
cos2 θ + z2n cos2 θ.

Hence, writing

ẑ =


z1
z2
...

zn−1

 and Û =


U1

U2

...
Un−1


(99) becomes the quadratic form

(100) ẑTM ẑ− 2znUnẑT Û + z2n
(
cos2 θ − U2

n

)
= 0,

where the matrix M ∈ R(n−1)×(n−1) is given by

(101) M = In−1 cos2 θ − ÛÛT .

Example 13.1. Let us choose vn = u, so that Û = 0 and Un = 1. Then (100)
becomes (

n−1∑
k=1

z2k

)
cos2 θ − z2n sin2 θ = 0,

or
n−1∑
k=1

z2k = z2n tan2 θ.
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The eigenvalues of M are cos2 θ (with multiplicity n− 2) and

µ := cos2 θ − ‖Û‖2.
Now

1 = ‖u‖2 =

n∑
k=1

(
uTvk

)2
= ‖Û‖2 + U2

n,

which implies

(102) µ = cos2 θ −
(
1− U2

n

)
= U2

n − sin2 θ.

Example 13.2. Let n = 3 and suppose µ = 0. Then

‖Û‖2 = cos2 θ

and
Un = ± sin θ.

If q1 = Û/‖Û‖ and q2 ∈ R2 is orthogonal to Û, then the matrix

Q =
(

q1 q2

)
∈ R2×2

is orthogonal and

D := QTMQ =

(
µ 0
0 cos2 θ

)
.

If we let ẑ = Qx, then

(103) cos2 θ x22 ± 2z3 sin θ cos θx1 + z23
(
cos2 θ − sin2 θ

)
= 0.

13.4. The Parabola. We now contour surfaces of the function

(104) f(x) = utx− ‖x− s‖, for x ∈ Rn.
Thus, if f(x) = c, then

(105) uTx− c = ‖x− s‖,
i.e. points equidistant from the plane uT z = c and the point s. Squaring (105) we
obtain

(106)
(
uTx− c

)2
= ‖x− s‖2.

Example 13.3. If u = en, the nth coordinate vector, and s = aen, then (106)
becomes

(xn − c)2 = ‖x− aen‖2 = x21 + · · ·+ x2n−1 + (xn − a)
2
.

Thus
−2cxn + c2 = x21 + · · ·+ x2n−1 − 2axn + a2

or
2(a− c)xn = x21 + · · ·+ x2n−1 + a2 − c2.

We can also prove the Reflector Property for the parabola, since

(107) ∇f(x) = u−
(

x− s

‖x− s‖

)
whence

(108) uT∇f(x) = 1− uT (x− s)

‖x− s‖
and

(109)

(
x− s

‖x− s‖

)T
∇f(x) =

uT (x− s)

‖x− s‖
− 1.

Hence
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(110) uT∇f(x) = −
(

x− s

‖x− s‖

)T
∇f(x),

or

(111) uT∇f(x) =

(
s− x

‖s− x‖

)T
∇f(x),

which is the reflector property.
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Figure 2. The probability that all n birthdays are different

14. The Birthday Problem

This is a traditional probabilistic problem: given n people, whose birthdays are
assumed to be uniformly distributed over the N = 365 days of the year (ignoring
leap years), find the probability that at least two of them share a birthday. Now

(112) P(at least two share a birthday) = 1− P(all birthdays distinct) =: 1− pn.

Now

(113) pn =
N(N − 1)(N − 2) · · · (N − n+ 1)

Nn

and, dividing numerator and denominator by Nn, we obtain

(114) pn =

(
1− 1

N

)(
1− 2

N

)
· · ·
(

1− n− 1

N

)
.

In one sense the problem is now solved. The surprise is that pn tends to zero rather
quickly. Indeed, p23 = 0.5073, by direct calculation. However, plotting pn reveals a
suspiciously Gaussian curve, as we see in Figure 2. Why does pn decay so quickly
and can we understand the seemingly Gaussian behaviour?

N=365; n=100; p=1; prob=zeros(1,n);

%

% prob(k) = (1 - 1/N)(1 - 2/N)...(1-k/N)

% = prob(all k+1 bdays different)

%

for k=1:n

p=p*(1-k/N);

prob(k)=p;

end
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Figure 3. x: pn; line: exp(−n(n− 1)/(2N))

First take logarithms:

(115) log pn =

n−1∑
k=1

log

(
1− k

N

)
.

Now

log (1 + x) = x− x2

2
+
x3

3
− x4

4
+ · · · ,

and the series is convergent for |x| < 1. Thus

(116) log (1− x) = −x− x2

2
− x3

3
− x4

4
− · · · ≤ −x,

for 0 ≤ x < 1. If |x| � 1, then we also have the approximation log (1 + x) ≈ −x.
Thus

(117) log pn ≤ −
n−1∑
k=1

k

N
= −n(n− 1)

2N
,

which implies

(118) pn ≤ e−n(n−1)/(2N).

This explains the rapid decay and the Gaussian resemblance, as we see in Figure 3.
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15. The Bike Problem via the Inclusion–Exclusion Formula

Suppose n cyclists randomly permute their bikes. What is the probability that
at least one cyclist has the correct bike?

More formally, the sample space X consits of all positive permutations of the
integers 1, 2, . . . , n, i.e.

(119) X = {(i1, i2, . . . , in) : i1, . . . , in a permutation of 1, . . . , n}.

We shall assign each of these permutations the same probability 1/n!.
Further, define

(120) Ak = {x ∈ X : ik = k}, for k = 1, 2, . . . , n.

Thus Ak is the set of outcomes for which cyclist k gets bike k. We want to calculate
the probability

P (A1 ∪A2 ∪ · · · ∪An) .

Example 15.1. If n = 3, then the sample space is

X = {(123), (132), (213), (231), (312), (321)}.

Then A1 = {(123), (132)}, A2 = {(123), (321)} and A3 = {(123), (213)}, whilst
P(A1 ∪A2 ∪A3) = 4/6 = 2/3.

The solution requires the inclusion–exclusion formula:

(121) P(A1∪A2∪· · ·∪Ak) =

n∑
`=1

(−1)`−1
∑

1≤k1<k2<···<k`≤n

P(Ak1∩Ak2∩· · ·∩Ak`).

Exercise 15.1.

P(Ak1 ∩ · · · ∩Akm =
(n−m)!

n!
.

Thus ∑
1≤k1<k2<···<k`≤n

P(Ak1 ∩Ak2 ∩ · · · ∩Ak`) =

(
n

m

)
(n−m)!

n!
=

1

m!
.

Hence

(122) P(A1 ∪ · · · ∪An) = 1− 1

2!
+

1

3!
+ · · ·+ (−1)n−1

n!
→ 1− e−1.

15.1. The Inclusion–Exclusion Formula. For each subset A of the sample space
X, the indicator function IA : X → {0, 1} is defined by IA(x) = 1 if and only if
x ∈ A.

Example 15.2. For Example 15.1 we have

IA1
(123) = IA1

(132) = 1

but

IA1
(213) = IA1

(231) = IA1
(312) = IA1

(321) = 0.

The indicator function has some crucial properties. Firstly

1− IA(x) = IAc(x)

where Ac is the complement of A, i.e. X \A. Further,

IA∩B(x) = IA(x)IB(x).

Further, we use de Morgan’s Law:

(A1 ∪ · · · ∪An)
c

= Ac1 ∩ · · · ∩Acn.
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Thus

IA1∪···∪An(x) = 1− I(A1∪···∪An)c(x)

= 1−
n∏
k=1

(1− IAk
(x)) .
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16. Binomial Coefficients and the Central Limit Theorem

16.1. The Aymptotic Behaviour of
(
2n
n

)
. Let’s begin with the integral

In =
1

2π

∫ π

−π
cos2n θ dθ

=
1

2π

∫ π

−π

(
eiθ + e−iθ

2

)2n

dθ

=
1

2π

∫ π

−π
2−2n

2n∑
k=0

(
2n

k

)
eikθe−i(2n−k)θ dθ

= 2−2n
(

2n

n

)
.(123)

Now, using the substitution θ = t/
√
n,

√
nIn =

√
n

π

∫ π/2

−π/2
cos2n θ dθ

=
1

π

∫ (π/2)
√
n

−(π/2)
√
n

cos2n
(
t/
√
n
)
dt

→ 1

π

∫ ∞
−∞

e−t
2

dt =
1√
π
,(124)

by the Dominated Convergence Theorem.
Comparing (123) and (124) we obtain

(125) lim
n→∞

√
n

(
2n

n

)
4−n =

1√
π
,

or

(126)

(
2n

n

)
4−n ∼ 1√

πn
.

Example 16.1. We can also check our calculation using Stirling’s asymptotic for-
mula for n!:

lim
n→∞

n!√
2πnnne−n

= 1,

or

n! ∼
√

2πnnne−n.

Then (
2n

n

)
∼
√

2π · 2n (2n)
2n
e−2n(√

2πnnne−n
)2 =

√
4πn4n

2πn
=

4n√
πn

.

16.2. Ratios of central binomial coefficients. The ratios of the central bino-
mial coefficients

{
(

2n

n+ k

)
: −L ≤ k ≤ L},
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where n is very large and L is small compared with n, look Gaussian, and this is
reminiscent of our earlier description of the Birthday Problem. We have the ratio

R(n, k) :=

(
2n
n+k

)(
2n
n

)
=

(
(2n)!

(n− k)!(n+ k)!

)(
(n!)2

(2n)!

)
=

(n!)2

(n− k)!(n+ k)!

=
n!n(n− 1) · · · (n− k + 1)(n− k)!

(n− k)!(n+ k)(n+ k − 1) · · · (n+ 1)n!

=
n(n− 1) · · · (n− k + 1)

(n+ k)(n+ k − 1) · · · (n+ 1)

=
(1− 1

n )(1− 2
n ) · · · (1− k−1

n )

(1 + 1
n )(1 + 2

n ) · · · (1 + k
n )

.

Taking logarithms, we find

logR(n, k) =

k−1∑
j=1

log

(
1− j

n

)
−

k∑
j=1

log

(
1 +

j

n

)

≈ −
k−1∑
j=1

j

n
−

k∑
j=1

j

n

=
−k(k − 1)− (k + 1)k

2n
= −k

2

n
.

Hence, fixing L, we obtain

lim
n→∞

R(n, k)

e−k2/n
= 1, for − L ≤ k ≤ L.

Writing k = t
√
n, we obtain R(n, t

√
n) ∼ e−t2 .

16.3. Extending the integral approach. We use(
2n

n+ k

)
4−n =

1

2π

∫ π

−π
cos2n θe−2ikθ dθ

=
1

π

∫ π/2

−π/2
cos2n θe−2ikθ dθ

=
1

π

∫ (π/2)
√
n

−(π/2)
√
n

cos2n
(

t√
n

)
e−2ikt/

√
nn−1/2 dt,(127)

using the substitution θ = t/
√
n in the last line. Writing this in terms of Gamma

functions, we obtain

(128)

√
nΓ(2n+ 1)4−n

Γ(n+ k + 1)Γ(n− k + 1)
=

1

π

∫ (π/2)
√
n

−(π/2)
√
n

cos2n
(

t√
n

)
e−2ikt/

√
n dt,
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which emphasizes that both sides analytically continue. Now writing k = z
√
n, for

fixed z ∈ C, we obtain
√
nΓ(2n+ 1)4−n

Γ(n+ z
√
n+ 1)Γ(n− z

√
n+ 1)

=
1

π

∫ (π/2)
√
n

−(π/2)
√
n

cos2n
(

t√
n

)
e−2izt dt

→ 1

π

∫
R
e−t

2

e−2izt dt

=
1√
π
e−z

2

,(129)

or

(130) lim
n→∞

√
πn

(
2n

n+ z
√
n

)
4−n = e−z

2

.

One way to check this for large n is to use the logarithm of the Gamma function.
For example,

z=2;

n=10000;

a = 0.5*log(pi*n)+gammaln(2*n+1)

b = gammaln(n+z*sqrt(n)+1) + gammaln(n-z*sqrt(n)+1)+n*log(4);

a-b

ans = -4.00007917595212e+00

which is in excellent agreement.
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17. Monotone Matrix Functions

Let A and B be any pair of non-negative definite, symmetric, n×n matrices for
which A � B, in the sense that xTAx ≤ xTBx, for every x ∈ Rn. In response to
a colleague’s question, this note demonstrates that Aβ ≤ Bβ , for every β ∈ (0, 1).
This result is almost certainly not new, for the field of so called monotone matrix
functions is large and well-established; see, for example, [3]. However, I found the
literature sufficiently forbidding that it seemed easier to proceed independently, for
the integral relations used here are similar to those arising in the theory of radial
basis functions. In fact, the only reason for my being aware of [3] is its description of
W. Feller’s elegant proof of the Bernstein theorem (which states that the completely
monotonic functions are precisely the Laplace transforms of positive Borel measures
on [0,∞)).

Let Pn denote the cone of n×n symmetric positive definite matrices, and let Pn
be the set of symmetric non-negative definite matrices1. Give any A,B,∈ Pn, we
write A � B if B − A ∈ Pn; equivalently, A � B if and only if xTAx ≤ xTBx, for
all ∈ Rn. We shall say that a mapping f : Pn → Pn is a monotone matrix function
if A � B implies f(A) � f(B), for all A,B ∈ Pn. The primary purpose of this note
is to demonstrate that A 7→ Aβ is a monotone matrix function when 0 < β < 1.
Further details on the partial order � may be found in Chapter 7 of [4].

Lemma 17.1. (i) If A,B ∈ Pn, then A � B if and only if ρ(AB−1) ≤ 1,
where ρ is the spectral radius function.

(ii) If A,B ∈ Pn, then A � B if and only if B−1 � A−1.
(iii) If A,B ∈ Pn and A � B, then (I + tA−1)−1 � (I + tB−1)−1, for all t ≥ 0.

Proof. (i) First note that B − A ∈ Pn if and only if I − B−1/2AB−1/2 ∈ Pn,
and the latter condition holds if and only if ρ(B−1/2AB−1/2) ≤ 1. Finally,
we use the similarity transformation AB−1 = B1/2

(
B−1/2AB−1/2

)
B−1/2.

(ii) We only need to notice thatAB−1 andB−1A are similar toA−1/2B−1A−1/2.
(iii) If A � B, then B−1 � A−1, which implies I + tA−1 � I + tB−1, for all

t ≥ 0. Hence (I + tA−1)−1 � (I + tB−1)−1.
�

We see that Lemma 17.1 (iii) implies that

A �
m∑
k=1

wk(I + tkB
−1)−1

if A � B in Pn and the numbers {wk} and {tk} are positive. We deduce the
following continuous limit.

Corollary 17.2. Let w : (0,∞)→ (0,∞) be any continuous function for which∫ 1

0

w(t) dt <∞ and

∫ ∞
1

t−1w(t) dt <∞.

Then the function f : (0,∞)→ (0,∞) defined by the integral relation

(131) f(A) =

∫ ∞
0

(I + tA−1)−1w(t) dt, A ∈ Pn,

is a monotone matrix function.

Proof. This is an immediate consequence of Lemma 17.1 (iii). I’ve chosen simple
conditions on the weight function that are sufficient for the integral to be well-
defined. �

1Pn is an open subset of Rn×n in any norm, so Pn is its closure.
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We shall be using a particular weight function, but the same argument shows
that

f(A) =

∫ ∞
0

(I + tA−1)−1 dµ(t), A ∈ Pn,

defines a monotone matrix function for any positive Borel measure µ satisfying∫ 1

0

dµ(t) <∞ and

∫ ∞
1

t−1 dµ(t) <∞.

Lemma 17.3. Let α ∈ (0, 1). Then

(132) I(α) :=

∫ ∞
0

τ−α(1 + τ)−1 dτ =
π

sinαπ
.

Proof. This is an undergraduate exercise in contour integration. �

Theorem 17.4. Let β ∈ (0, 1). Then

(133) Aβ =
sinβπ

π

∫ ∞
0

tβ−1(I + tA−1)−1 dt,

which implies that A 7→ Aβ is a monotone matrix function.

Proof. If we set τ = t/a, for a > 0, in (132), then we obtain

a1−α =
sinαπ

π

∫ ∞
0

t−α(1 + ta−1)−1 dt,

which implies the formula

(134) A1−α =
sinαπ

π

∫ ∞
0

t−α(I + tA−1)−1 dt,

for A ∈ Pn. Setting β = 1−α, we deduce (133), for any A ∈ Pn and β ∈ (0, 1). �

My friend and colleague M. J. D. Powell has also supplied an elementary argument
demonstrating that A 7→ A1/2 is a monotone matrix function.

Corollary 17.5. Let A,B ∈ Pn. If A � B, then A1/2 � B1/2.

Proof. By Lemma 17.1 (i), A1/2 � B1/2 if and only if ρ(A1/2B−1/2) ≤ 1. Now

‖A1/2B−1/2v‖2 = vTB−1/2AB−1/2v ≤ ‖v‖2,
because ρ(B−1/2AB−1/2) ≤ 1 ifA � B, again by Lemma 17.1 (i). Hence ρ(A1/2B−1/2) ≤
1, as required. �

All of this has been couched in matrix language, but the original question was
posed in a Sobolev space.



MISCELLANY 33

18. Umbral Calculus

In the Nineteenth Century, and for much of the Twentieth Century, umbral cal-
culus was a useful tool of dubious repute with strong formal similarities to operator
calculus. However, while operator calculus became respectable via Fourier–Laplace
analysis and distribution theory, umbral calculus had to wait until the work of
Rota and others in the 1970s. This note uses umbral calculus to obtain yet another
derivation of the solution of a constant-coefficient linear recurrence relation, but
I hope it’s an attractive advertisement for umbral calculus. I don’t know if this
particular use of umbral calculus is new, but I strongly suspect it’s a rediscovery. I
hope that readers interested in learning more umbral calculus will consult [6], [5],
or one of the many fascinating papers of Zeilberger, e.g. [7].

For any complex sequence {an}∞n=0, an umbra is any linear functional L on the
algebra P = C[z] of polynomials, defined by L(zn) = an, for n ≥ 0. This simple
definition, due to Rota, might seem obvious in retrospect, but this is often the way.

18.1. Recurrence Relations.

Lemma 18.1. The set A of complex sequences {an}∞n=0 satisfying the recurrence
relation

(135) an+1 + λan + µan−1 = 0, for n ≥ 1,

where λ, µ ∈ C are constants, is in bijection with the set A∗ of linear functionals
annihilating the polynomial ideal generated by z2 + λz + µ.

Proof. If an umbra L ∈ P∗ generates a sequence satisfying (135), i.e. L(zn) = an,
for n ≥ 0, then

0 = an+1 + λan + µan−1 = L
(
zn−1

[
z2 + λz + µ

])
, n ≥ 1,

that is,
L(P (z)

[
z2 + λz + µ

]
) = 0,

for any polynomial P (z) ∈ P. The converse is immediate. �

Let z2 + λz + µ = (z − ν1)(z − ν2). Given any polynomial p(z) ∈ P, we have

p(z) = p(ν1) + p[ν1, ν2](z − ν1) + (z − ν1)(z − ν2)q(z),

for some polynomial q(z) ∈ P, where the divided difference p[ν1, ν2] is defined by

p[ν1, ν2] =

{
p(ν2)−p(ν1)
ν2−ν1 for ν1 6= ν2,

p′(ν1) ν1 = ν2.

Hence

L(p) = p(ν1)L(1) + p[ν1, ν2](L(z)− ν1L(1))

= p(ν1)a0 + p[ν1, ν2](a1 − ν1a0),(136)

and, when p(z) = zn, for n ≥ 0, we have

(137) an = L(zn) =

{
a0ν

n
1 + (a1 − ν1a0)

(
νn
2 −ν

n
1

ν2−ν1

)
for ν1 6= ν2,

a0ν
n
1 + (a1 − ν1a0)nνn−11 ν1 = ν2.
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19. The Lanczos Algorithm

A Krylov space is a subspace of the form

(138) K ≡ K(A, v, l) :=
〈
v,Av,A2v, . . . , Alv

〉
.

Thus every element of K can be written as p(A)v for some p ∈ Pl. Indeed, we could
define K as Pl(A)v.

Now let A be a symmetric matrix whose distinct eigenvalues are (λk)mk=1. Every
vector v can be expressed as v =

∑m
k=1 vkuk, where Auj = λjuj and uTj uk = δjk.

Hence

(139) p(A)v =

m∑
k=1

p(λk)vkuk, p ∈ Pl.

How do we generate orthogonal bases for K? If (p(A)v)T q(A)v = 0, then

(140)

m∑
k=1

p(λk)q(λk)v2k = 0,

that is (p, q) = 0 where (·, ·) denotes the semi-inner product

(141) (f, g) =

m∑
k=1

f(λk)g(λk)v2k.

Thus every orthogonal basis (pk(A)v)mk=1 of K corresponds to a set of orthogonal
polynomials (pk)m1 . Therefore one way to generate an orthogonal basis for K is to
use the three term recurrence relation

(142) φk+1(t) = (t− ρk)φk(t)− σ2
kφk−1(t), k ≥ 1,

the corresponding orthogonal basis being {φk(A)v : k = 0, 1, . . . ,m−1}. Rewriting
(5) in terms of rk = φk(A)v, we obtain

(143) rk+1 = (A− ρkI)rk − σ2
krk−1, k ≥ 1.

This provides Algorithm 19.1.

Algorithm 19.1. . Set r0 = v, ρ0 = rT0 Ar0/r
T
0 r0 and r1 = (A− ρ0I)r0.

For k = 1, 2, . . . do begin
ρk = rTk Ark/r

T
k rk

σ2
k = rTk−1Ark/r

T
k−1rk−1

rk+1 = (A− ρkI)rk − σ2
krk−1

Stop if ‖rk+1‖2 is sufficiently small.
end.

In matrix terms we have

(144) AR = RT,

where R = (r0, r1, . . . , rm−1) and T is the tridiagonal matrix

(145) T =



ρ0 −σ2
1

1 ρ1 −σ2
2

1 ρ2
. . .

ρm−2 −σ2
m−1

1 ρm−1


.
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The Lanczos algorithm is a slightly different form of Algorithm 1 which uses the ob-
servation thatR = QD, whereQ is an orthogonal matrix andD := diag(d0, . . . , dm−1).
Equation (7) becomes

(146) AQD = QDT or QTAQ = T̃ := DTD−1,

and we see that T̃ is a symmetric tridiagonal matrix. The columns (qK)m−1k=0 obey
the recurrence relation

(147) dk+1qk+1 = (A− ρkI)dkqk − σ2
kdk−1qk−1

and, because T̃ is symmetric, this becomes

(148) Aqk = ρkqk + δk−1qk−1 + δkqk+1, k ≥ 1,

or

(149) δkqk+1 = (A− ρkI)qk − δk−1qk−1.

Algorithm 19.2. Set q0 = v/‖v‖2, ρ0 = qT0 Aq0 and r = (A−ρ0I)q0. Let δ0 = ‖r‖2
and define q1 = r/δ0.

For k = 1, 2, . . . do begin
ρk = qTk Aqk
r = (A− ρkI)qk + δk−1qk−1
Let δk = ‖r‖2 and qk+1 = r/δk.

Stop if δk is sufficiently small.
end.
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This short note establishes a conjecture of Arieh’s. I would be very surprised if
this were not known — indeed, I thought it was in one of Halmos’ books on linear
algebra.

Theorem 19.1. Let U be any m×m unitary matrix. Then the principal submatrix
U(1 : n, 1 : n) has at least max{2n−m, 0} singular values equal to unity.

Proof. I shall prove a more general theorem. Let 2n > m and let W be any n-
dimensional subspace of Cm. Then WU := W ∩ UW is a U -invariant subspace of
dimension

dimWU = dimW + dimUW − dim (W + UW ) ≥ 2n−m ≥ 1.

Now let PW denote orthogonal projection onto W and consider the matrix Û :=
PWUPW . Since Û = U on WU , and U is an isometry, we deduce that Û has at
least dimWU ≥ 2n−m singular values equal to unity. We obtain the stated special
case by choosing

W = span{e1, . . . , en}.
�
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20. Mortgages – a once exotic instrument

You are presumably all too familiar with a repayment mortgage: we borrow a
large sum M for a fairly large slice T of our lifespan, repaying capital and interest
using N regular payments. The interest rate is assumed to be constant and it’s a
secured loan: our homes are forfeit on default. How do we calculate our repayments?

Let h = T/N be the interval between payments, let Dh : [0, T ]→ R be our debt
as a function of time, and let A(h) be our payment. We shall assume that our
initial debt is Dh(0) = 1, because we can always multiply by the true initial cost
M of our house after the calculation. Thus D must satisfy the equations

(150) Dh(0) = 1, Dh(T ) = 0 and Dh(`h) = Dh((`− 1))erh −A(h).

We see that D(h)h = erh −A(h), while

Dh(2h) = Dh(h)erh −A(h) = e2rh −A(h)
(
1 + erh

)
.

The pattern is now fairly obvious:

(151) Dh(`h) = e`rh −A(h)

`−1∑
k=0

ekrh,

and summing the geometric series2

(152) Dh(`h) = e`rh −A(h)

(
e`rh − 1

erh − 1

)
.

In order to achieve D(T ) = 0, we choose

(153) A(h) =
erh − 1

1− e−rT
.

Exercise 20.1. What happens if T →∞?

Exercise 20.2. Prove that

(154) Dh(`h) =
1− e−r(T−`h)

1− e−rT
.

Thus, if t = `h is constant (so we increase ` as we reduce h), then

(155) Dh(t) =
1− e−r(T−t)

1− e−rT
.

Almost all mortgages are repaid by 300 monthly payments for 25 years. However,
until recently, many mortgages calculated interest yearly, which means that we
choose h = 1 in Exercise 20.1 and then divide A(1) by 12 to obtain the monthly
payment.

Exercise 20.3. Calculate the monthly repayment A(1) when M = 105, T = 25,
r = 0.05 and h = 1. Now repeat the calculation using h = 1/12. Interpret your
result.

In principle, there’s no reason why our repayment could not be continuous,
with interest being recalculated on our constantly decreasing debt. For continuous
repayment, our debt D : [0, T ]→ R satisfies the relations

(156) D(0) = 1, D(T ) = 0 and D(t+ h) = D(t)erh − hA.

2Many students forget the simple formula. If S = 1 + a + a2 + · · · + am−2 + am−1, then
aS = a + a2 + · · · + am−1 + am. Subtracting these expressions implies (a − 1)S = am − 1, all
other terms cancelling.
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Exercise 20.4. Prove that

(157) D′(t)− rD(t) = −A,
where, in particular, you should prove that (156) implies the differentiability of
D(t). Solve this differential equation using the integrating factor e−rt. You should
find the solution

(158) D(t)e−rt − 1 = A

∫ t

0

(−e−rτ ) dτ = A

(
e−rt − 1

r

)
.

Hence show that

(159) A =
r

1− e−rT
and

(160) D(t) =
1− e−r(T−t)

1− e−rT
,

agreeing with (155), i.e. Dh(kh) = D(kh), for all k. Prove that limr→∞D(t) = 1
for 0 < t < T and interpret.

Observe that

(161)
A(h)

Ah
=
erh − 1

rh
≈ 1 + (rh/2),

so that continuous repayment is optimal for the borrower, but that the mortgage
provider is making a substantial profit. Greater competition has made yearly re-
calculations much rarer, and interest is often paid daily, i.e. h = 1/250, which is
rather close to continuous repayment.

Exercise 20.5. Construct graphs of D(t) for various values of r. Calculate the
time t0(r) at which half of the debt has been paid.

20.1. Pricing Mortgages via lack of arbitrage. There is a very slick arbitrage
argument to deduce the continuous repayment mortgage debt formula (160). Specif-
ically, the simple fact that D(t) is a deterministic financial instrument implies, via
arbitrage, that D(t) = a+ b exp(rt), so we need only choose the constants a and b
to satisfy D(0) = 1 and D(T ) = 1, which imply a + b = 1 and a + b exp(rT ) = 0.
Solving these provides a = exp(rT )/(exp(rT )− 1) and b = −1/(exp(rT )− 1), and
equivalence to (160) is easily checked.
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21. Pensions

In this note we compute the requirements for Defined Benefit pensions, where the
pension is a function of final salary and length of service. The numbers are chosen
to mimic USS before 2016, when it was an undiminished final salary scheme: it
is salutary to remember the pension we enjoyed so recently. The idea is solely to
provide a simple (even simplistic) model for experiment, the focus being the finance:
all actuarial details are therefore ignored (except for retirement years before death!).

We assume that a scheme member begins with an initial income of 1 at time zero,
which grows at rate g until retirement at time R. The member saves at contribution
rate c at interest rate r, so the pension fund at retirement is given by

(162) F = c

∫ R

0

egter(R−t) dt

if we assume continuous time, for simplicity. Thus

(163) F = c

(
egR − erR

g − r

)
= cegR

(
1− e−(g−r)R

g − r

)
.

At retirement, the aim is to pay the member a lump sum of 1.5 exp(gR), followed
by a pension of (R/80) exp(gR) until death D years later. This is where the true
actuarial difficulties begin, but we shall avoid this by treating D as a parameter.
We use the fund to create an annuity to pay the pension, and a standard argument
implies the pension cost

(164) P =
3

2
egR +

R

80
egR

∫ D

0

e−rt dt = egR
(

3

2
+
R

80

[
1− e−rD

r

])
.

Equating (163) and (164), and dividing by exp(gR), we obtain

(165) c

(
1− e−(g−r)R

g − r

)
=

3

2
+
R

80

[
1− e−rD

r

]
or

(166) c =

3
2 + R

80

(
1−e−rD

r

)
(

1−e−(g−r)R

g−r

) .

How do we choose the parameters? I have chosen r = 0.02 in most experiments,
although USS sometimes boasts of much higher yields in the equity investments.
The reason for the low value is that much of the USS fund is in UK bonds, whose
yield has been near zero since the financial crisis of 2007–2008: it is the near-zero
yield, imposed by central banks as part of Quantitative Easing, which is at the
root of the problem for all pension funds. You will also see further reasons for this
choice in the examples below.

I have provided MATLAB code at the end of this Section for experimentation.
As we should all know, the fund imposed a £55K cap on its Defined Benefit scheme
in 2016, and this was probably necessary (see the examples), and it’s easy to alter
the code to include caps. Some of my experiments strongly suggest that £55K is
not sustainable while r remains so low, unless contributions increase substantially.
The alternative is a lower cap, e.g. £45K, which does seem feasible. Of course, the
present decision is to remove the Defined Benefit component entirely in April 2019.
The usefulness of caps is further suggested by the next simple result.

Lemma 21.1. The contribution rate c is an increasing function of the salary in-
crease rate g.
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Proof. If we let v(g) denote the denominator of (166) as a function of the salary
increase rate g, then we can write this as the integral

v(g) :=
1− e−(g−r)R

g − r
=

∫ R

0

e−(g−r)s ds.

We can now differentiate under the integral sign with respect to g, obtaining

∂v

∂g
= −

∫ R

0

se−(g−r)s ds < 0.

Thus v(g) is a strictly decreasing function of g, which implies that c(g), being a
multiple of its reciprocal, is a strictly increasing function of g. �

Here are some examples of the MATLAB code’s output for different parameters.

Example 21.1. For an academic who triples their salary over 40 years, here is
one result.

Interest rate r = 0.02, service length R = 40 years

Final salary/Initial salary = exp(g*R) = 3

The contribution percentage needed for D = 20 funded years c = 0.281721

The number of funded years for the USS contribution rate is 17.8077

Example 21.1 illustrates several USS problems, not least of which is the high
required value of c. At present, each month USS members contribute 8% of gross
salary, whilst the employer contributes 18%. The choices are to increase r, fund
higher contributions, reduce g (effectively capping the salary) or reduce D (effec-
tively ending Defined Benefit, unless our VCs introduce a euthanasia component).

Example 21.2. We can model a salary cap by imposing exp(gR) = 2. If we assume
an initial salary of £27K, then this is close to our current salary cap of £55K.

Interest rate r = 0.02, service length R = 40 years

Final salary/Initial salary = exp(g*R) = 2

The contribution percentage needed for D = 20 funded years c = 0.23077

The number of funded years for the USS contribution rate is 23.8243

This is better news than Example 21.1.

Example 21.3. We can model a more stringent salary cap by imposing exp(gR) =
1.7. If we assume an initial salary of £27K, then this is close to a salary cap of
£45K.

Interest rate r = 0.02, service length R = 40 years

Final salary/Initial salary = exp(g*R) = 1.7

The contribution percentage needed for D = 20 funded years c = 0.212218

The number of funded years for the USS contribution rate is 27.0143

Finally, some of our colleagues see much larger salary increases during their
career. The following example is designed for these successful individuals.

Example 21.4. Let us consider a highly successful academic who increases their
salary from £27K to £400K:

Interest rate r = 0.02, service length R = 40 years

Final salary/Initial salary = exp(g*R) = 14.8148

The contribution percentage needed for D = 20 funded years c = 0.543296

The number of funded years for the USS contribution rate is 6.76152
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Until the mid-1990s, it was still usual for most academics to remain lecturers
throughout their academic careers, with a small minority achieving higher rank.
Thus the typical value of g was smaller, say exp(gR) = 2 for R = 40, or g ≈
0.017. In other words, limited salary progression is good for Defined Benefit schemes
based on final salary. For that reason, the SAUL pension fund (Superannuation
Arrangements of the University of London) is much more likely to be able to keep
funding a Defined Benefit scheme, since it is mostly limited to lower salary ranges.

Example 21.5. Why have I chosen the relatively small value of r = 0.02 in my
examples. Surely USS is better than that, given the tremendous bonuses paid to
their fund managers? Let’s try an example:

Interest rate r = 0.04, service length R = 40 years

Final salary/Initial salary = exp(g*R) = 2

The contribution percentage needed for D = 20 funded years c = 0.128724

The number of funded years for the USS contribution rate is 36.2423

This would be a world in which USS pension benefits should increase not decrease!
Clearly this is not our world, so USS is achieving something in the range 0.01 ≤
r ≤ 0.03.

Example 21.6. As a simple check on our calculations, let us consider the special
case when g and r are tiny. In this case, Taylor expansions of the exponential yield

cR =
3

2
+
RD

80
,

or

c =
3

2R
+
D

80
.

If we consider an academic who retires after R = 40 years of service, then

c =
3 +D

80
.

Thus D = 20 years of retirement require c = 23/80 ≈ 29% of gross salary, as
expected.

Finally, on the next page there is the promised MATLAB to calculate c and D.
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%

% Defined Benefit Pensions

%

% r is the interest rate

%

r=0.02;

%

% R = number of years of service, exp(g*R)=3.0

%

R=40;

%

% Assumption: Final salary/initial salary = exp(gR)

%

% g=log(3.0)/R;

g=log(2.0)/R;

% g = log(1.7)/R;

%g = log(400/27)/R;

%

% D = number of years in retirement (i.e. before death)

% Employer pays 18% and employee pays 8% of gross salary

%

%

D=20;

c=0.26;

%

printf(’Interest rate r = %d, service length R = %d years\n’, r, R)

printf(’Final salary/Initial salary = exp(g*R) = %d\n’, exp(g*R))

%

% F1 is multiplied by c to obtain the actual

% pension fund total

%

F1=(1-exp(-(g-r)*R))/(g-r);

%

% We first find the annuity base cost required

% for D years of retirement, together with the

% corresponding contribution rate.

%

P=1.5 + (R/80)*(1-exp(-r*D))/r;

c1=P/F1;

%

printf(’The contribution percentage needed for D = %d funded years c = %d\n’, D, c1)

%

% We next compute the number D1 of retirement years

% our fund can actually provide for the USS contribution rate c.

%

F=c*F1;

D1=-(1.0/r)*log(1-r*(F-3/2)/(R/80));

printf("The number of funded years for the USS contribution rate is %d\n", D1)
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22. Complex Numbers

22.1. Rotation–Enlargements. For any r ∈ R and θ ∈ R, we define the rotation–
enlargement

(167) R(r, θ) = r

(
cos θ − sin θ
sin θ cos θ

)
,

and we let C denote the set of all rotation-enlargement matrices. If we multiply
rotation–enlargement matrices R(r1, θ1) and R(r2, θ2), then we obtain R(r1r2, θ1 +
θ2), i.e.

(168) R(r1r2, θ1 + θ2) = R(r1, θ1)R(r2, θ2).

Exercise 22.1. Set r1 = r2 = 1 in (168) and obtain the trigonometric addition
formulae for cos (θ1 + θ2) and sin (θ1 + θ2).

Lemma 22.1. The rotation–enlargement matrices C comprise the matrices of the
form

(169)

(
a −b
b a

)
,

for a, b ∈ R,

Proof. Given any rotation–enlargement matrix R(r, θ), we let a = R cos θ and b =

R sin θ. Conversely, given any matrix of the form (169), we let R =
√
a2 + b2 and

define θ by cos θ = a/R, sin θ = b/R. �

It is not difficult to check that C satisfies the axioms for a field. Further, setting

(170) 1 = R(1, 0) =

(
1 0
0 1

)
and J = R(1, π/2) =

(
0 −1
1 0

)
,

we see that every rotation–enlargment matrix can be uniquely written in the form

(171) a1 + bJ.

Further, the relation

(172) J2 = R(1, π) = −1

implies the multiplication rule

(173) (a11 + b1J) (a21 + b2J) = (a1a2 − b1b2) 1 + (a1b2 + b1a2) J.

By this point it should come as no surprise that the rotation–enlargment matrices
are really the complex numbers in very light disguise.
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23. A Geometrical Interpretation of limsup

Let `∞ denote the vector space of real sequences x = (x1, x2, . . .) endowed with
the norm

(174) ‖x‖∞ = sup
k≥1
|xk|.

The (`∞, ‖ · ‖∞) is the Banach space of bounded real sequences. It contains the
proper closed subspace c0 of null sequences, i.e. sequences which converge to zero.
We shall show that

(175) dist (x, c0) = lim
n→∞

sup
k≥n
|xk|.

Another way of stating (175) is that the quotient space `∞/c0 inherits the quotient
norm

(176) ‖x + c0‖∞ ≡ dist (x, c0) = lim
n→∞

sup
k≥n
|xk|.

Firstly, given any x ∈ `∞ \ c0, define the sequence

z(n) = (x1, x2, . . . , xn−1, 0, 0, . . .) ∈ c0, n ≥ 2.

Thus
‖x− z(n)‖∞ = sup

k≥n
|xk|

and thus

(177) dist (x, c0) ≤ lim
n→∞

sup
k≥n
|xk|.

Conversely, observe that ‖x‖∞ ≥ supk≥n |xk|, for each positive integer n, which
implies the simple inequality

‖x‖∞ ≥ lim
n→∞

sup
k≥n
|xk|.

Further, x and x − z possess the same convergent subsequences, with the same
limits, for any z ∈ c0, and a classical result states that limn→∞ supk≥n |xk| is also
the largest real number that is the limit of any convergent subsequence of x. Hence

(178) ‖x− z‖∞ ≥ lim
n→∞

sup
k≥n
|xk − zk| = lim

n→∞
sup
k≥n
|xk|.

Combining (177) and (178) yields (175).
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24. Variation of Parameters

This is my own treatment of an entirely classical technique.
The linear second order ODE

(179) y′′ +Q(x)y′ +R(x)y = S(x)

has general solution

(180) y = a1y1 + a2y2 + u, for any a1, a2 ∈ R,

where the complementary functions (CFs) y1 and y2 satisfy the homogeneous equa-
tion

(181) y′′ +Q(x)y′ +R(x)y = 0

and the particular integral (PI) u satisfies (179). If both linearly independent CFs
are known, then we shall show that

(182) u(x) = c1(x)y1(x) + c2(x)y2(x)

where

(183) c1(x) = −
∫ x

x0

y2(u)S(u)

W (u)
du, c2(x) =

∫ x

x0

y1(u)S(u)

W (u)
du

and the Wronskian W (u) is defined by

(184) W (u) = y1(u)y′2(u)− y′1(u)y2(u).

It is possible to simply substitute (182) in (179) and calculate, but it is more
enlightening, in my view, to see some further analysis. The first key point is that
the second order ODE (179) in y can be transformed into an equivalent first order
ODE in terms of an associated vector function

(185) z =

(
y
y′

)
.

Then (179) implies

(186) z′ =

(
y′

y′′

)
=

(
y′

S −Qy′ −Ry

)
= f(x) +A(x)z,

where

(187) A(x) =

(
0 1

−R(x) −Q(x)

)
and f(x) =

(
0

S(x)

)
.

Now the general solution to the homogeneous ODE (181) can be restated in the
form

(188) z = Y (x)c,

where

(189) Y (x) =

(
y1(x) y2(x)
y′1(x) y′2(x)

)
and c ∈ R2 can be any constant vector. Thus z satisfies the first order ODE

(190) (D −A(x)) z = 0, or equivalently Y ′(x) = A(x)Y (x),

where D := d/dx. The idea of Variation of Parameters is to solve (179) in its first
order form, i.e.

(191) (D −A(x)) z = f ,

by substituting

(192) z = Y (x)c(x),
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where the parameter vector c(x) is now a function of x, rather than being a constant,
hence the name of the method. Thus we obtain

f = (D −A(x)) (Y (x)c(x))

= D (Y (x)c(x))−A(x)Y (x)c(x)

= Y ′(x)c(x) + Y (x)c′(x)−A(x)Y (x)c(x)

= (Y ′(x)−A(x)Y (x)) c(x) + Y (x)c′(x).

Now
Y ′(x)−A(x)Y (x) = 0,

by (190), so we find the first order ODE

Y (x)c′(x) = f(x)

or

(193) c′(x) = Y (x)−1f(x).

Integrating this first order ODE, we obtain

(194) c(x) = c(x0) +

∫ x

x0

Y (u)−1f(u) du.

Now it is elementary that the Wronskian W (u) = detY (u), so that the inverse
matrix Y (u)−1 is given by

(195) Y (u)−1 =
1

W (u)

(
y′2(u) −y2(u)
−y′1(u) y1(u)

)
.

Hence
(196)

Y (u)−1f(u) =
1

W (u)

(
y′2(u) −y2(u)
−y′1(u) y1(u)

)(
0

S(u)

)
=

1

W (u)

(
−y2(u)S(u)
y1(u)S(u)

)
Substituting (196) in (194) yields (182) and (183). Further, using (191) we deduce

(197) z = Y (x)c(x) = Y (x)c(x0) + Y (x)

∫ x

x0

Y (u)−1f(u) du.

Example 24.1. Suppose

xy′′ + 2y′ + xy = 4 cosx

and it is easily (if tediously!) checked that the CFs are y1(x) = x−1 cosx and
y2(x) = x−1 sinx. The Wronskian for these two functions is given by W (x) = x−2,
so the CFs are linearly independent. We must recast the ODE in the form (179),
that is,

y′′ + 2x−1y′ + y = 4x−1 cosx,

i.e. Q(x) = 2x−1, R(x) = 1 and S(x) = 4x−1 cosx. Then

c1(x) = −4

∫ x

x0

cosu sinu du = 2 cos2 x+ c1(x0)

and

c2(x) = 4

∫ x

x0

cos2 u du = 2 (x+ sinx cosx) + c2(x0).

Combining these, and ignoring the constant terms because they correspond to the
CFs not the PI, we find

u(x) = 2y1(x) cos2 x+ 2y2(x) (x+ sinx cosx) = 2
(
sinx+ x−1 cosx

)
.

Of course, y1(x) = x−1 cosx, so the PI is simply

u(x) = 2 sinx.
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One particularly interesting case is that of constant coefficients, i.e. Q(x) ≡ Q
and R(x) ≡ R. In this case, we find A ≡ A(x) is a constant matrix and the solution
of Y ′ = AY is the matrix exponential

Y (x) = exp(Ax)c,

for some constant vector c.

Example 24.2. Suppose
y′′ + 3y′ + 2y = eαx,

where α 6= −2,−1, for reasons which will become apparent. Then a simple calcula-
tion provides y1(x) = exp(−2x), y2(x) = exp(−x) and W (x) = e−3x. Hence (183)
yields

c1(x) = −
∫ x

x0

e3ue−ueαu du = −
∫ x

x0

eα+2u du =
e(α+2)x0 − e(α+2)x

α+ 2
,

since α 6= −2. Further

c2(x) =

∫ x

x0

e3ue−2ueαu du =

∫ x

x0

e(α+1)u du =
e(α+1)x − e(α+1)x0

α+ 1
,

since α 6= −1. Omitting the CF terms, we find the PI

u(x) = c1(x)y1(x) + c2(x)y2(x) = − eαx

α+ 2
+

eαx

α+ 1
=

eαx

(α+ 1)(α+ 2)
.

Example 24.3. More generally, suppose

(D − λ1) (D − λ2) = eαx,

where λ1, λ2 ∈ C and different and α ∈ R \ {λ1, λ2}. Then yk(x) = exp(λkx),
k = 1, 2, and it is easily checked that

W (x) =
e(λ1+λ2)x

λ2 − λ1
.

Thus

c1(x) = − 1

λ2 − λ1

∫ x

x0

e−(λ1+λ2)ueλ2ueαu du = − 1

λ2 − λ1

(
e(α−λ1)x − e(α−λ1)x0

α− λ1

)
and

c2(x) =
1

λ2 − λ1

∫ x

x0

e−(λ1+λ2)ueλ1ueαu du = − 1

λ2 − λ1

(
e(α−λ2)x − e(α−λ2)x0

α− λ2

)
.

Hence, omitting the CF terms, we find

u(x) = eαx
1

λ2 − λ1

(
1

α− λ2
− 1

α− λ1

)
=

eαx

(α− λ1) (α− λ2)
.

Heaviside would have simply observed that D exp(αx) = α exp(αx) and cheerfully
replaced D by α in

eαx

(D − λ1)(D − λ2)
.
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25. Bond Pricing

We begin with the fundamental concept of the time value of money.

Example 25.1. Suppose we need 100 in 5 years and the interest rate is a constant
5%. Then the amount M needed today must satisfy

(1.05)5M = 100,

or

M = 100/(1.055) = 78.35.

Exercise 25.1. What amount M should be invested today to obtain 100 in 5 years
if the interest rate is 2%.

More generally, if the interest rate is r%, then M today will grow to M(1 + r)n

after n years: we say its future value (FV) of today’s M in n years is M(1 + r)n.
Conversely, if we need D in n years, then we need to invest

D

(1 + r)n

today: we say that the present value (PV) of D in n years is D/(1 + r)n and we
call r the discount rate.

Companies and Governments typically pay today’s bills by borrowing via bonds.
The Bank of England was founded in 1694 to sells bonds for the English Government
(which became the British Government in 1707, following the union of Scotland and
England). The Bank of England was one of the first central banks (the Swedish
Bank was slightly earlier) and bonds rapidly replaced many alternative methods
used by states to obtain funds (monopolies, lotteries, subscriptions and taxes were
all used before this and still are). What is a bond?

The idea is quite simple: we provide the state with F today, at time t = 0. The
state promises to pay us a series of payments (or coupons), say c each year, for n
years, at which point the state returns F to us. We say that F is the face value of
the bond. One fundamental question therefore arises: what is the PV of the bond?

This is a difficult question in practice, so we shall deal with a simple case, which
nevertheless captures the crucial points. We introduce a single “rate” y called the
bond yield, and the key idea is that

(198) PV (future cash flows discounted by y) = bond price.

At time t = 0, the bond price is F , so (198) gives

(199)
c

1 + y
+

c

(1 + y)2
+ · · ·+ c

(1 + y)n
+

F

(1 + y)n
= F.

In reality, the bond may trade above or below its face value on the bond market.
In other words, the market price P (y) and the bond yield y are related by

(200) P (y) =
c

1 + y
+

c

(1 + y)2
+ · · ·+ c

(1 + y)n
+

F

(1 + y)n
.

It’s important to understand that y is determined by the bond market and the
coupon payment c. The key point is that y decreases when P (y) increases, while
y increases when P (y) decreases. In other words, a high bond price means a low
yield, while a high yield means a low bond price. If the bond is issued by a country
which wholly controls its own currency, then it’s said to be nominally risk free,
since the state can always create more money. There is a crucial difference between
the nominal value and the real value (which might be vastly less).

In reality, the coupons can vary and their times of payment need not be annual,
but we ignore this here.
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Proposition 25.1. If the bond trades at its face value F , i.e. (199) holds, then

(201) F =
c

y
,

that is, the face value F varies inversely with the yield y.

Proof. We have

F =
c

1 + y

(
1 +

1

1 + y
+

1

(1 + y)2
+ · · ·+ 1

(1 + y)n−1

)
+

F

(1 + y)n

=
c

1 + y

(
1− 1

(1+y)n

1− 1
1+y

)
+

F

(1 + y)n

=
c

y

(
1− 1

(1 + y)n

)
+

F

(1 + y)n
.

Rearranging this we obtain

F

(
1− 1

(1 + y)n

)
=

c

1 + y

(
1− 1

(1 + y)n

)
,

or
F =

c

y
.

�

One key point here is that the bond price can be very sensitive to changes in the
yield, and conversely. To say more we need some calculus: for any (differentiable)
function f(x), we have

f(x+ h) ≈ f(x) + hf ′(x)

when h is small, and there are excellent techniques for calculating the derivative
f ′(x) originating with Newton in the 17th century. For the relation (201), in the
very spacial case when the bond trades at its face value, we have

F (y) =
c

y
,

and it can be shown that
F ′(y) =

c

y2
,

so that

F (y + h) ≈ F (y) +
hc

y2
.

If y is small, then 1/y2 can be enormous.

Example 25.2. Suppose c = 1, h = 10−2 and y = 10−2. Then

F (y + h) ≈ F (y) +
10−2

10−4
= F (y) + 100.

A practical bond price is somewhat more complicated: the bond almost never
trades at its face value and the coupons are all different:

(202) P (y) =
α1

1 + y
+

α2

(1 + y)2
+ · · ·+ αn−1

(1 + y)n−1
+

αn
(1 + y)n

.

It can be shown that

(203) P ′(y) = − α1

(1 + y)2
− 2α2

(1 + y)3
− · · · − n (αn)

(1 + y)n+1
.

This might look horrible, but the computer doesn’t care, and we can use (203)
to estimate bond price sensitivity to a change in yield, via

(204) P (y + h) ≈ P (y) + hP ′(y).
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In 1938, the economist Macaulay gave an interesting interpretation of (203)
which is still used, termed Macaulay’s duration. Specifically, we let

(205) ci(y) =
αi

(1 + y)i
, 1 ≤ i ≤ n,

which is the PV cash flow due at year i discounted at rate y. We then define

(206) wi(y) =
ci(y)

c1(y) + · · ·+ cn(y)
.

Thus wi(y) is the PV cash flow due at year i divided by the total bond price, so
it’s really the discounted PV percentage contribution of the cash flow due at year
i.

Exercise 25.2. Show that

w1(y) + w2(y) + · · ·+ wn(y) = 1.

Macaulay’s duration is then defined by

(207) D(y) = w1(y) + 2w2(y) + 3w3(y) + · · ·+ nwn(y)

and it can be shown that

(208) P ′(y) = −
(
D(y)

1 + y

)
P (y).

Economists like (208) because it provides an interpretation they find congenial, but
there is no difference if we simply use (203) and (204).
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26. Bernstein Polynomials and Jensen’s Theorem

Let f : [0, 1] → R be any continuous function. The Bernstein polynomials are
defined by

(209) Bnf(t) =

n∑
k=0

(
n

k

)
f(k/n)tk (1− t)n−k , for 0 ≤ t ≤ 1 and n ∈ N.

Equivalently, if X1, X2, . . . are independent Bernoulli random variables satisfying

(210) P (Xk = 1) = t and P (Xk = 0) = 1− t,
for all non-negative integer n and t ∈ [0, 1], then

(211) Bnf(t) = Ef
(
X1 +X2 + · · ·+Xn

n

)
.

This well-known probabilistic interpretation was at the heart of Bernstein’s defini-
tion in 1912. It is easily checked that Bnf(t) ≡ 1 when f(t) ≡ 1 and Bnf(t) ≡ t
when f(t) ≡ t. Thus the Bernstein polynomial operator f 7→ Bnf is linear and
preserves linear polynomials. Hence, we can always adjust f to satisfy

(212) f(0) = f(1) = 0

by addition of a linear polynomial; more formally, we observe that

g(t) := f(t)− f(0)− (f(1)− f(0)) t

satisfies g(0) = g(1) = 0.

Theorem 26.1. Let f : [0, 1] → R be any convex continuous function satisfying
(212). Then

(213) 0 = B0f(t) = B1f(t) ≥ B2f(t) ≥ · · · ≥ Bnf(t) ≥ Bn+1f(t) ≥ · · · ≥ f(t).

The novelty of the proof is that it depends on Jensen’s inequality: for any real-
valued random variable Y and convex function φ : R→ R, we have

(214) φ (EX) ≤ E (φ(X)) .

Proof. We have

Bn+1f(t) = Ef
(
X1 + · · ·+Xn+1

n+ 1

)
= Ef

((
n

n+ 1

)(
X1 + · · ·+Xn

n

)
+

(
1

n+ 1

)
Xn+1

)
≤
(

n

n+ 1

)
Ef
(
X1 + · · ·+Xn

n

)
+

(
1

n+ 1

)
Ef(Xn+1)

=

(
n

n+ 1

)
Bnf(t)

≤ Bnf(t).

Further, since f is continuous, we must have Bnf → f uniformly in [0, 1], which
implies the lower bound of f . �

Incidentally, a convex function f : (0, 1)→ R is automatically continuous, which
proof I will probably add to these notes at some point, but we must impose conti-
nuity at the endpoints. Consider, for example, the discontinuous convex function
f which is identically zero in (0, 1) and satisfies f(0) = f(1) = 1.
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27. The Economics of Naked Wine

At the time of writing, the wine merchant Naked Wine (NW) provided an inter-
esting discount offer: for every £1 spent, NW deposits a cashback of £1/3 in your
NW account, which can only be spent on further wine orders. At first sight, this
seems to be a discount of one third, but further analysis is interesting.

Let’s consider a slightly more general analysis, assuming a cashback of £p for
every £1 spent, where p ∈ [0, 1] is constant. We suppose that at the kth purchase
we use the existing NW account balance Vk−1 and add a further £Mk. After the
kth purchase the new NW balance after cashback is Vk = pMk; of course, V0 = 0.
If we let Tn denote our total spend after n purchases, then the total value of wine
bought after n purchases is Tn + pTn−1. Thus

Pn :=
Total sterling spent after n purchases

Value of wine after n purchases
=

Tn
Tn + pTn−1

=
1

1 + p
(
Tn−1

Tn

)
and the corresponding discount is given by

Dn = 1− Pn =
p
(
Tn−1

Tn

)
1 + p

(
Tn−1

Tn

) .
Now Tn−1/Tn ≤ 1, so

Pn ≥
1

1 + p

and

Dn ≤
p

1 + p
.

Example 27.1. If p = 1/3, the NW value, then the discount

Dn ≤
1/3

1 + (1/3)
=

1

4
,

i.e. the discount is at most 25%.

If we make the same purchase amount every time, then Tn = na, say, and
Tn−1/Tn = 1 − n−1 → 1, as n → ∞. Thus Pn → 1/(1 + p) and the discount
satisfies Dn → p/(1 + p), i.e. the upper bound on the discount is sharp.

Example 27.2. What happens if our purchases grow algebraically, i.e.

Tn = Cnα,

for some positive constants C and α. The

Tn−1
Tn

=

(
n− 1

n

)α
=

(
1− 1

n

)α
→ 1,

as n→∞. Hence Dn → p/(1 + p) for algebraically growing purchases too.

Now consider true wine thirst: exponential purchase growth! If

Tn = Ceαn,

for positive constants C and α, then

Tn−1
Tn

= e−α < 1.

Thus

Dn =
pe−α

1 + pe−α
.
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Example 27.3. If eα = 2 and p = 1/3, i.e. our wine purchases double every
month, then

Dn =
p/2

1 + p/2
=

1/6

7/6
=

1

7
,

or a constant discount of about 14%. If we had taken the more modest value of
eα = 1.1, then

Dn =
1/3.3

1 + 1/3.3
= 0.23256 . . . .

Thus higher exponential growth reduces the discount.

The reduced discount for higher exponential growth might seem a curiosity, since
few individuals could afford exponential growth, whether in currency or health
consequences. However, if we consider the discount afforded to all NW customers,
then NW was reporting 40% growth in turnover in the mid-2010s. If we take
eα = 1.4 and p = 1/3, then the discount is given by

Dn =
1/4.2

1 + 1/4.2
= 0.1923 . . . ,

i.e. a discount of roughly 19%.
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28. Lagrange’s Identity

Theorem 28.1. Let (ak)n1 and (bk)n1 be real sequences. Then

(215)

(
n∑
k=1

akbk

)2

=

(
n∑
k=1

a2k

)(
n∑
`=1

a2`

)
−

∑
1≤k<j≤n

(akbj − ajbk)
2
.

The key observation is that∑
1≤k<j≤n

(akbj − ajbk)
2

=
1

2

n∑
i,j=1

(aibj − ajbi)2

and

1

2

n∑
i,j=1

(aibj − ajbi)2 =
1

2

n∑
i,j=1

a2i b
2
j − 2aibjajbj + a2jb

2
i

= ‖a‖2‖b‖2 − (aT b)2.

However, it is also possible to see this via the Frobenius norm. We define the
skey-symmetric matrix M ∈ Rn×n

Mjk = ajbk − akbj , 1 ≤ j, k ≤ n,
that is,

M = abT − baT .

Recall that the Frobenius inner product is defined by

〈A,B〉F =

n∑
j=1

n∑
k=1

AjkBjk.

Further,

traceABT =

n∑
j=1

(
ABT

)
jj

=

n∑
j=1

n∑
k=1

AjkBjk = 〈A,B〉F

and, for any vectors u,v ∈ Rn,

trace uvT = uTv.

Hence

‖abT − baT ‖2F = trace
[
(abT − baT )(baT − abT )

]
= − trace

[
(abT − baT )2

]
= − trace abTabT + 2 trace abTbaT − trace baTbaT

= −(bTa) trace abT + 2‖b‖2 trace aaT − (aTb) trace baT

= 2
(
‖a‖2‖b‖2 − (aTb)2

)
.
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29. Sums of Powers of Integers

You have probably all seen the formulae

S1(n) :=

n∑
k=0

k =
1

2
n(n+ 1)

and

S2(n) :=

n∑
k=0

k2 =
1

6
n(n+ 1)(2n+ 1)

but where do they come from? The answer lies in a fascinating borderland between
series and the origins of calculus. We define

Sp(n) =

n∑
k=0

kp,

for any non-negative integers n and p.

Definition 29.1. The forward difference operator ∆ is defined by

∆an = an+1 − an.

Example 29.1. Here are some simple properties of ∆.

(i) If an = c, for all n, then ∆an = 0.
(ii) If an = n, then ∆an = n+ 1− n = 1.
(iii) ∆n2 = (n+ 1)2 − n2 = 2n+ 1
(iv) ∆n3 = (n+ 1)3 − n3 = 3n2 + 3n+ 1.

Example 29.2 (S1(n) =
∑n
k=0 k). For S1(n) = 0 + 1 + 2 + · · · + n, we have

∆S1(n) = S1(n+ 1)− S1(n) = n+ 1. Then

∆
(
S1(n)−An2 −Bn

)
= 0,

if
n+ 1−A(2n+ 1)−B = 0, for all n,

or A = B = 1/2. Now ∆(S1(n)−An2 −Bn) = 0 implies that Sn −An2 −Bn = c,
for some constant c, but setting n = 0 implies c = 0. Further, note that(

2 0
1 1

)(
A
B

)
=

(
1
1

)
.

Theorem 29.1 (S2(n) =
∑n
k=0 k

2). We have

S2(n) = 02 + 12 + 22 + · · ·+ n2 =
1

3
n3 +

1

2
n2 +

1

6
n.

Proof. Now

∆S2(n) = S2(n+ 1)− S2(n) = (n+ 1)2 = n2 + 2n+ 1.

We must therefore find constants P , Q and R for which

∆
(
Pn3 +Qn2 +Rn

)
= 2n2 + 2n+ 1,

i.e. equating coefficients of powers of n, we have

P (3n2 + 3n+ 1) +Q(2n+ 1) +R = n2 + 2n+ 1.

Hence 3P = 1, 3P + 2Q = 2 and P +Q+R = 1, i.e. 3 0 0
3 2 0
1 1 1

 P
Q
R

 =

 1
2
1

 .

�
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Example 29.3 (S3(n) =
∑n
k=0 k

3). For S3(n) =
∑n
k=0 k

3 we have

∆S3(n) = (n+ 1)3 = n3 + 3n+ 3n+ 1

and we need constants A1, A2, A3, A4 ∈ R for which

∆
(
A4n

4 +A3n
3 +A2n

2 +A1n
)

= n3 + 3n2 + 3n+ 1.

Now

LHS = A4(4n3 + 6n2 + 4n+ 1) +A3(3n2 + 3n+ 1) +A2(2n+ 1) +A1

so that, equating coefficients of powers of n,

4A4 = 1,

6A4 + 3A3 = 3,

4A4 + 3A3 + 2A2 = 3,

A4 +A3 +A2 +A1 = 1.

or 
4 0 0 0
6 3 0 0
4 3 2 0
1 1 1 1




A4

A3

A2

A1

 =


1
3
3
1

 .

Exercise 29.1. Hence show that

S3(n) =
1

4
n4 +

1

2
n3 +

1

4
n2 = S1(n)2.

Sadly the beautiful fact that S3(n) = S1(n)2 does not extend to higher sums of
powers but the binomial pattern is clear. Here’s the linear system for S4(n):

5 0 0 0 0
10 4 0 0 0
10 6 3 0 0
5 4 3 2 0
1 1 1 1 1




A4(5)
A4(4)
A4(3)
A4(2)
A4(1)

 =


1
4
6
4
1

 .

Theorem 29.2. We have

(216) Sm(n) =

m+1∑
j=1

Am(j)nj ,

where

(217)

m+1∑
j=1

Am(j)

j−1∑
k=0

(
j

k

)
nk =

m∑
`=0

(
m

`

)
n`.

In particular, (m+ 1)Am(m+ 1) = 1 and
∑m+1
j=1 Am(j) = 1.

Proof. We use the facts that

∆Sm(n) = (n+ 1)m =

m∑
`=0

(
m

`

)
n`

and

∆nj = (n+ 1)j − nj =

j−1∑
k=0

(
j

k

)
nk.

We must solve

∆
(
Am(m+ 1)nm+1 +Am(m)nm + · · ·+Am(2)n2 +Am(1)n

)
= ∆Sm(n),
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so
m+1∑
j=1

Am(j)∆nj = ∆Sm(n),

which provides (217). Equating the coefficient of nm and the constant term provides
Am(m+ 1) and the fact that the coefficients sum to unity. �

Now (217) is true for any non-negative integer n and both sides are polynomials
of degree m in n. Thus we must have the polynomial identity

(218)

m+1∑
j=1

Am(j)

j−1∑
k=0

(
j

k

)
zk =

m∑
`=0

(
m

`

)
z`, for all z ∈ C.

In other words we have

(219)

m+1∑
j=1

Am(j)
[
(1 + z)j − zj

]
=
(

1 + z
)m

, z ∈ C.

If we differentiate (219), then we obtain

m+1∑
j=2

jAm(j)
[
(1 + z)j−1 − zj−1

]
= m

(
1 + z

)m−1
.

Setting k = j − 1 in the sum on the LHS, we obtain

(220)

m∑
k=1

( (k + 1)Am(k + 1)

m

)[
(1 + z)k − zk

]
=
(

1 + z
)m−1

.

Comparing (219) and (220) when m is reduced by 1, we see that

(221) Am−1(k) =
(k + 1)Am(k + 1)

m
, for 1 ≤ k ≤ m.

Conversely, we have
(222)

Am(`) =
m

`
Am−1(`), for ` = 2, . . . ,m+ 1, and Am(1) = 1−

m+1∑
`=2

Am(`).

Thus we can generate all of them using A1(1) = A1(2) = 1/2. Here’s the MATLAB
code to do just that:

n=10;

A=zeros(n,n+1);

A(1,1)=0.5; A(1,2)=0.5;

for m=2:n

for l=2:m+1

A(m,l)=(m/l)*A(m-1,l-1);

end

A(m,1) = 1 - sum(A(m,2:m+1));

end
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30. Hamiltonians in Mathematical Economics

We discuss Example 11.3 in [2]: we wish to minimize the cost functional

J =

∫ T

0

(Q− I)2 + α2P 2 dt,

where Q and α are positive constants, I0 ≡ I(0) and Q > I0. Here I(t) is the
inventory level and is the state variable, while P (t) is the production level and is

the control variable, which are related by İ = P .
The usual calculus of variations solution is to define the augmented functional

(223) J∗ =

∫ T

0

(Q− I)2 + α2P 2 + λ(İ − P ) dt

and we let

(224) F = (Q− I)2 + α2P 2 + λ(İ − P )

be the integrand. The Euler equations are then given by the state equation (I)

(225)
∂F

∂I
− d

dt

(
∂F

∂İ

)
= 0

and the control equation (P )

(226)
∂F

∂P
− d

dt

(
∂F

∂Ṗ

)
= 0.

Thus (226) implies

(227) λ(t) = 2α2P (t)

and (225) yields

−2(Q− I)− λ̇ = 0

or

(228) λ̇ = −2(Q− I).

Hence differentiating (227) provides

(229) λ̇ = 2α2Ṗ = 2α2Ï

and substituting (229) in (228) gives

2α2Ï = −2(Q− I)

or

(230) Ï − α−2I = −α−2Q
with general solution

(231) I(t) = Q+ C cosh(t/α) +D sinh(t/α).

The transversality condition is

(232)
∂F

∂İ
|t=T= 0

i.e. λ(T ) = 0. We shall complete the solution below.
Now Mathematical Economics uses a slightly different formalism borrowed from

Hamiltonian mechanics. We define the Hamiltonian

(233) H = λİ − F
i.e.

(234) F = −H + λİ.
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The Euler equations then become

(235)
∂H

∂P
= 0 and

∂H

∂I
= −λ̇.

If we use these Hamiltonian equations, then we obtain

(236) H = −(Q− I)2 − α2P 2 + λP

where

(237) 0 =
∂H

∂P
= −2α2P + λ

and

(238) −λ̇ =
∂H

∂I
= 2(Q− I).

Hence (237) implies

(239) P (t) =
λ(t)

2α2
.

Now İ = P and (239) yield

(240) −λ̇ = 2α2Ṗ = 2α2Ï

and then (238) provides

(241) Ï + α−2I = α−2Q.

The general solution is (231), of course, and the condition I(0) = I0 < Q becomes
I0 = Q+ C, so that C is negative. We write

(242) I(t) = Q− (Q− I0) cosh(t/α) +D sinh(t/α).

How do we find D? The transversality condition

∂F

∂İ
= 0

then becomes λ(T ) = 0, or P (T ) = 0, i.e. İ(T ) = 0. Hence

(243) 0 = İ(T ) = −(Q− I0)α−1 sinh(T/α) + (D/α) cosh(T/α)

or

(244) D = (Q− I0) tanh(T/α).

Then

I(t) = Q− (Q− I0) cosh(t/α) + (Q− I0) tanh(T/α) sinh(t/α)

= Q− Q− I0
cosh(T/α)

[cosh(t/α) cosh(T/α) + sinh(T/α) sinh(t/α)]

= Q− (Q− I0)
cosh((T − t)/α)

cosh(T/α)
.



60 BRAD BAXTER

References

[1] Beardon (2005), Algebra and Geometry, CUP.

[2] D. N. Burghes and A. M. Downs (1977), em Modern Introduction to Classical Mechanics and

Control, Ellis Horwood, Chichester.
[3] W. F. Donoghue (1970), Monotone Matrix Functions and Analytic Continuation, Springer.

[4] R. A. Horn and C. R. Johnson (1990), Matrix Analysis, CUP.

[5] S. M. Roman (2005), The Umbral Calculus, Dover
[6] S. M. Roman and G.-C. Rota (1978), “The Umbral Calculus”, Advances in Mathematics 27:

95–120.

[7] D. Zeilberger (2005), “An Umbral Approach to the Hankel Transform for Sequences”, Per-
sonal Journal of Ekhad and Zeilberger http://www.math.rutgers.edu/∼zeilberg/pj.html.


