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3.7. Itô Calculus 13
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1. Introduction

You can access these notes, and other material, via my office machine:

http://econ109.econ.bbk.ac.uk/brad/FMDS/

An earlier version of my lecture notes for both terms is available here:

http://econ109.econ.bbk.ac.uk/brad/Methods/Methods.pdf

These notes are fairly stable, having evolved while teaching multiple MSc pro-
grammes, including MSc Mathematical Finance at Imperial College, London, MSc
Financial Engineering here, and MSc Mathematical Finance. I do still add new
examples and make minor changes, so please check you have the latest version.

Students will also be taking my Matlab course and the notes are available on my
server too:

http://econ109.econ.bbk.ac.uk/brad/FDMS/matlab_intro_notes.pdf

Past exams can also be downloaded from my server:

http://econ109.econ.bbk.ac.uk/brad/FinEngExams/

The first three questions are suitable in my exams set since 2020. The first four
questions are suitable in earlier exams.

Many students will find my Numerical Analysis notes helpful too:

http://econ109.econ.bbk.ac.uk/brad/FDMS/nabook.pdf

I wrote these notes for an undergraduate course in Numerical Analysis when
lecturing at Imperial College, London, from 1995–2001. However, they have often
been found useful by MSc students who need to improve their general understanding
of theoretical Numerical Analysis. The first section of the notes is on matrix algebra
and contain many examples and exercises, together with solutions.

Finally, there is lots of interesting material, including extensive notes for several
related courses (e.g. Analysis) available on my office Linux server, so please do
explore:

http://econ109.econ.bbk.ac.uk/brad/

1.1. Reading List. Everything required for this term is in these notes or in my
slides. For further reading, the following books are all useful.

(i) M. Baxter and A. Rennie, Financial Calculus, Cambridge University Press.
This gives a fairly informal description of the mathematics of pricing, con-
centrating on martingales. It’s not a source of information for efficient
numerical methods.

(ii) A. Etheridge, A Course in Financial Calculus, Cambridge University Press.
This does not focus on the algorithmic side but is very lucid for students
with a strong mathematical background.

(iii) D. Higham, An Introduction to Financial Option Valuation, Cambridge
University Press. This book provides many excellent Matlab examples,
although its mathematical level is undergraduate.

(iv) J. Hull, Options, Futures and Other Derivatives, 6th edition. [Earlier edi-
tions are probably equally suitable for much of the course.] Fairly clear,
with lots of background information on finance. The mathematical treat-
ment is lower than the level of much of our course (and this is not a
mathematically rigorous book), but it’s still the market leader in many
ways.
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(v) J. Michael Steele, Stochastic Calculus and Financial Applications, Springer.
This is an excellent book, but is one to read near the end of this term,
once you are more comfortable with fundamentals.

(vi) P. Wilmott, S. Howison and J. Dewynne, The Mathematics of Financial
Derivatives, Cambridge University Press. This book is very useful for
its information on partial differential equations. If your first degree was
in engineering, mathematics or physics, then you probably spent many
happy hours learning about the diffusion equation. This book is very
much mathematical finance from the perspective of a traditional applied
mathematician. It places much less emphasis on probability theory than
most books on finance.

(vii) P. Wilmott, Paul Wilmott introduces Quantitative Finance, 2nd edition,
John Wiley. More chatty than his previous book. The author’s ego grew
enormously between the appearance of these texts, but there’s some good
material here.

(viii) Y.-K. Kwok, Mathematical Models of Financial Derivatives, Springer. A
dry, but very detailed treatment of finite difference methods. If you need
a single book for general reference work, then this is probably it.

There are lots of books suitable for mathematical revision. The Schaum se-
ries publishes many good inexpensive textbooks providing worked examples. The
inexpensive paperback Calculus, by K. G. Binmore (Cambridge University Press)
will also be useful to students wanting an introduction to, say, multiple integrals, as
will Mathematical Methods for Science Students, by Geoff Stephenson. At a slightly
higher level, All you wanted to know about Mathematics but were afraid to ask, by
L. Lyons (Cambridge University Press, 2 vols), is useful and informal.

The ubiquitous Numerical Recipes in C++, by S. Teukolsky et al, is extremely
useful. Its coverage of numerical methods is generally reliable and it’s available
online at www.nr.com. A good hard book on partial differential equations is that
of A. Iserles (Cambridge University Press).

At the time of writing, finance is going through a turbulent period which began
in 2007, in which politicians sometimes profess their longstanding doubts that the
subject was well-founded – surprisingly, many omitted to voice such doubts earlier!
It is good to know that we have been here before. The following books are included
for general cultural interest. My recommendation for a single book is Lanchester.

(i) M. Balen, A Very English Deceit: The Secret History of the South Sea
Bubble and the First Great Financial Scandal.

(ii) C. Eagleton and J. William (eds), Money: A History.
(iii) C. P. Kindleberger, R. Aliber and R. Solow, Manias, Panics, and Crashes:

A History of Financial Crises, Wiley. This is still a classic.
(iv) J. Lanchester, How to Speak Money, Faber. This is an excellent intro-

duction to finance and economics for all readers. Lanchester is a journalist
and author, as well as being a gifted expositor.

(v) N. N. Taleb, The Black Swan. In my view, this is greatly over-rated, but
you should still read it.

No text is perfect: please report any slips to b.baxter@bbk.ac.uk.
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2. The Binomial Model Universe

We begin with a discrete model for asset prices which was first demonstrated
by Cox, Ross and Rubinstein in the late 1970s. It is still of practical use and its
limit, as the number of timesteps tends to infinity, will be the geometric Brownian
motion (GBM) model for asset prices.

Our model will be entirely specified by two parameters, α > 0 and p ∈ [0, 1]. We
choose S0 > 0 and define

(2.1) Sk = Sk−1 exp(αXk), k > 0,

where the independent random variables X1, X2, . . . satisfy

(2.2) P (Xk = 1) = p, P (Xk = −1) = 1− p =: q.

Thus

(2.3) Sm = S0e
α(X1+X2+···+Xm), m > 0.

It is usual to display this random process graphically.
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At this stage, we haven’t specified p and α. In practice, these would be chosen
numerically to fit data, but this calibration is not crucial here. Instead, we shall
first learn how to price functions f(Sn, tn) of the asset price, which we shall call
options. In the jargon of mathematical finance these are also called derivatives
and contingent claims. The technique is fundamental and was discovered by
Black and Scholes in the early 1970s.

Example 2.1. Suppose eα = 2, p = 1/2. Let m = 4 and define the call option

f(S(mh),mh) = (S(mh)− 1)+ .

Using (2.16), we obtain the following diagram for the asset prices.
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The corresponding diagram for the option prices is as follows. Our aim is to find
all of the earlier values of the option price.
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We shall see how to calculate these unknown values very soon.

2.1. The Binomial Model and Delta Hedging. In this section we learn how to
calculate option prices using a delta hedging argument. You only need to accept
one fundamental axiom from mathematical economics: every deterministic asset
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grows at the risk-free rate r. In other words, if we borrow or lend M , then at
time t we have M exp(rt), where the risk-free rate r is set by the currency’s central
bank.

At time tn−1 = (n− 1)h, we construct a new portfolio

(2.4) Πn−1 = f(Sn−1, tn−1)−∆n−1Sn−1.

and we choose ∆n−1 so that the evolution of Πn−1 is deterministic. Now, at time
tn = nh, the portfolio Πn−1 has the new value

(2.5) Πn = f(Sn−1e
αXn , tn)−∆n−1Sn−1e

αXn .

Thus Πn is deterministic if the two possible values of (2.5) are equal, that is,

(2.6) f(Sn−1e
α, tn)−∆n−1Sn−1e

α = f(Sn−1e
−α, tn)−∆n−1Sn−1e

−α.

It is useful to introduce the notation

(2.7) f± = f(Sn−1e
±α, tn).

Then (2.6) and (2.7) imply that

(2.8) ∆n−1Sn−1 =
f+ − f−
eα − e−α

.

Thus the resulting portfolio values are given by

(2.9) Πn−1 = f(Sn−1, tn−1)− f+ − f−
eα − e−α

and

Πn = f(Sn−1e
α, tn)− f+ − f−

eα − e−α
eα

=
f−e

α − f+e−α

eα − e−α
.(2.10)

Now that the portfolio’s evolution from Πn−1 to Πn is deterministic, we must have
Πn = exp(rh)Πn−1, i.e.

(2.11)
f−e

α − f+e−α

eα − e−α
= erh

(
f(Sn−1, tn−1)− f+ − f−

eα − e−α

)
.

The key point here is that f(Sn−1, tn−1) is a linear combination of f+ and f−.
Specifically, if we introduce

(2.12) P =
erh − e−α

eα − e−α
,

then (2.11) becomes

(2.13) f(Sn−1, t
n−1) = e−rh (Pf+ + (1− P ) f−) .

Note that original model probability p does not occur in this formula: instead, it
is as if we had begun with the alternative binomial model

(2.14) Sn = Sn−1e
αYn ,

where the independent Bernoulli random variables Y1, Y2, . . . , Yn satisfy P(Yk =
1) = P and P(Yk = −1) = 1− P , where P is given by (2.12). Indeed, we have

(2.15) ESn|Sn−1 = Sn−1EeαYn = Sn−1e
rh.

Exercise 2.1. Prove that ESn|Sn−1 = Sn−1e
rh.
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We can now easily price a European option given these parameters. If Sk denotes
our Binomial Model asset price at time kh, for some positive time interval h, then
the Binomial Model European option requirement is given by

f(Sk−1, (k − 1)h) = e−rhEf(Sk−1e
αXk , kh)

= e−rh
(
pf(Sk−1e

α, kh) + (1− p)f(Sk−1e
−α, kh)

)
.(2.16)

Thus, given the m+1 possible asset prices at expiry time mh, and their correspond-
ing option prices, we use (2.16) to calculate the m possible values of the option at
time (m− 1)h. Recurring this calculation provides the value of the option at time
0. Let’s illustrate this by solving Example 2.1.

Example 2.2. Suppose eα = 2, p = 1/2 and D = e−rh. Let m = 4 and let’s use
the Binomial Model to calculate all earlier values of the call option whose expiry
value is

f(S(mh),mh) = (S(mh)− 1)+ .

Using (2.16), we obtain the following diagram for the asset prices.
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The corresponding diagram for the option prices is as follows.



8 BRAD BAXTER

27D4/16 3D3/8

3D3

0

3D2/4

21D2/4

0

0

3D/2

9D

0

0

0

3

15

3. Brownian Motion

3.1. Simple Random Walk. Let X1, X2, . . . be a sequence of independent ran-
dom variables all of which satisfy

(3.1) P (Xi = ±1) = 1/2

and define

(3.2) Sn = X1 +X2 + · · ·+Xn.

We can represent this graphically by plotting the points {(n, Sn) : n = 1, 2, . . .},
and one way to imagine this is as a random walk, in which the walker takes identical
steps forwards or backwards, each with probability 1/2. This model is called simple
random walk and, whilst easy to define, is a useful laboratory in which to improve
probabilistic intuition.

Another way to imagine Sn is to consider a game in which a fair coin is tossed
repeatedly. If I win the toss, then I win £1; losing the toss implies a loss of £1.
Thus Sn is my fortune at time n.

Firstly note that

ESn = EX1 + · · ·+ EXn = 0.

Further, EX2
i = 1, for all i, so that varXi = 1. Hence

varSn = varX1 + varX2 + · · ·+ varXn = n,

since X1, . . . , Xn are independent random variables.
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3.2. Discrete Brownian Motion. We begin with a slightly more complicated
random walk this time. We choose a timestep h > 0 and let Z1, Z2, . . . be indepen-
dent N(0, h) Gaussian random variables. We then define a curve B(h)

t by defining
B(h)

0 = 0 and

(3.3) B(h)(kh) = Z1 + Z2 + · · ·+ Zk,

for positive integer k. We then join the dots to obtain a piecewise linear function.
More precisely, we define

B(h)
t = B(h)

kh + (t− kh)

(
B(h)

(k+1)h −B(h)
kh

h

)
, for t ∈ (kh, (k + 1)h).

The resultant random walk is called discrete Brownian motion.

Proposition 3.1. If 0 ≤ a ≤ b ≤ c and a, b, c ∈ hZ, then the discrete Brown-
ian motion increments B(h)

c − B(h)
b and B(h)

b − B(h)
a are independent random

variables. Further, B(h)
c −B(h)

b ∼ N(0, c− b) and B(h)
b −B(h)

a ∼ N(0, b− a).

Proof. Exercise. �

3.3. Basic Properties of Brownian Motion. It’s not obvious that discrete
Brownian motion has a limit, in some sense, when we allow the timestep h to
converge to zero. However, it can be shown that this is indeed the case (and will
see the salient features of the Lévy–Cieselski construction of this limit later). For
the moment, we shall state the defining properties of Brownian motion.

Definition 3.1. There exists a stochastic process Wt, called Brownian motion,
which satisfies the following conditions:

(i) W0 = 0;
(ii) If 0 ≤ a ≤ b ≤ c, then the Brownian increments Wc −Wb and Wb −Wa

are independent random variables. Further, Wc −Wb ∼ N(0, c − b) and
Wb −Wa ∼ N(0, b− a);

(iii) Wt is continuous almost surely.

Proposition 3.2. Wt ∼ N(0, t) for all t > 0.

Proof. Just set a = 0 and b = t in (ii) of Definition 3.1. �

The increments of Brownian motion are independent Gaussian random variables,
but the actual values Wa and Wb are not independent random variables, as we shall
now see.

Proposition 3.3. If a, b ∈ [0,∞), then E (WaWb) = min{a, b}.

Proof. We assume 0 < a < b, the remaining cases being easily checked. Then

E (WaWb) = E
(
Wa [Wb −Wa] +W 2

a

)
= E (Wa [Wb −Wa]) + E

(
W 2
a

)
= 0 + a

= a.

�
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Brownian motion is continuous almost surely but it is easy to see that it cannot
be differentiable. The key observation is that

(3.4)
Wt+h −Wt

h
∼ N(0,

1

h
).

In other words, instead of converging to some limiting value, the variance of the
random variable (Wt+h −Wt)/h tends to infinity, as h→ 0.

3.4. Martingales. A martingale is a mathematical version of a fair game, as we
shall first illustrate for simple random walk.

Proposition 3.4. We have

E (Sn+k|Sn) = Sn.

Proof. The key observation is that

Sn+k = Sn +Xn+1 +Xn+2 + · · ·+Xn+k

and Xn+1, . . . , Xn+k are all independent of Sn = X1 + · · ·+Xn. Thus

E (Sn+k|Sn) = Sn + EXn+1 + EXn+2 + · · ·+ EXn+k = Sn.

�

To see why this encodes the concept of a fair game, let us consider a biased coin
with the property that

E (Sn+10|Sn) = 1.1Sn.

Hence

E (Sn+10`|Sn) = 1.1`Sn.

In other words, the expected fortune Sn+10` grows exponentially with `. For exam-
ple, if we ensure that S4 = 3, by fixing the first four coin tosses in some fashion,
then our expected fortune will grow by 10% every 10 tosses thereafter.

3.5. Brownian Motion and Martingales.

Proposition 3.5. Brownian motion is a martingale, that is, E (Wt+h|Wt) = Wt,
for any h > 0.

Proof.

E (Wt+h|Wt) = E ([Wt+h −Wt] +Wt|Wt)

= E ([Wt+h −Wt]|Wt) +Wt

= E ([Wt+h −Wt]) +Wt

= 0 +Wt

= Wt.

�

We can sometimes use a similar argument to prove that functionals of Brownian
motion are martingales.

Proposition 3.6. The stochastic process Xt = W 2
t − t is a martingale, that is,

E (Xt+h|Xt) = Xt, for any h > 0.
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Proof.

E (Xt+h|Xt) = E
(

[Wt+h −Wt +Wt]
2 − [t+ h]|Wt

)
= E

(
[Wt+h −Wt]

2 + 2Wt [Wt+h −Wt] +W 2
t − t− h|Wt

)
= E[Wt+h −Wt]

2 +W 2
t − t− h

= h+W 2
t − t− h

= Xt.

�

The following example will be crucial.

Proposition 3.7. Geometric Brownian motion

(3.5) Yt = eα+βt+σWt

is a martingale, that is, E (Yt+h|Yt) = Yt, for any h > 0, if and only if β = −σ2/2.

Proof.

E (Yt+h|Yt) = E
(
eα+β(t+h)+σWt+h |Yt

)
= E

(
Yte

βh+σ(Wt+h−Wt)|Yt
)

= YtEeβh+σ(Wt+h−Wt)

= Yte
(β+σ2/2)h.

�

In this course, the mathematical model chosen for option pricing is risk-neutral
geometric Brownian motion: we choose a geometric Brownian motion St with the
property that Yt = e−rtSt is a martingale, where Yt is given by (3.5). Thus we have

Yt = eα+(β−r)t+σWt

and Proposition 3.7 implies that β − r = −σ2/2, i.e.

St = eα+(r−σ2/2)t+σWt = S0e
(r−σ2/2)t+σWt .

3.6. The Black–Scholes Equation. We can also use (4.6) to derive the famous
Black–Scholes partial differential equation, which is satisfied by any European op-
tion. The key is to choose a small positive h in (4.6) and expand. We shall need
Taylor’s theorem for functions of two variables, which states that

G(x+ δx, y + δy) = G(x, y) +

(
∂G

∂x
δx+

∂G

∂y
δy

)
+

1

2

(
∂2G

∂x2
(δx)2 + 2

∂2G

∂x∂y
(δx)(δy) +

∂2G

∂y2
(δy)2

)
+ · · · .

(3.6)
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Further, it simplifies matters to use “log-space”: we introduce u(t) := logS(t),
where log ≡ loge in these notes (not logarithms to base 10). In log-space, (4.3)
becomes

(3.7) u(t+ h) = u(t) + (r − σ2/2)h+ σδWt,

where

(3.8) δWt = Wt+h −Wt ∼ N(0, h).

We also introduce

(3.9) g(u(t), t) := f(exp(u(t), t)),

so that (4.6) takes the form

(3.10) g(u(t), t) = e−rhEg(u(t+ h), t+ h).

Now Taylor expansion yields the (initially daunting)

g(u(t+ h), t+ h) = g(u(t) + (r − σ2/2)h+ σδWt, t+ h)

= g(u(t), t) +
∂g

∂u

(
(r − σ2/2)h+ σδWt

)
+

1

2

∂2g

∂u2
σ2 (δWt)

2
+ h

∂g

∂t
+ · · · ,(3.11)

ignoring all terms of higher order than h. Further, since δWt ∼ N(0, h), i.e. EδWt =
0 and E[(δWt)

2] = h, we obtain

(3.12) Eg(u(t+h), t+h) = g(u(t), t) +h

(
∂g

∂u
(r − σ2/2) +

1

2

∂2g

∂u2
σ2 +

∂g

∂t

)
+ · · · .

Recalling that

e−rh = 1− rh+
1

2
(rh)2 + · · · ,

we find

g = (1− rh+ · · · )
(
g + h

[
∂g

∂u
(r − σ2/2) +

1

2

∂2g

∂u2
σ2 +

∂g

∂t

]
+ · · ·

)
= g + h

(
−rg +

∂g

∂u
(r − σ2/2) +

1

2

∂2g

∂u2
σ2 +

∂g

∂t

)
+ · · · .(3.13)

For this to be true for all h > 0, we must have

(3.14) −rg +
∂g

∂u
(r − σ2/2) +

1

2

∂2g

∂u2
σ2 +

∂g

∂t
= 0,

and this is the celebrated Black–Scholes partial differential equation (PDE). Thus,
instead of computing an expected future value, we can calculate the solution of the
Black–Scholes PDE (3.14). The great advantage gained is that there are highly
efficient numerical methods for solving PDEs numerically. The disadvantages are
complexity of code and learning the mathematics needed to exploit these methods
effectively.

Exercise 3.1. Use the substitution S = exp(u) to transform (3.14) into the non-
linear form of the Black–Scholes PDE.
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3.7. Itô Calculus. Equation (3.12) is really quite surprising, because the second
derivative contributes to the O(h) term. This observation is at the root of the Itô
rules. We begin by considering the quadratic variation In[a, b] of Brownian motion
on the interval [a, b]. Specifically, we choose a positive integer n and let nh = b−a.
We then define

(3.15) In[a, b] =

n∑
k=1

(
Wa+kh −Wa+(k−1)h

)2
.

We shall prove that EIn[a, b] = b − a, for every positive integer n, but that
var In[a, b]→ 0, as n→∞. We shall need the following simple property of Gaussian
random variables.

Lemma 3.8. Let Z ∼ N(0, 1). Then EZ4 = 3.

Proof. Integrating by parts, we obtain

EZ4 =

∫ ∞
−∞

s4(2π)−1/2e−s
2/2 ds

= (2π)−1/2
∫ ∞
−∞

s3
d

ds

(
−e−s

2/2
)
ds

= (2π)−1/2
{[
−s3e−s

2/2
]∞
−∞
−
∫ ∞
−∞

3s2
(
−e−s

2/2
)
ds

}
= 3.

�

Exercise 3.2. Calculate EZ6 when Z ∼ N(0, 1). More generally, calculate EZ2m

for any positive integer m.

Proposition 3.9. We have EIn[a, b] = b− a and var In[a, b] = 2(b− a)2/n.

Proof. Firstly,

EIn[a, b] =

n∑
k=1

E
(
Wa+kh −Wa+(k−1)h

)2
=

n∑
k=1

h = nh = b− a.

Further, the Brownian increments Wa+kh−Wa+(k−1)h are independent N(0, h) ran-
dom variables. We shall define independent N(0, 1) random variables Z1, Z2, . . . , Zn
by

Wa+kh −Wa+(k−1)h =
√
hZk, 1 ≤ k ≤ n.
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Hence

var In[a, b] =

n∑
k=1

var
(√

hZk

)2
=

n∑
k=1

var
[
hZ2

k

]
=

n∑
k=1

h2 var
[
Z2
k

]
=

n∑
k=1

h2
(
EZ4

k −
[
EZ2

k

]2)
=

n∑
k=1

2h2

= 2nh2

= 2(b− a)2/n.

�

With this in mind, we define ∫ b

a

(dWt)
2

= b− a

and observe that we have shown that∫ b

a

(dWt)
2

=

∫ b

a

dt,

for any 0 ≤ a < b. Thus we have really shown the Itô rule

dW 2
t = dt.

Using a very similar technique, we can also prove that

dtdWt = 0.

We first define

Jn[a, b] =

n∑
k=1

h
(
Wa+kh −Wa+(k−1)h

)
,

where nh = b− a, as before.

Proposition 3.10. We have EJn[a, b] = 0 and var Jn[a, b] = (b− a)3/n2.

Proof. Firstly,

EJn[a, b] =

n∑
k=1

Eh
(
Wa+kh −Wa+(k−1)h

)
= 0.
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The variance satisfies

var Jn[a, b] =

n∑
k=1

varh
(
Wa+kh −Wa+(k−1)h

)
=

n∑
k=1

h2 var
(
Wa+kh −Wa+(k−1)h

)
=

n∑
k=1

h3

= nh3

= (b− a)3/n2.

�

With this in mind, we define∫ b

a

dtdWt = 0, for any 0 ≤ a < b,

and observe that we have shown that

dtdWt = 0.

Exercise 3.3. Setting nh = b− a, define

Kn[a, b] =

n∑
k=1

h2.

Prove that Kn[a, b] = (b− a)2/n→ 0, as n→∞. Thus∫ b

a

(dt)
2

= 0,

for any 0 ≤ a < b. Hence we have (dt)2 = 0.

Proposition 3.11 (Itô Rules). We have dW 2
t = dt and dWtdt = dt2 = 0.

Proof. See Propositions 3.9, 3.10 and Exercise 3.3 �

The techniques used in Propositions 3.9 and 3.10 are crucial examples of the
basics of stochastic integration. We can generalize this technique to compute other
useful stochastic integrals, as we shall now see. However, computing these stochastic
integrals directly from limits of stochastic sums is cumbersome compared to direct
use of the Itô rules: compare the proof of Proposition 3.12 to the simplicity of
Example 3.3.

Proposition 3.12. We have∫ t

0

WsdWs =
1

2

(
W 2
t − t

)
.

Proof. We have already seen that, when h = t/n,

(3.16)

n∑
k=1

(
Wkh −W(k−1)h

)2 → t,
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as n→∞. Further, we shall use the telescoping sum

(3.17)

n∑
k=1

(
W 2
kh −W 2

(k−1)h

)
= W 2

nh −W 2
0 = W 2

t .

Subtracting (3.16) from (3.17), we obtain
(3.18)
n∑
k=1

[(
W 2
kh −W 2

(k−1)h

)
−
(
Wkh −W(k−1)h

)2]
= 2

n∑
k=1

W(k−1)h
(
Wkh −W(k−1)h

)
.

Now the LHS converges to W 2
t − t, whilst the RHS converges to

2

∫ t

0

WsdWs,

whence (3.12). �

Example 3.1. Here we shall derive a useful formula for

(3.19)

∫ t

0

f(s)dWs,

where f is continuously differentiable. The corresponding discrete stochastic sum is

(3.20) Sn =

n∑
k=1

f(kh)
(
Wkh −W(k−1)h

)
where nh = t, as usual. The key trick is to introduce another telescoping sum:

(3.21)

n∑
k=1

(
f(kh)Wkh − f((k − 1)h)W(k−1)h

)
= f(t)Wt.

Subtracting (3.21) from (3.20) we find

Sn − f(t)Wt = −
n∑
k=1

(f(kh)− f((k − 1)h))W(k−1)h

= −
n∑
k=1

(
hf ′(kh) +O(h2)

)
W(k−1)h

→ −
∫ t

0

f ′(s)Wsds,(3.22)

as n→∞. Hence

(3.23)

∫ t

0

f(s)dWs = f(t)Wt −
∫ t

0

f ′(s)Ws ds.

Exercise 3.4. Modify the technique of Example 3.1 to prove that

(3.24) E

[(∫ t

0

h(s)dWs

)2
]

=

∫ t

0

h(s)2 ds.

This is the Itô isometry property.

We now come to Itô’s lemma itself.
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Lemma 3.13 (Itô’s Lemma for univariate functions). If f is any infinitely differ-
entiable univariate function and Xt = f(Wt), then

(3.25) dXt = f ′(Wt)dWt +
1

2
f (2)(Wt)dt.

Proof. We have

Xt+dt = f(Wt+dt)

= f(Wt + dWt)

= f(Wt) + f ′(Wt)dWt +
1

2
f (2)(Wt)dW

2
t

= Xt + f ′(Wt)dWt +
1

2
f (2)(Wt)dt.

Subtracting Xt from both sides gives (3.25). �

Example 3.2. Let Xt = ecWt , where c ∈ C. Then, setting f(x) = exp(cx) in
Lemma 3.13, we obtain

dXt = Xt

(
cdWt +

1

2
c2dt

)
.

Example 3.3. Let Xt = W 2
t . Then, setting f(x) = x2 in Lemma 3.13, we obtain

dXt = 2WtdWt + dt.

If we integrate this from 0 to T , say, then we obtain

XT −X0 = 2

∫ T

0

WtdWt +

∫ T

0

dt,

or

W 2
T = 2

∫ T

0

WtdWt + T,

that is ∫ T

0

WtdWt =
1

2

(
W 2
T − T

)
.

This is an excellent example of the Itô rules greatly simplifying direct calculation
with stochastic sums, because it is much easier than the direct proof of Proposition
3.12.

Example 3.4. Let Xt = Wn
t , where n can be any positive integer. Then, setting

f(x) = xn in Lemma 3.13, we obtain

dXt = nWn−1
t dWt +

1

2
n(n− 1)Wn−2

t dt.

We can also integrate Itô’s Lemma, as follows.

Example 3.5. Integrating (3.25) from a to b, we obtain∫ b

a

dXt =

∫ b

a

f ′(Wt)dWt +
1

2

∫ b

a

f (2)(Wt)dt,

i.e.

Xb −Xa =

∫ b

a

f ′(Wt)dWt +
1

2

∫ b

a

f (2)(Wt)dt.
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Lemma 3.13 is not quite sufficient to deal with geometric Brownian motion,
hence the following bivariate variant.

Lemma 3.14 (Itô’s Lemma for bivariate functions). If g(x1, t), for x1, t ∈ R, is
any infinitely differentiable function and Yt = g(Wt, t), then

(3.26) dYt =
∂g

∂x1
(Wt, t)dWt +

(
1

2

∂2g

∂x21
(Wt, t) +

∂g

∂t
(Wt, t)

)
dt.

Proof. We have

Yt+dt = g(Wt+dt, t+ dt)

= g(Wt + dWt, t+ dt)

= g(Wt, t) +
∂g

∂x1
(Wt, t)dWt +

1

2

∂2g

∂x21
(Wt, t)dW

2
t +

∂g

∂t
(Wt, t)dt

= g(Wt, t) +
∂g

∂x1
(Wt, t)dWt +

(
1

2

∂2g

∂x21
(Wt, t) +

∂g

∂t
(Wt, t)

)
dt

Subtracting Yt from both sides gives (3.26).
�

Example 3.6. Let Xt = eα+βt+σWt . Then, setting f(x1, t) = exp(α + βt + σx1)
in Lemma 3.13, we obtain

dXt = Xt

(
σdWt +

(
1

2
σ2 + β

)
dt

)
.

Example 3.7. Let Xt = eα+(r−σ2/2)t+σWt . Then, setting β = r−σ2/2 in Example
3.6, we find

dXt = Xt (σdWt + rdt) .

Exercise 3.5. Let Xt = W 2
t − t. Find dXt.

3.8. Itô rules and SDEs. Suppose now that the asset price St is given by the
SDE

(3.27) dSt = St (µdt+ σdWt) ,

that is, St is a geometric Brownian motion. Then the Itô rules imply that

(3.28) (dSt)
2

= σ2S2
t dt.

Hence, if we define Xt = f(St), then
(3.29)

dXt = f ′(St)dSt+
1

2
f (2)(St) (dSt)

2
= σf ′(St)StdWt+dt

(
µf ′(St)St +

1

2
σ2S2

t f
(2)(St)

)
.

We illustrate this with the particularly important example of solving the SDE
for geometric Brownian motion.

Example 3.8. If f(x) = log x, then f ′(x) = 1/x, f (2)(x) = −1/x2 and (3.29)
becomes

dXt = σ
1

St
StdWt + dt

(
µ

1

St
St +

1

2
σ2S2

t

(
−1

S2
t

))
= σdWt + dt

(
µ− σ2/2

)
.
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Integrating from t0 to t1, say, we obtain

Xt1 −Xt0 = σ (Wt1 −Wt0) +
(
µ− σ2/2

)
(t1 − t0) ,

or

log
St1
St0

= σ (Wt1 −Wt0) +
(
µ− σ2/2

)
(t1 − t0) .

Taking the exponential of both sides, we obtain

St1 = St0e
(r−σ2/2)(t1−t0)+σ(Wt1

−Wt0).

3.9. Multivariate Geometric Brownian Motion. So far we have considered
one asset only. In practice, we need to construct a multivariate GBM model that
allows us to incorporate dependencies between assets via a covariance matrix. To
do this, we first take a vector Brownian motion Wt ∈ Rn: its components are
independent Brownian motions. Its covariance matrix Ct at time t is simply a
multiple of the identity matrix:

Ct = EWtW
T
t = tI.

Now take any real, invertible, symmetric n× n matrix A and define

Zt = AWt.

The covariance matrix Dt for this new stochastic process is given by

Dt = EZtZ
T
t = EAWtW

T
t A = A

(
EWtW

T
t

)
A = tA2,

and A2 is a symmetric positive definite matrix.

Exercise 3.6. Prove that A2 is symmetric positive definite if A is real, symmetric
and invertible.

In practice, we calculate the covariance matrix M from historical data, hence
must construct a symmetric A satisfying A2 = M . Now a covariance matrix is
precisely a symmetric positive definite matrix, so that the following linear algebra
is vital. We shall use ‖x‖ to denote the Euclidean norm of the vector x ∈ Rn, that
is

(3.30) ‖x‖ =
( n∑
k=1

x2k

)1/2
, x ∈ Rn.

Further, great algorithmic and theoretical importance attaches to those n×n matri-
ces which preserve the Euclidean norm. More formally, an n×n matrix Q is called
orthogonal if ‖Qx‖ = ‖x‖, for all x ∈ Rn. It turns out that Q is an orthogonal
matrix if and only if QTQ = I, which is equivalent to stating that its columns are
orthonormal vectors. See Section 6 for further details.

Theorem 3.15. Let M ∈ Rn×n be symmetric. Then it can be written as M =
QDQT , where Q is an orthogonal matrix and D is a diagonal matrix. The elements
of D are the eigenvalues of M , while the columns of Q are the eigenvectors. Further,
if M is positive definite, then its eigenvalues are all positive.

Proof. Any good linear algebra textbook should include a proof of this fact; a proof
is given in my numerical linear algebra notes. �
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Given the spectral decomposition M = QDQT , with D = diag (λ1, λ2, . . . , λn),
we define

D1/2 = diag (λ
1/2
1 , λ

1/2
2 , . . . , λ1/2n )

when M is positive definite. We can now define the matrix square-root M1/2 by

(3.31) M1/2 = QD1/2QT .

Exercise 3.7. Prove that (M1/2)2 = M directly from (3.31).

Given the matrix square-root M1/2 for a chosen symmetric. positive definite
matrix M , we now define the assets

(3.32) Sk(t) = e(r−Mkk/2)t+(M1/2Wt)
k , k = 1, 2, . . . , n,

where
(
M1/2Wt

)
k

denotes the kth element of the vector M1/2Wt. We now need
to check that our assets remain risk-neutral.

Proposition 3.16. Let the assets’ stochastic processes be defined by (3.32). Then

ESk(t) = ert,

for all k ∈ {1, 2, . . . , n}.
Proof. The key calculation is

Ee(M
1/2Wt)

k = Ee
∑n

`=1(M
1/2)k`Wt(`)

= E
n∏
`=1

e(M
1/2)k`Wt(`)

=

n∏
`=1

Ee(M
1/2)k`Wt(`)

=

n∏
`=1

e(M
1/2)2k`t/2

= e(t/2)
∑n

`=1(M
1/2)2k`

= e(t/2)Mkk ,

using the independence of the components of Wt. �

Exercise 3.8. Compute E[Sk(t)2].

Exercise 3.9. What’s the covariance matrix for the assets S1(t), . . . , Sn(t)?

In practice, it is usually easier to describe the covariance structure of multivariate
Brownian motion via the Itô rules, which take the simple form

(3.33) dWtdW
T
t = M dt,

whereM ∈ Rn×n is a symmetric positive definite matrix and Wt is an n-dimensional
Brownian motion.

Proposition 3.17. If Xt = f(Wt), then

(3.34) dXt = ∇f(Wt)
T dWt +

1

2
dWT

t D
2f(Wt)dWt

or

(3.35) dXt =

n∑
j=1

∂f

∂xj
dWj,t +

dt

2

n∑
j=1

n∑
k=1

∂2f

∂xj∂xk
Mjk.
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Proof. This is left as an exercise. �

Example 3.9. If n = 2 and

f(x1, x2) = ea1x1+a2x2 ,

and the correlated Brownian motions W1,t and W2,t satisfy

dW1,tdW2,t = ρdt,

for some constant correlation coefficient ρ ∈ [−1, 1], then Xt = f(W1,t,W2,t) satis-
fies

dXt =

(
a1dW1,t + a2dW2,t +

1

2
dt
(
a21 + 2ρa1a2 + a22

))
Xt.

Example 3.10. If n = 3 and

f(x1, x2, x3) = ea1x1+a2x2+a3x3 ,

and the correlated Brownian motions W1,t,W2,t,W3,t satisfy

dW1,tdW2,t = M12dt, dW2,tdW3,t = M23dt, dW3,tdW1,t = M31dt,

where M ∈ R3×3 is a symmetric positive definite matrix which also satisfies

M11 = M22 = M33 = 1,

then Xt = f(W1,t,W2,t,W3,t) satisfies

dXt =

(
a1dW1,t + a2dW2,t + a3dW3,t +

1

2
dt
(
a21 + a22 + a23 + 2a2a3M23 + 2a3a1M31 + 2a1a2M12

))
Xt.

Example 3.11. If

f(x) = ea
Tx, x ∈ Rn,

then

∇f(x) = af(x)

and

D2f(x) = aaT f(x).

Let Wt be any n-dimensional Brownian motion satisfying

dWtdW
T
t = Mdt,

where M ∈ Rn×n is a symmetric positive definite matrix. Then Xt = f(Wt)
satisfies

dXt =

(
aT dWt +

1

2
dWT

t MdWt

)
f(x),

or, in coordinate form,

dXt =

 n∑
j=1

ajdWj,t +
1

2
dt

n∑
j=1

n∑
k=1

ajakMjk

 f(x).
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Proposition 3.18. If Yt = g(Wt, t), then

(3.36) dYt = ∇g(Wt)
T dWt +

∂g

∂t
dt+

1

2
dWT

t D
2g(Wt)dWt

or

(3.37) dYt =

n∑
j=1

∂g

∂xj
dWj,t +

∂g

∂t
dt+

dt

2

n∑
j=1

n∑
k=1

∂2g

∂xj∂xk
Mjk.

Proof. Exercise. �

Example 3.12. If n = 2 and

g(x1, x2) = ea1x1+a2x2+bt,

and the correlated Brownian motions W1,t and W2,t satisfy

dW1,tdW2,t = ρdt,

for some constant correlation coefficient ρ ∈ [−1, 1], then Xt = f(W1,t,W2,t) satis-
fies

dXt =

(
a1dW1,t + a2dW2,t + bdt+

1

2
dt
(
a21 + 2ρa1a2 + a22

))
Xt.

Example 3.13. If

g(x, t) = ea
Tx+bt, x ∈ Rn,

then

∇g(x, t) = ag(x, t),
∂g

∂t
= bg(x, t),

and
D2g(x, t) = aaT g(x, t).

Let Wt be any n-dimensional Brownian motion satisfying

dWtdW
T
t = Mdt,

where M ∈ Rn×n is a symmetric positive definite matrix. Then Yt = g(Wt, t)
satisfies

dYt =

(
aT dWt + bdt+

1

2
dWT

t MdWt

)
Yt,

or, in coordinate form

dYt =

 n∑
j=1

ajdWj,t + bdt+
1

2
dt

n∑
j=1

n∑
k=1

ajakMjk

Yt.
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3.10. The Ornstein–Uhlenbeck Process. This interesting SDE displays mean-
reversion and requires a slightly more advanced technique. We consider the SDE

(3.38) dXt = −αXtdt+ σdWt, t ≥ 0,

where α > 0 and σ ≥ 0 are constants and X0 = x0.
It’s very useful to consider the special case σ = 0 first, in which case the SDE

(3.38) becomes the ODE

(3.39)
dXt

dt
+ αXt = 0.

There is a standard method for solving (3.39) using an integrating factor. Specifi-
cally, if we multiply (3.39) by exp(αt), then we obtain

(3.40)
d

dt

(
Xte

αt
)

= 0,

so that Xt exp(αt) is constant. Hence, recalling the initial condition X0 = x0, we
must have

(3.41) Xt = x0e
−αt.

Thus the solution decays exponentially to zero, at a rate determined by the positive
constant α, for any initial value x0.

Fortunately the integrating factor method also applies to the σ > 0 case, with a
little more work. Multiplying (3.38) by expαt, we obtain

eαt (dXt + αXtdt) = σeαtdWt,

or

(3.42) d
(
Xte

αt
)

= σeαtdWt,

using the infinitesimal increments variant on the product rule for differentiation.
Integrating (3.42) from 0 to s, we find

(3.43) Xse
αs − x0 =

∫ s

0

d
(
Xte

αt
)

= σ

∫ s

0

eαtdWt,

or

(3.44) Xs = x0e
−αs + e−αs

∫ s

0

eαtdWt.

We can say more using the following important property of stochastic integrals.

Proposition 3.19. Let f : [0,∞)→ R be any infinitely differentiable function and
define the stochastic process

(3.45) Fs =

∫ s

0

f(t)dWt.

Then EFs = 0 and

(3.46) varFs =

∫ s

0

f(t)2dt.
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Proof. The key point is that (3.45) is the limit of the stochastic sum

Sn =

n∑
k=1

f(kh)
(
Wkh −W(k−1)h

)
,

where h > 0 and nh = s. Now the increments Wkh−W(k−1)h are independent and
satisfy

Wkh −W(k−1)h ∼ N(0, h),

by the axioms of Brownian motion, so

ESn = 0,

for all n. By independence of the terms in the sum, we see that

varSn =

n∑
k=1

var
(
f(kh)

(
Wkh −W(k−1)h

))
=

n∑
k=1

f(kh)2 var
(
Wkh −W(k−1)h

)
= h

n∑
k=1

f(kh)2

→
∫ s

0

f(t)2 dt,

as n→∞. �

Applying Proposition 3.19 to the Ornstein–Uhlenbeck process solution (3.44),
we obtain EXs = x0 exp(−αs) and

varXs = varσe−αs
∫ s

0

eαtdWt

= σ2e−2αs
∫ s

0

e2αtdt

= σ2e−2αs
(
e2αs − 1

2α

)
= σ2

(
1− e−2αs

2α

)
.

3.11. ∆-Hedging for GBM. We begin with the real world asset price

(3.47) St = eα+βt+σWt ,

where we do not assume there is any connection between the parameters α, β and
σ: this is not risk-neutral GBM. It is a simple exercise in Itô calculus (see Example
3.6) to prove that

(3.48) dSt = St
(
σdWt +

(
β + σ2/2

)
dt
)

and

(3.49) (dSt)
2

= σ2S2
t dt.

By analogy with delta hedging in the Binomial Model (2.4), let us assume that
St = S and define the portfolio

(3.50) Πt = f(St, t)−∆St,
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where ∆ is a constant. Then

Πt+dt = f(St+dt, t+ dt)−∆St+dt

= f(S + dSt, t+ dt)−∆S −∆dSt

= f(S, t) + dStfS +
1

2
dS2

t fSS + dtft −∆S −∆dSt

= Πt + dSt (fS −∆) +
1

2
dS2

t fSS + dtft

= Πt + dSt (fS −∆) +

(
1

2
σ2S2fSS + ft

)
dt.(3.51)

In other words, we have the infinitesimal increment

(3.52) Πt+dt −Πt = dΠt = dSt (fS −∆) +

(
1

2
σ2S2fSS + ft

)
dt.

Thus we eliminate the stochastic dSt component by setting

(3.53) ∆ = fS

and (3.51) then becomes

(3.54) dΠt =

(
ft +

1

2
σ2S2fSS

)
dt,

or

(3.55)
dΠt

dt
= ft +

1

2
σ2S2fSS .

Now there is no stochastic component in (3.54), so we must also have

(3.56)
dΠt

dt
= rΠt = r (f − fSS) ,

because all deterministic assets must grow at the risk-free rate. Equating (3.55)
and (3.56) yields

(3.57) ft +
1

2
σ2S2fSS = r (f − fSS) ,

or

(3.58) ft − rf + rfSS +
1

2
σ2S2fSS = 0,

which is the Black–Scholes PDE.
It is often useful to restate the Black–Scholes PDE in terms of the logarithm of

the asset price, i.e. via S = ex. Thus

∂S
dS

dx
= ∂x,

or

(3.59) S∂S = ∂x.

Hence

∂xx = S∂S (S∂S)

= S (∂S + S∂SS)

= S∂S + S2∂SS ,(3.60)
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or, using (3.59),

(3.61) S2∂SS = ∂xx − ∂x.

Therefore substituting (3.59) and (3.61) in (3.58) yields

0 = ft − rf + rfx +
1

2
σ2 (fxx − fx)

= ft − rf +
(
r − σ2/2

)
fx +

1

2
σ2fxx.(3.62)

(3.63)

4. The Geometric Brownian Motion Universe

We shall begin with a brisk introduction to the main topics, filling in the details
later. The real economy is vastly complex, so mathematical finance begins with
vast oversimplification.

Let r be the risk-free interest rate, which we shall assume constant. This is
really the interest paid by the state when borrowing money via selling bonds, and
it is nominally risk-free in any state that issues its own currency, although the
real value of that currency can greatly decrease. We assume that everyone in our
mathematical economy can borrow and lend at this rate, so that such debts (or
investments, if lent) satisfy Bt = B0 exp(rt). In reality, banks and companies
borrow and lend at a higher rate r+ δ, where δ increases with the perceived risk of
the lender, but this complication is ignored here.

Notation: In most (but not all) areas of mathematics, a function B depend-
ing on time t would be denoted B(t), but mathematical finance often uses the
alternative notation Bt which is very common in probability theory, statistics and
economics. I shall be consistent in using S(t) to denote the share price in Section
2, but we shall move to St in Section 3.

We shall assume that every risky asset (such as a share) is described by a random
process called geometric Brownian motion (GBM):

(4.1) S(t) = S(0)eβt+σWt , t > 0,

where Wt denotes Brownian motion, β ∈ R and σ is a non-negative parameter called
the volatility of the asset. You can think of Brownian motion as an important
generalization of random walk, but we shall postpone its detailed definition and
properties until Section 3. Fortunately all we need for now is the fundamental
property that WT is a normal (or Gaussian) random variable with mean zero and
variance T , that is,

(4.2) Wt ∼ N(0, t), for all t > 0.

As we shall see later, option pricing requires us to use β = r − σ2/2, that is,

(4.3) S(t) = S(0)e(r−σ
2/2)t+σWt , t > 0,

and this is usually called risk neutral GBM. The reason for the disappearance of the
parameter β when pricing options is rather deep and extremely important, but will
be explained later. All you need to know at present is that (4.1) is the mathematical
model for share prices in the real world, but the risk neutral variant (4.3) is used
when pricing options, i.e. contracts whose value depends on the asset price.
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Thus, when pricing options, to generate sample prices S(T ) at some future time
T given the initial price S(0), we use

(4.4) S(T ) = S(0) exp
(
(r − σ2/2)T + σ

√
TZT

)
, where ZT ∼ N(0, 1),

because WT ∼ N(0, T ), so that we can write WT = T 1/2ZT .

Example 4.1. Generating sample prices at a fixed time T using (4.4) is particularly
easy in Matlab and Octave:

S = S0*exp((r-sigma^2/2)*T + sigma*sqrt(T)*randn(m,1)

will construct a column vector of m sample prices once you’ve defined S0, r, σ and
T . To calculate the sample average price, we type sum(S)/m.

To analytically calculate ES(T ) we need the following simple, yet crucial, lemma.

Lemma 4.1. If W ∼ N(0, 1), then E exp(λW ) = exp(λ2/2).

Proof. We have

EeλW =

∫ ∞
−∞

eλt(2π)−1/2e−t
2/2 dt = (2π)−1/2

∫ ∞
−∞

e−
1
2 (t

2−2λt) dt.

The trick now is to complete the square in the exponent, that is,

t2 − 2λt = (t− λ)2 − λ2.
Thus

EeλW = (2π)−1/2
∫ ∞
−∞

exp

(
−1

2
([t− λ]2 − λ2)

)
dt = eλ

2/2.

This is also described in detail in Example 5.3. �

Lemma 4.2. For every σ ≥ 0, we have the expected growth

(4.5) ES(t) = S(0)ert, t ≥ 0.

Proof. This is an easy consequence of Lemma 4.1. �

The option pricing risk-neutral geometric Brownian motion universe might there-
fore seem rather strange, because every asset has the same expected growth ert as
the risk-free interest rate. Thus our universe of all possible assets in a risk-neutral
world is specified by one parameter only: the volatility σ. Please do remember that
this is not the asset price in the market, but simply a mathematical device required
for pricing options based on the asset.

A financial derivative is any function f(S, t). We shall concentrate on the fol-
lowing particular class of derivatives.

Definition 4.1. A European option is any function f ≡ f(S, t) that satisfies the
conditional expectation equation

(4.6) f(S(t), t) = e−rhE
(
f(S(t+ h), t+ h)|S(t)

)
, for any h > 0.

We shall often simply write this as

f(S(t), t) = e−rhEf(S(t+ h), t+ h)

but you should take care to remember that this is an expected future value given
the asset’s current value S(t). We see that (4.6) describes a contract f(S, t) whose



28 BRAD BAXTER

current value is the discounted value of its expected future value in the risk-neutral
GBM universe.

We can learn a great deal by studying the mathematical consequences of (4.6)
and (4.3).

Example 4.2. A plain vanilla European put option is simply an insurance contract
that allows us to sell one unit of the asset, for exercise price K, at time T in the
future. If the asset’s price S(T ) is less than K at this expiry time, then the option is
worth K−S(T ), otherwise it’s worthless. Such contracts protect us if we’re worried
that the asset’s price might drop. The pricing problem here to calculate the value
of the contract at time zero given its value at expiry, namely

(4.7) fP (S(T ), T ) = (K − S(T ))+ ,

where (z)+ := max{z, 0}.

Typically, we know the value of the option f(S(T ), T ) for all values of the asset
S(T ) at some future time T . Our problem is to compute its value at some earlier
time, because we’re buying or selling this option.

Example 4.3. A plain vanilla European call option gives us the right to buy one
unit of the asset at the exercise price K at time T . If the asset’s price S(T ) exceeds
K at this expiry time, then the option is worth S(T )−K, otherwise it’s worthless,
implying the expiry value

(4.8) fC(S(T ), T ) = (S(T )−K)+ ,

using the same notation as Example 4.2. Such contracts protect us if we’re worried
that the asset’s price might rise.

How do we compute f(S(0), 0)? The difficult part is computing the expected
future value Ef(S(T ), T ). This can be done analytically for a tiny number of
options, including the European Put and Call (see Theorem 4.5), but usually we
must resort to a numerical calculation. This leads us to our first algorithm: Monte
Carlo simulation. Here we choose a large integer N and generate N pseudo-random
numbers Z1, Z2, . . . , ZN that have the normalized Gaussian distribution; in Matlab,
we simply write Z = randn(N,1). Using (4.3), these generate the future asset prices

(4.9) Sk = S(0) exp
(

(r − σ2

2
)T + σ

√
TZk

)
, k = 1, . . . , N.

We then approximate the future expected value by an average, that is, we take

(4.10) f(S(0), 0) ≈ e−rT

N

N∑
k=1

f(Sk, T ).

Monte Carlo simulation has the great advantage that it is extremely simple to
program. Its disadvantage is that the error is usually a multiple of 1/

√
N , so that

very large N is needed for high accuracy (each decimal place of accuracy requires
about a hundred times more work). We note that (4.10) will compute the value of
any European option that is completely defined by a known final value f(S(T ), T ).

We shall now use Monte Carlo to approximately evaluate the European Call and
Put contracts. In fact, Put-Call parity, described below in Theorem 4.3, implies
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that we only need a program to calculate one of these, because they are related by
the simple formula

(4.11) fC(S(0), 0)− fP (S(0), 0) = S(0)−Ke−rT .

Here’s the Matlab program for the European Put.

%

% These are the parameters chosen in Example 11.6 of

% OPTIONS, FUTURES AND OTHER DERIVATIVES,

% by John C. Hull (Prentice Hall, 4th edn, 2000)

%

%% initial stock price

S0 = 42;

% unit of time = year

% 250 working days per year

% continuous compounding risk-free rate

r = 0.1;

% exercise price

K = 40;

% time to expiration in years

T = 0.5;

% volatility of 20 per cent annually

sigma = 0.2;

% generate asset prices at expiry

Z = randn(N,1);

ST = S0*exp( (r-(sigma^2)/2)*T + sigma*sqrt(T)*Z );

% calculate put contract values at expiry

fput = max(K - ST,0.0);

% average put values at expiry and discount to present

mc_put = exp(-r*T)*sum(fput)/N

% calculate analytic value of put contract

wK = (log(K/S0) - (r - (sigma^2)/2)*T)/(sigma*sqrt(T));

a_put = K*exp(-r*T)*Phi(wK) - S0*Phi(wK - sigma*sqrt(T))

The function Phi denotes the cumulative distribution function for the normalized
Gaussian distribution, that is,

(4.12) Φ(x) = P(Z ≤ x) =

∫ x

−∞
(2π)−1/2e−s

2/2 ds, for x ∈ R,

where Z ∼ N(0, 1).
Unfortunately, Matlab only provides the very similar error function, defined by

erf(y) =
2√
π

∫ y

0

exp(−s2) ds, y ∈ R.

It’s not hard to prove that

Φ(t) =
1

2

(
1 + erf(t/

√
2)
)
, t ∈ R.

We can add this to Matlab using the following function.
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function Y = Phi(t)

Y = 0.5*(1.0 + erf(t/sqrt(2)));

We have only revealed the tip of a massive iceberg in this brief introduction.
Firstly, the Black–Scholes model, where asset prices evolve according to (4.3), is
rather poor: reality is far messier. Further, there are many types of option which
are path-dependent: the value of the option at expiry depends not only on the final
price S(T ), but on its previous values {S(t) : 0 ≤ t ≤ T}. In particular, there are
American options, where the contract can be exercised at any time before its expiry.
All of these points will be addressed in our course, but you should find that Hull’s
book provides excellent background reading (although his mathematical treatment
is often sketchy). Higham provides a clear Matlab-based exposition.

Although the future expected value usually requires numerical computation,
there are some simple cases that are analytically tractable. These are particularly
important because they often arise in examinations!

4.1. European Puts and Calls. It’s not too hard to calculate the values of these
options analytically. Further, the next theorem gives an important relation between
the prices of call and put options.

Theorem 4.3 (Put-Call parity). European Put and Call options, each with exercise
price K and expiry time T , satisfy

(4.13) fC(S, t)− fP (S, t) = S −Ke−rτ , for S ∈ R and 0 ≤ t ≤ T,

where τ = T − t, the time-to-expiry.

Proof. The trick is the observation that

y = y+ − (−y)+,

for any y ∈ R. Thus

S(T )−K = (S(T )−K)+ − (K − S(T ))+

= fC(S(T ), T )− fP (S(T ), T ),

which implies

e−rτE (S(T )−K|S(t) = S) = fC(S, t)− fP (S, t).

Now

E (S(T )|S(t) = S) = (2π)−1/2
∫ ∞
−∞

Se(r−σ
2/2)τ+σ

√
τwe−w

2/2 dw

= Se(r−σ
2/2)τ (2π)−1/2

∫ ∞
−∞

e−
1
2 (w2−2σ

√
τw) dw

= Serτ ,

and some simple algebraic manipulation completes the proof. �

This is a useful check on the Monte Carlo approximations of the options’ values.
To derive their analytic values, we shall need the cumulative distribution function

(4.14) Φ(y) = (2π)−1/2
∫ y

−∞
e−z

2/2 dz, y ∈ R,
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for the Gaussian probability density, that is, P(Z ≤ y) = Φ(y) and P(a ≤ Z ≤ b) =
Φ(b)−Φ(a), for any normalized Gaussian random variable Z. Further, we have the
following relation which will be of use in subsequent formulae.

Lemma 4.4. We have 1− Φ(a) = Φ(−a), for any a ∈ R.

Proof. Observe that

1− Φ(a) =

∫ ∞
a

(2π)−1/2e−s
2/2 ds

=

∫ −a
−∞

(2π)−1/2e−u
2/2 du

= Φ(−a),

where we have made the substitution u = −s. �

Theorem 4.5. A European Put option satisfies

(4.15) fP (S, t) = Ke−rτΦ(w(K))− SΦ(w(K)− σ
√
τ), for S ∈ R,

where τ = T − t, i.e. the time-to-expiry, and w(K) is defined by the equation

K = Se(r−σ
2/2)τ+σ

√
τw(K),

that is

(4.16) w(K) =
log(K/S)− (r − σ2/2)τ

σ
√
τ

.

Proof. We have

E (fP (S(T ), T )|S(t) = S) = (2π)−1/2
∫ ∞
−∞

(
K − Se(r−σ

2/2)τ+σ
√
τw
)
+
e−w

2/2 dw.

Now the function

w 7→ K − S exp((r − σ2/2)τ + σ
√
τw)

is strictly decreasing, so that

K − Se(r−σ
2/2)τ+σ

√
τw ≥ 0

if and only if w ≤ w(K), where w(K) is given by (4.16). Hence

E (fP (S(T ), T )|S(t) = S) = (2π)−1/2
∫ w(K)

−∞

(
K − Se(r−σ

2/2)τ+σ
√
τw
)
e−w

2/2 dw

= KΦ(w(K))− Se(r−σ
2/2)τ (2π)−1/2

∫ w(K)

−∞
e−

1
2 (w2−2σ

√
τw) dw

= KΦ(w(K))− SerτΦ(w(K)− σ
√
τ).

Thus

fP (S, t) = e−rτE (fP (S(T ), T )|S(t) = S)

= Ke−rτΦ(w(K))− SΦ(w(K)− σ
√
τ).

�

There is an almost standard notation for Theorem 4.5, which is contained in the
following corollary.
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Corollary 4.6. A European Put option satisfies

(4.17) fP (S, t) = Ke−rτΦ(−d−)− SΦ(−d+), for S ∈ R,

where τ = T − t, i.e. the time-to-expiry, and

(4.18) d± =
log(S/K) + (r ± σ2/2)τ

σ
√
τ

.

Proof. This is simply rewriting Theorem 4.5 in terms of (4.18). �

We can now calculate the price of a European call using Corollary 4.6 and the
Put-Call parity Theorem 4.3.

Corollary 4.7. A European Call option satisfies

(4.19) fC(S, t) = SΦ(d+)−Ke−rτΦ(d−), for S ∈ R,

where τ = T − t, i.e. the time-to-expiry, and d± is given by (4.18).

Proof. Theorem 4.3 implies that

fC(S, t) = fP (S, t) + S −Ke−rτ

= Ke−rτΦ(−d−)− SΦ(−d+) + S −Ke−rτ

= S (1− Φ(−d+))−Ke−rτ (1− Φ(−d−))

= SΦ(d+)−Ke−rτΦ(d−),

using Lemma 4.4. �

Exercise 4.1. Modify the proof of Theorem 4.5 to derive the analytic price of a
European Call option. Check that your price agrees Corollary 4.7.

4.2. Digital Options. A digital option is simply an option that only takes the
values 0 and 1, that is, it is the indicator function for some event. Recall that, for
any indicator function IA, we have

EIA = P(A).

Our first example is the digital call option with exercise price K and expiry time
T is defined by

(4.20) fDC(S(T ), T ) =

{
1 if S(T ) ≥ K,

0 otherwise.

Theorem 4.8. The digital call option fDC satisfies

(4.21) fDC(S, t) = e−rτΦ(d−),

where τ = T − t and d− is defined by (4.18).

Proof. Its price at any earlier time t ∈ [0, t) is therefore given by

fDC(S, t) = e−rτE (fDC(S(T ), T )|S(t) = S)

= e−rτEfDC(Se(r−σ
2/2)τ+στ1/2Z ,(4.22)

(4.23)

where Z ∼ N(0, 1).
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Now
Se(r−σ

2/2)τ+στ1/2Z ≥ K
if and only if

logS + (r − σ2/2)τ + στ1/2Z ≥ logK,

because the logarithm is an increasing function. Rearranging this inequality, we
find

Z ≥ − log(S/K)− (r − σ2/2)τ

στ1/2
= −d−.

Thus

fDC(S, t) = e−rτP (Z ≥ −d−)

= e−rτ (1− Φ(−d−))

= e−rτΦ(d−),

by Lemma 4.4. �

It is now simple to define and price the digital put option fDP , which is defined
by

(4.24) fDP (S(T ), T ) =

{
1 if S(T ) < K,

0 otherwise.

A pair of digital put and call options with the same exercise price K and expiry
time T satisfy a digital put-call parity relation, specifically

fDC(S(T ), T ) + fDP (S(T ), T ) ≡ 1,

at expiry, which implies

(4.25) fDC(S, t) + fDP (S, t) ≡ e−rτ , for S ∈ R,
where τ = T − t.

Theorem 4.9. The digital put option fDP satisfies

(4.26) fDP (S, t) = e−rτΦ(−d−),

where τ = T − t and d− is defined by (4.18).

Proof. We use (4.25) and Lemma 4.4:

fDP (S, t) = e−rτ − fDC(S, t) = e−rτ (1− Φ(d−)) = e−rτΦ(−d−).

�

Another way to express digital calls and puts is as follows. Observe that

(4.27) fDC(S(T ), T ) = (S(T )−K)
0
+ and fDP (S(T ), T ) = (K − S(T ))

0
+ .

Thus we have shown that

E
(
(S(T )−K)+ |S(t) = S

)
= SerτΦ(d+)−KΦ(d−),

E
(

(S(T )−K)
0
+ |S(t) = S

)
= Φ(d−),

E
(
(K − S(T ))+ |S(t) = S

)
= KΦ(−d−)− SerτΦ(−d+),

E
(

(K − S(T ))
0
+ |S(t) = S

)
= Φ(−d−),
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5. Mathematical Background Material

I’ve collected here a miscellany of mathematical methods used (or reviewed)
during the course.

5.1. Probability Theory. You may find my more extensive notes on Probability
Theory useful:

http://econ109.econ.bbk.ac.uk/brad/Probability_Course/probnotes.pdf

A random variable X is said to have (continuous) probability density function
p(t) if

(5.1) P(a < X < b) =

∫ b

a

p(t) dt.

We shall assume that p(t) is a continuous function (no jumps in value). In partic-
ular, we have

1 = P(X ∈ R) =

∫ ∞
−∞

p(t) dt.

Further, because

0 ≤ P(a < X < a+ δa) =

∫ a+δa

a

p(t) dt ≈ p(a)δa,

for small δa, we conclude that p(t) ≥ 0, for all t ≥ 0. In other words, a probability
density function is simply a non-negative function p(t) whose integral is one. Here
are two fundamental examples.

Example 5.1. The Gaussian probability density function, with mean µ and vari-
ance σ2, is defined by

(5.2) p(t) = (2πσ2)−1/2 exp

(
− (t− µ)2

2σ2

)
.

We say that the Gaussian is normalized if µ = 0 and σ = 1.

To prove that this is truly a probability density function, we require the impor-
tant identity

(5.3)

∫ ∞
−∞

e−Cx
2

dx =
√
π/C,

which is valid for any C > 0. [In fact it’s valid for any complex number C whose
real part is positive.]

Example 5.2. The Cauchy probability density function is defined by

(5.4) p(t) =
1

π(1 + t2)
.

This distribution might also be called the Mad Machine Gunner distribution; imag-
ine our killer sitting at the origin of the (x, y) plane. He1 is firing (at a constant
rate) at the infinite line y = 1, his angle θ (with the x-axis) of fire being uniformly
distributed in the interval (0, π). Then the bullets have the Cauchy density.

1The sexism is quite accurate, since males produce vastly more violent psychopaths than
females.
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If you draw some graphs of these probability densities, you should find that,
for small σ, the graph is concentrated around the value µ. For large σ, the graph
is rather flat. There are two important definitions that capture this behaviour
mathematically.

Definition 5.1. The mean, or expected value, of a random variable X with p.d.f
p(t) is defined by

(5.5) EX :=

∫ ∞
−∞

tp(t) dt.

It’s very common to write µ instead EX when no ambiguity can arise. Its variance
Var X is given by

(5.6) Var X :=

∫ ∞
−∞

(t− µ)
2
p(t) dt.

Exercise 5.1. Show that the Gaussian p.d.f. really does have mean µ and variance
σ2.

Exercise 5.2. What happens when we try to determine the mean and variance of
the Cauchy probability density defined in Example 5.4?

Exercise 5.3. Prove that Var X = E(X2)− (EX)2.

We shall frequently have to calculate the expected value of functions of random
variables.

Theorem 5.1. If ∫ ∞
−∞
|f(t)|p(t) dt

is finite, then

(5.7) E (f(X)) =

∫ ∞
−∞

f(t)p(t) dt.

Example 5.3. Let X denote a normalized Gaussian random variable. We shall
show that

(5.8) EeλX = eλ
2/2,

Indeed, applying (5.7), we have

EeλX =

∫ ∞
−∞

eλt(2π)−1/2e−t
2/2 dt = (2π)−1/2

∫ ∞
−∞

e−
1
2 (t

2−2λt) dt.

The trick now is to complete the square in the exponent, that is,

t2 − 2λt = (t− λ)2 − λ2.

Thus

EeλX = (2π)−1/2
∫ ∞
−∞

exp

(
−1

2
([t− λ]2 − λ2)

)
dt = eλ

2/2.

Exercise 5.4. Let W be any Gaussian random variable with mean zero. Prove
that

(5.9) E
(
eW
)

= e
1
2E(W 2).
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5.2. Differential Equations. A differential equation, or ordinary differential equa-
tion (ODE), is simply a functional relationship specifying first, or higher derivatives,
of a function; the order of the equation is just the degree of its highest derivatives.
For example,

y′(t) = 4t3 + y(t)2

is a univariate first-order differential equation, whilst or

y′(t) = Ay(t),

where y(t) ∈ Rd and A ∈ Rd×d is a first-order differential equation in d-variables. A
tiny class of differential equations can be solved analytically, but numerical methods
are required for the vast majority. The numerical analysis of differential equations
has been one of the most active areas of research in computational mathematics
since the 1960s and excellent free software exists. It is extremely unlikely that any
individual can better this software without years of effort and scholarship, so you
should use this software for any practical problem. You can find lots of information
at www.netlib.org and www.nr.org. This section contains the minimum relevant
theory required to make use of this software.

You should commit to memory one crucial first-order ODE:

Proposition 5.2. The general solution to

(5.10) y′(t) = λy(t), t ∈ R,
where λ can be any complex number, is given by

(5.11) y(t) = c exp(λt), t ∈ R.
Here c ∈ C is a constant. Note that c = y(0), so we can also write the equation as
y(t) = y(0) exp(λt).

Proof. If we multiply the equation y′ − λy = 0 by the integrating factor exp(−λt),
then we obtain

0 =
d

dt
(y(t) exp(−λt)) ,

that is
y(t) exp(−λt) = c,

for all t ∈ R. �

In fact, there’s a useful slogan for ODEs: try an exponential exp(λt) or use
reliable numerical software.

Example 5.4. If we try y(t) = exp(λt) as a trial solution in

y′′ + 2y′ − 3y = 0,

then we obtain
0 = exp(λt)

(
λ2 + 2λ− 3

)
.

Since exp(λt) 6= 0, for any t, we deduce the associated equation

λ2 + 2λ− 3 = 0.

The roots of this quadratic are 1 and −3, which is left as an easy exercise. Now
this ODE is linear: any linear combination of solutions is still a solution. Thus we
have a general family of solutions

α exp(t) + β exp(−3t),
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for any complex numbers α and β. We need two pieces of information to solve for
these constants, such as y(t1) and y(t2), or, more usually, y(t1) and y′(t1). In fact
this is the general solution of the equation.

In fact, we can always change an mth order equation is one variable into an
equivalent first order equation in m variables, a technique that I shall call vector-
izing (some books prefer the more pompous phrase “reduction of order”). Most
ODE software packages are designed for first order systems, so vectorizing has both
practical and theoretical importance.

For example, given

y′′(t) = sin(t) + (y′(t))
3 − 2 (y(t))

2
,

we introduce the vector function

z(t) =

(
y(t)
y′(t)

)
,

Then

z′(t) =

(
y′

y′′

)
=

 y′

sin(t) + (y′)
3 − 2 (y)

2

 .

In other words, writing

z(t) =

(
z1(t)
z2(t)

)
≡
(
y(t)
y′(t)

)
,

we have derived

z′ =

(
z2

sin(t) + z32 − 2z21

)
,

which we can write as
z′ = f(z, t).

Exercise 5.5. You probably won’t need to consider ODEs of order exceeding two
very often in finance, but the same trick works. Given

y(n)(t) =

n−1∑
k=0

ak(t)y(k)(t),

we define the vector function z(t) ∈ Rn−1 by

zk(t) = y(k)(t), k = 0, 1, . . . , n− 1.

Then z′(t) = Mz(t). Find the matrix M .

5.3. Recurrence Relations. In its most general form, a recurrence relation is
simply a sequence of vectors v(1),v(2), . . . for which some functional relation gener-
ates v(n) given the earlier iterates v(1), . . . ,v(n−1). At this level of generality, very
little more can be said. However, the theory of linear recurrence relations is simple
and very similar to the techniques of differential equations.

The first order linear recurrence relation is simply the sequence {an : n =
0, 1, . . .} of complex numbers defined by

an = can−1.

Thus
an = can−1 = c2an−2 = c3an−3 = · · · = cna0

and the solution is complete.
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The second order linear recurrence relation is slightly more demanding. Here

an+1 + pan + qan−1 = 0

and, inspired by the solution for the first order recurrence, we try an = cn, for some
c 6= 0. Then

0 = cn−1
(
c2 + pc+ q

)
,

or
0 = c2 + pc+ q.

If this has two distinct roots c1 and c2, then one possible solution to the second
order recurrence is

un = p1c
n
1 + p2c

n
2 ,

for constants p1 and p2. However, is this the full set of solutions? What happens if
the quadratic has only one root?

Proposition 5.3. Let {an : n ∈ Z} be the sequence of complex numbers satisfying
the recurrence relation

an+1 + pan + qan−1 = 0, n ∈ Z.
If α1 and α2 are the roots of the associated quadratic

t2 + pt+ q = 0,

then the general solution is
an = c1α

n
1 + c2α

n
2

when α1 6= α2. If α1 = α2, then the general solution is

an = (v1n+ v2)αn1 .

Proof. The same vectorizing trick used to change second order differential equations
in one variable into first order differential equations in two variables can also be
used here. We define a new sequence {b(n) : n ∈ Z} by

b(n) =

(
an−1
an

)
.

Thus

b(n) =

(
an−1

−pan−1 − qan−2

)
,

that is,

(5.12) b(n) = Ab(n−1),

where

(5.13) A =

(
0 1
−q −p

)
.

This first order recurrence has the simple solution

(5.14) b(n) = Anb(0),

so our analytic solution reduces to calculation of the matrix power An. Now let
us begin with the case when the eigenvalues λ1 and λ2 are distinct. Then the
corresponding eigenvectors w(1) and w(2) are linearly independent. Hence we can
write our initial vector b(0) as a unique linear combination of these eigenvectors:

b(0) = b1w
(1) + b2w

(2).
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Thus
b(n) = b1A

nw(1) + b2A
nw(2) = b1λ

n
1w(1) + b1λ

n
2w(2).

Looking at the second component of the vector, we obtain

an = c1λ
n
1 + c2λ

n
2 .

Now the eigenvalues of A are the roots of the quadratic equation

det (A− λI) = det

(
−λ 1
−q −p− λ

)
,

in other words the roots of the quadratic

λ2 + pλ+ q = 0.

Thus the associated equation is precisely the characteristic equation of the matrix
A in the vectorized problem. Hence an = c1α

n
1 + c2α

n
2 .

We only need this case in the course, but I shall lead you through a careful
analysis of the case of coincident roots. It’s a good exercise for your matrix skills.

First note that the roots are coincident if and only if p2 = 4q, in which case

A =

(
0 1

−p2/4 −p

)
,

and the eigenvalue is −p/2. In fact, subsequent algebra is simplified if we substitute
α = −p/2, obtaining

A =

(
0 1
−α2 2α

)
.

The remainder of the proof is left as the following exercise. �

Exercise 5.6. Show that
A = αI + uvT ,

where

u =

(
1
α

)
, v =

(
−α
1

)
and note that vTu = 0. Show also that

A2 = α2I + 2αuvT , A3 = α3I + 3α2uvT ,

and use proof by induction to demonstrate that

An = αnI + nαn−1uvT .

Hence find the general solution for an.



40 BRAD BAXTER

5.4. Mortgages – a once exotic instrument. The objective of this section is
to illustrate some of the above techniques for analysing difference and differential
equations via mortgage pricing. You are presumably all too familiar with a repay-
ment mortgage: we borrow a large sum M for a fairly large slice T of our lifespan,
repaying capital and interest using N regular payments. The interest rate is as-
sumed to be constant and it’s a secured loan: our homes are forfeit on default. How
do we calculate our repayments?

Let h = T/N be the interval between payments, let Dh : [0, T ]→ R be our debt
as a function of time, and let A(h) be our payment. We shall assume that our
initial debt is Dh(0) = 1, because we can always multiply by the true initial cost
M of our house after the calculation. Thus D must satisfy the equations

(5.15) Dh(0) = 1, Dh(T ) = 0 and Dh(`h) = Dh((`− 1)h)erh −A(h).

We see that Dh(h) = erh −A(h), while

Dh(2h) = Dh(h)erh −A(h) = e2rh −A(h)
(
1 + erh

)
.

The pattern is now fairly obvious:

(5.16) Dh(`h) = e`rh −A(h)

`−1∑
k=0

ekrh,

and summing the geometric series2

(5.17) Dh(`h) = e`rh −A(h)

(
e`rh − 1

erh − 1

)
.

In order to achieve D(T ) = 0, we choose

(5.18) A(h) =
erh − 1

1− e−rT
.

Exercise 5.7. What happens if T →∞?

Exercise 5.8. Prove that

(5.19) Dh(`h) =
1− e−r(T−`h)

1− e−rT
.

Thus, if t = `h is constant (so we increase ` as we reduce h), then

(5.20) Dh(t) =
1− e−r(T−t)

1− e−rT
.

Almost all mortgages are repaid by 300 monthly payments for 25 years. However,
until recently, many mortgages calculated interest yearly, which means that we
choose h = 1 in Exercise 5.7 and then divide A(1) by 12 to obtain the monthly
payment.

Exercise 5.9. Calculate the monthly repayment A(1) when M = 105, T = 25,
r = 0.05 and h = 1. Now repeat the calculation using h = 1/12. Interpret your
result.

2Many students forget the simple formula. If S = 1 + a + a2 + · · · + am−2 + am−1, then
aS = a + a2 + · · · + am−1 + am. Subtracting these expressions implies (a − 1)S = am − 1, all

other terms cancelling.
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In principle, there’s no reason why our repayment could not be continuous,
with interest being recalculated on our constantly decreasing debt. For continuous
repayment, our debt D : [0, T ]→ R satisfies the relations

(5.21) D(0) = 1, D(T ) = 0 and D(t+ h) = D(t)erh − hA.

Exercise 5.10. Prove that

(5.22) D′(t)− rD(t) = −A,
where, in particular, you should prove that (5.21) implies the differentiability of
D(t). Solve this differential equation using the integrating factor e−rt. You should
find the solution

(5.23) D(t)e−rt − 1 = A

∫ t

0

(−e−rτ ) dτ = A

(
e−rt − 1

r

)
.

Hence show that

(5.24) A =
r

1− e−rT
and

(5.25) D(t) =
1− e−r(T−t)

1− e−rT
,

agreeing with (5.20), i.e. Dh(kh) = D(kh), for all k. Prove that limr→∞D(t) = 1
for 0 < t < T and interpret.

Observe that

(5.26)
A(h)

Ah
=
erh − 1

rh
≈ 1 + (rh/2),

so that continuous repayment is optimal for the borrower, but that the mortgage
provider is making a substantial profit. Greater competition has made yearly re-
calculations much rarer, and interest is often paid daily, i.e. h = 1/250, which is
rather close to continuous repayment.

Exercise 5.11. Construct graphs of D(t) for various values of r. Calculate the
time t0(r) at which half of the debt has been paid.

5.5. Pricing Mortgages via lack of arbitrage. There is a very slick arbi-
trage argument to deduce the continuous repayment mortgage debt formula (5.25).
Specifically, the simple fact that D(t) is a deterministic financial instrument implies,
via arbitrage, that D(t) = a+b exp(rt), so we need only choose the constants a and
b to satisfy D(0) = 1 and D(T ) = 1, which imply a+ b = 1 and a+ b exp(rT ) = 0.
Solving these provides a = exp(rT )/(exp(rT )− 1) and b = −1/(exp(rT )− 1), and
equivalence to (5.25) is easily checked.
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6. Numerical Linear Algebra

I shall not include much explicitly here, because you have my longer lecture notes
on numerical linear algebra:

http://econ109.econ.bbk.ac.uk/brad/Methods/nabook.pdf

Please do revise the first long chapter of those notes if need to brush up on
matrix algebra.

You will also find my Matlab notes useful:

http://econ109.econ.bbk.ac.uk/brad/Methods/matlab_intro_notes.pdf

6.1. Orthogonal Matrices. Modern numerical linear algebra began with the com-
puter during the Second World War, its progress accelerating enormously as com-
puters became faster and more convenient in the 1960s. One of the most vital
conclusions of this research field is the enormous practical importance of matrices
which leave Euclidean length invariant. More formally:

Definition 6.1. We shall say that Q ∈ Rn×n is distance-preserving if ‖Qx‖ = ‖x‖,
for all x ∈ Rn.

The following simple result is very useful.

Lemma 6.1. Let M ∈ Rn×n be any symmetric matrix for which xTMx = 0, for
every x ∈ Rn. Then M is the zero matrix.

Proof. Let e1, e2, . . . , en ∈ Rn be the usual coordinate vectors. Then

Mjk = eTj Mek =
1

2
(ej + ek)

T
M (ej + ek) = 0, 1 ≤ j, k ≤ n.

�

Theorem 6.2. The matrix Q ∈ Rn is distance-preserving if and only if QTQ = I.

Proof. If QTQ = I, then

‖Qx‖2 = (Qx)T (Qx) = xTQTQx = xTx = ‖x‖2,
and Q is distance-preserving. Conversely, if ‖Qx‖2 = ‖x‖2, for all x ∈ Rn, then

xT
(
QTQ− I

)
x = 0, x ∈ Rn.

Since QTQ − I is a symmetric matrix, Lemma 6.1 implies QTQ − I = 0, i.e.
QTQ = I. �

The condition QTQ = I simply states that the columns of Q are orthonormal
vectors, that is, if the columns of Q are q1,q2, . . . ,qn, then ‖q1‖ = · · · = ‖qn‖ = 1
and qTj qk = 0 when j 6= k. For this reason, Q is also called an orthogonal matrix.
We shall let O(n) denote the set of all (real) n× n orthogonal matrices.

Exercise 6.1. Let Q ∈ O(n). Prove that Q−1 = QT . Further, prove that O(n) is
closed under matrix multiplication, that is, Q1Q2 ∈ O(n) when Q1, Q2 ∈ O(n). (In
other words, O(n) forms a group under matrix multiplication. This observation is
important, and O(n) is often called the Orthogonal Group.)
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