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Abstract. We describe an efficient algorithm for the inversion of covariance
matrices that arise in the context of phylogenetic tree construction. Phy-

logenetic trees describe the evolutionary relationships between species, and
their construction is computationally demanding. Many approaches involve
the symmetric matrix of evolutionary distances between species. Regarding
these distances as random variables, the corresponding set of variances and

covariances form a rank-4 tensor, and the inner-product defined by its inverse
can be used to assign statistical scores to candidate trees. We describe a natu-
ral set of assumptions for the phylogenetic tree under construction, and show

how under these assumptions the covariance tensor for a tree with n leaves can
be inverted in O(n2) operations. In addition to presenting the inversion al-
gorithm, we hope this article will open algebraic and computational problems
from the field of phylogeny to a wider audience.

1. Introduction

Suppose we are given a set of n species and an n×n symmetric matrix of random
variables (dij) representing the evolutionary distances between them. In this paper
we show how simple assumptions on the tree of evolutionary relationships between
species gives rise to a covariance matrix which essentially has the form

Cov(dij , dkl) =
1

2
B(δikδjl + δjkδil) + C2 +

1

2
Caj(δjk + δjl) +

1

2
Cai(δik + δil), (1)

for i 6= j and k 6= l, where B and C are constants, a ∈ R
n, and δij is the Kronecker

delta. The great advantage of our model is that covariance matrices of this form
can be inverted in O(n2) operations, via the Sherman–Morrison–Woodbury formula
(see, for instance, p. 51 of [6]).

In order to motivate this inversion problem it is necessary to present some back-
ground from the field of phylogeny. While this area might be unfamiliar to the
reader, we hope that the mathematical problems it raises will be of interest. The
rest of this section gives a very brief introduction to phylogeny, before we describe
the origin of equation (1) in Section 2. We show how the covariance tensor can
be inverted algebraically in Section 3, and present the inversion algorithm in Sec-
tion 4. Readers principally concerned by the linear algebraic details of the inversion
algorithm rather than the bioinformatic background may skip directly to Section 3.

Evolutionary relationships between species can be represented by a tree: the leaf
nodes represent extant species, interior nodes represent ancestral species, and the
branch lengths indicate the extent to which species have diverged. Such trees are
referred to as phylogenies. One kind of tree is illustrated in Figure 1. Here the
branch lengths specify the time since divergence of species, and it is this type of
tree we will consider throughout this paper.

There are a range of different statistical methods available for inferring the phy-
logeny of a set of species given their DNA sequences, or subsequences, which might
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Figure 1. A typical phylogenetic tree
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E [dij |T ] ∝ |tij | = length of highlighted path

Figure 2. Expected evolutionary distance between species is pro-
portional to path length in T

be single genes, subsets of genes, or even entire genomes. All of these methods are
based on the fundamental idea that species with similar DNA sequences are more
closely related than species for which the sequences have diverged, as mutations in
sequence accumulate with time [4]. One class of methods, the so-called distance-

based approaches, constructs a matrix of evolutionary distances, or distance func-
tionals, between species that hopefully summarizes the information contained in
the full set of sequences [3, 7, 5, 2]. The evolutionary distance between two species
typically measures the number of letter changes in the DNA sequence, and many
different distance functionals exist. Distance-based methods take the matrix of dis-
tances between extant species and hence infer the topology and branch lengths of
the underlying phylogenetic tree. They have the advantage of being relatively fast,
and therefore suitable for large problems, but are less suitable when the set of genes
under investigation has diverged widely.

2. Origin of the covariance tensor

The inversion problem studied in this paper arose from a novel distance-based
phylogenetic method developed by two of the authors (W. Gilks and T. Nye).
Given a set of species and the matrix of evolutionary distances between them,
our approach resconstructs the underlying phylogenetic tree, denoted T , using the
following set of assumptions. Given two points i, j ∈ T , let tij denote the path in T
between the points and let |tij | denote the length of this path (or strictly speaking,
its vertical component) as drawn in Figure 2. We assume that the evolutionary
distance between two genes is, on average, directly proportional to the time since
divergence. Denoting the distance between nodes i and j by dij we therefore obtain

E
[

dij

∣

∣ T
]

= µ|tij | (2)
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Figure 3. Tree construction. (a) A generic point in construction:
the tree is complete up to time t. The set of hanging nodes Ht

is highlighted with circles. (b) The next step in the construction
obtained from (a). Construction is complete up to a time u > t.
The set of hanging nodes Hu is highlighted. (c) The finished tree.

for some constant µ. As usual, the notation E[X
∣

∣ A] denotes the expectation of
the random variable X conditional the occurrence of event A.

Our approach makes an additional assumption on the variances and covariances
of the distances dij :

Cov
[

dij , dkl

∣

∣ T
]

= ν|tij ∩ tkl| (3)

for some constant ν. In other words, the covariance of two distances dij and dkl is
proportional to the length of the shared path between these genes on the underlying
phylogenetic tree. Direct calculation using equations (2) and (3) provides

E (dik − dij − djk) = 0

and

E

[

(dik − dij − djk)
2
]

= 0,

which imply the relation

dik = dij + djk, (4)

where j can be any node on the path between nodes i, k in T . Thus the observed
distances between extant genes arise from a distorted version of the underlying
phylogenetic tree. One way to deform the tree T in this way would be via a gamma
process on each branch; however, such probabilistic details are not our main concern
here.

Equation (3) defines the covariance structure when the underlying phylogenetic
tree T is known. However, our estimate of T is built up as a sequence of partially
constructed trees, as illustrated by Figure 3. A generic stage of the construction is
shown in Figure 3(a). This consists of an estimate of T constructed back as far as
some time t, which we denote Tt. The covariance tensor defined in Equation (1)
arises from considering the set of nodes descended directly from time t with no



4 TOM M. W. NYE, BRAD J. C. BAXTER AND WALTER R. GILKS

bifurcation. We refer to these as ‘hanging nodes’, as suggested by the appearance
in Figure 3, and the set of such nodes is denoted Ht. These nodes are highlighted
by black circles in Figure 3(a). Given a node i ∈ Ht we use the notation i′ to denote
the ancestor of i at time t, and let ti denote the time of node i. The length of the
line segment between i and i′ in Figure 3(a) is therefore t− ti.

Given i, j, k, l ∈ Ht such that i 6= j and k 6= l, the additivity condition (4) gives

Cov
[

dij , dkl

∣

∣ Tt

]

= Cov
[

dii′ + di′j′ + dj′j , dkk′ + dk′l′ + dl′l

∣

∣ Tt

]

. (5)

The distances dii′ and dkk′ have a covariance of zero (when i 6= k) because the
corresponding tree branches have no overlap (ie. the right-hand side of Equation (3)
is zero). This applies to the other indices as well, so expanding the right-hand side
of Equation (5) gives

Cov
[

dij , dkl

∣

∣ Tt

]

= (δik + δil)Var[dii′

∣

∣ Tt]

+ (δjk + δjl)Var[djj′

∣

∣ Tt] + Cov[di′j′ , dk′l′

∣

∣ Tt]. (6)

The first two terms of this expression can be obtained using Equation (3):

Var[dii′

∣

∣ Tt] = ν(t− ti), and Var[djj′

∣

∣ Tt] = ν(t− tj).

The final term of Equation (6) depends on the paths joining i′ to j′ and k′ to l′.
However, these paths lie in the part of the tree that has not yet been estimated
(ie. above the dotted line in Figure 3(a)). By symmetry, since we condition only
on Tt, the final term of Equation (6) depends only on whether the two paths ti′j′

and tk′l′ share common terminal nodes: it adopts three different values according
to whether the paths share zero, one, or two terminal nodes. This gives

Cov
[

dij , dkl

∣

∣ Tt

]

= ν(t− ti)(δik + δil) + ν(t− tj)(δjk + δjl)

+ c0 + c1(δik + δil + δjk + δjl) + c2(δikδjl + δilδjk) (7)

for some constants c0, c1, c2. This equation is now in exactly the same form as
Equation (1), and it is this tensor that is used to score different partially constructed
trees.

Construction of the estimated phylogeny is carried out in the following way.
Given a partially constructed tree Tt, at each stage we propose a tree Tu (u > t)
by joining together two nodes from Ht with a new node at time u. One such tree
is shown in Figure 3(b). This tree Tu is assigned a χ2 statistic using the inverse of
the covariance tensor (7), and the time u is chosen to optimize this score. Every
possible tree Tu derived from Tt by joining two nodes together is scored in this way,
and any tree with minimal u is taken as the new estimate. The process starts from
the set of leaf nodes and ends when the entire tree has been estimated. Of course,
in order to evaluate the score for each tree it is necessary to invert the covariance
tensor many times, leading to our inversion problem.

3. Inverting the covariance tensor

We start by defining some notation. Let V = R
n be equipped with the standard

basis {ei : i = 1, . . . , n} and define the vector of all ones

e =

n
∑

i=1

ei,

If W denotes the vector space of symmetric n×n real matrices, then the covariance
matrix defined by equation (1) is given by

H = B × id + C2θ ⊗ θ + Cα⊗ θ + Cθ ⊗ α
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where θ = e⊗ e and α = diag(a1, . . . , an). Incidentally, we shall move between the
equivalent notations u⊗ v and uvT , for u, v ∈ R

n, as appropriate. If we view R
n×n

as the tensor product space R
n ⊗ R

n, then the inner product

〈a⊗ b, c⊗ d〉 = 〈a, c〉 〈b, d〉, a, b, c, d ∈ R
n,

implies that

〈M1,M2〉 =

n
∑

j,k=1

M1(j, k)M2(j, k).

In other words, our inner product is simply the Frobenius inner product on matrices.

Thus H is a pertubation of the identity matrix, namely H = B × id +A, where

A = C2θ ⊗ θ + Cα⊗ θ + Cθ ⊗ α.

Since θ projects onto the direction e, θ(v) = 0 for any vector v perpendicular to
e. Similarly, it can be seen that

A(u⊗ v + v ⊗ u) = C2(θu) ⊗ (θv) + C2(θv) ⊗ (θu)

+ C(αu) ⊗ (θv) + C(αv) ⊗ (θu)

+ C(θu) ⊗ (αv) + C(θv) ⊗ (αu)

= 0 for all u, v perpendicular to e.

On the other hand, A is non-zero (in general) on vectors of the form v ⊗ e+ e⊗ v

for v ∈ V . This suggests that we define the subspace

U = span{w ⊗ e+ e⊗ w : w ∈ V }.

It is easy to verify that

U⊥ = span{u⊗ v + v ⊗ u : u, v ∈ e⊥}.

We have already shown that U⊥ ⊂ ker A and, since A is symmetric, we deduce
that im A ⊂ U , which is also evident by direct calculation. Thus A has the decom-
position

∗ 0

0 0

A =

[ ]

U

U

U⊥

U⊥

✻
❄

❄
✻

✲✛✛ ✲

The ∗ symbol represents the non-zero part of A. At this stage it is apparent that
away from U , H is trivial, so the inversion problem reduces to the problem of
inverting H on the n-dimensional subspace U .

However, up to this point we have ignored a crucial point: the random variables
dij satisfy

dii ≡ 0 for i = 1, . . . , n.

(In other words the distance of a gene from itself is zero.) Instead of working on
the space W , we are really dealing with the restriction of H to the space

Ŵ = span{
1

2
ei ⊗ ej +

1

2
ej ⊗ ei : i < j}.

Note that the inequality in the indices is strict here. If we define P : W →W by

P (
1

2
ei ⊗ ej +

1

2
ej ⊗ ei) =

{

1
2
ei ⊗ ej + 1

2
ej ⊗ ei if i 6= j

0 when i = j
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then Ŵ = P (W ) and the restriction of H to Ŵ , denoted Ĥ, is given by

Ĥ = PHP

= PAP + P (B × id)P.

It is really the map Ĥ that we need to invert; P (B × id)P is simply a multiple of

the identity on Ŵ ..

Essentially we want to identify a decomposition for Ĥ equivalent to the one
above. Let Û = P (U) and let Û⊥ be the orthogonal complement of Û in Ŵ , so
that

Ŵ = Û ⊕ Û⊥

As we showed above, im A ⊂ U , so

im PAP ⊂ P (U) = Û .

Since A and P are symmetric, we therefore have the desired decomposition:

∗ 0

0 0

PAP =

[ ]

Û

Û

Û⊥

Û⊥

✻
❄

❄
✻

✲✛✛ ✲

It follows that

Ĥ−1(x) =
(

P (A+B)P |
Û

)−1
(x

Û
) +B−1(x

Û⊥) (8)

where

x = x
Û
⊕ x

Û⊥ (9)

represents the Û and Û⊥ decomposition of x ∈ Ŵ . The first term of (8) denotes

the restriction of P (A+B)P to the n-dimensional space Û . The inversion problem
therefore reduces to the question of inverting this component of the map.

To address this problem it is useful to work with an orthonormal basis of Û . It
can be shown that

wk = φ(
1

2
ek ⊗ e+

1

2
e⊗ ek − ek ⊗ ek) + ψ(e⊗ e−

∑

l

el ⊗ el)

for k = 1, . . . , n defines an orthonormal basis of Û when

φ =

(

2

n− 2

)
1

2

and

ψ = −
1

n

(

(

2

n− 2

)
1

2

+

(

1

n− 1

)
1

2

)

.

In this basis Ĥ is represented by the matrix

Λij = Bδij + 〈wi, PAP (wj)〉

= (C(n− 2)ai +B) δij +
1

2
Cφ(n− 2) (φ+ 2(n− 1)ψ) (ai + aj)

+
1

2
C (φ+ 2(n− 1)ψ)

2

(

∑

l

al

)

+ C2(n− 1)2(φ+ nψ)2.
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The matrix defines a linear map Λ : V → V

Λ = M + ωeT + eωT

where

M = diag (C(n− 2)ak +B : k = 1, . . . , n) ,

and ω ∈ V is defined by

ω =
1

2
Cφ(n− 2) (φ+ 2(n− 1)ψ) a

+

(

1

2
C2(n− 1)2(φ+ nψ)2 +

1

4
C (φ+ 2(n− 1)ψ)

2
∑

l

al

)

e. (10)

The matrix Λ is a rank-2 perturbation ofM and its inverse is given by the Sherman–
Morrison–Woodbury formula [6]:

Λ−1 = M−1 +
cωω êê

T + ceeω̂ω̂
T − (1 + cωe)(ω̂ê

T + êω̂T )

(1 + cωe)2 − cωωcee

(11)

where

ê = M−1e, ω̂ = M−1ω

and

cωω = 〈M−1ω, ω〉, cee = 〈M−1e, e〉, and cωe = 〈M−1ω, e〉.

We now have all the elements in place for a complete algebraic inverse to the
map Ĥ defined by the covariance tensor (1). The next section puts these elements
together and specifies the inversion algorithm.

4. The inversion algorithm

Suppose that we want to compute Ĥ−1x for some symmetric matrix xij that is
zero on the diagonal. The inversion algorithm has the following steps.

(1) On account of the decomposition (8), the Û and Û⊥ components of x can

be dealt with independently. The Û component of x is be obtained by
taking the inner product of x with the vectors wk that form our basis of Û .
We therefore define the vector ξ ∈ V by

ξk = 〈x,wk〉 =
1

2
φ





∑

i

xik +
∑

j

xkj



+ ψ
∑

ij

xij . (12)

(2) The inverse of Ĥ on Û is given by Equation (11). Let η be the inverse of ξ:

η = Λ−1ξ.

(3) The final step is to combine this result with the Û⊥ component of the
inverse. Using the decompositions (8) and (9), and since B−1(x

Û⊥) =
B−1(x) −B−1(x

Û
) it follows that

Ĥ−1(x) =
(

P (A+B)P |
Û

)−1
(x

Û
) −B−1(x

Û
) +B−1(x) (13)

The first term of (13) is given using the result of step 2:

(

P (A+B)P |
Û

)−1
(x

Û
) =

n
∑

k=1

ηkwk

=
φ

2
P (η ⊗ e+ e⊗ η) + ψ〈e, η〉P (e⊗ e).
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By replacing η with (η − B−1ξ) in this equation we obtain the first two
terms of (13). The full inverse is then given by

Ĥ−1(x) = B−1x+
φ

2
P
(

(η −B−1ξ) ⊗ e+ e⊗ (η −B−1ξ)
)

+ψ〈e, η−B−1ξ〉P (e⊗e).

The computational complexity of the algorithm can be obtained by analysing
each step. It is easy to see that overall there are O(n2) multiplications and O(n2)
additions. Moreover, in our application we actually use the inverse covariance
tensor to evaluate inner products like x · Ĥ−1x where x is a symmetric matrix with
zero diagonal and the dot product is the standard inner product between matrices.
If the partial sums in Equation (12) are already known for the matrix x, then the

inner product x · Ĥ−1x can be evaluated in O(n) operations.

5. Discussion

The crucial advantage of the probabilistic model chosen in this paper is that
it generates covariance matrices which are mild perturbations of the identity, so
ensuring inexpensive inversion. However, the basis chosen is highly reminiscent of
of similar bases chosen to elucidate the structure of Euclidean distance matrices,
and we mention this interesting connection. We recall that an n× n matrix A is a
Euclidean distance matrix if there exist vectors u1, . . . , un ∈ R

n for which

Aij = ‖ui − uj‖
2, 1 ≤ i, j ≤ n,

where ‖ · ‖ denotes the Euclidean norm. Such matrices were characterized by I. J.
Schoenberg [8], who proved that a symmetric matrix M , whose diagonal elements
vanish, is a Euclidean distance matrix if and only if vTMv ≤ 0 when v is orthogonal
to e, the vector of all ones defined at the beginning of Section 3. The theory of
such matrices is highly relevant to the linear of radial basis functions and learning
theory; see, for example, [1].
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