BIRKBECK
 (University of London)

School of Computing and Mathematical Sciences
Financial Modelling and Data Science
EMMS011S7
Homework 1
Due via Moodle upload or email (to b.baxter@bbk.ac.uk) on January 22, 2024.

Answer ALL questions. All questions carry the same weight.
You do NOT need to include detailed proofs of standard results from my notes unless the question explicitly asks for details.

1. In this question, you may assume that $\mathbb{E} \exp (c Z)=\exp \left(c^{2} / 2\right)$ when $Z \sim$ $N(0,1)$, for any $c \in \mathbb{R}$.

Let $S_{t}=e^{\sigma W_{t}}$, where W_{t} is Brownian motion and σ is a positive constant.
(a) Show that

$$
\mathbb{E}\left(S_{t} S_{T}\right)=e^{\sigma^{2}(T+3 t) / 2}
$$

for $0 \leq t \leq T$.
5 pts
(b) Define the time average

$$
A_{T}=\frac{1}{T} \int_{0}^{T} S_{t} d t, \quad \text { for } T>0
$$

Find $\mathbb{E} A_{T}$ and $\mathbb{E}\left(S_{T} A_{T}\right)$.
5 pts
(c) Let $W_{1, t}$ and $W_{2, t}$ be two independent Brownian motions. We define $W_{3, t}$ by

$$
W_{3, t}=W_{1, t} \cos \theta+W_{2, t} \sin \theta
$$

where $0<\theta<\pi / 2$ is a constant. Find the matrix M, where

$$
\begin{equation*}
\mathbb{E}\left(\mathbf{Z}_{t} \mathbf{Z}_{t}^{T}\right)=t M \tag{*}
\end{equation*}
$$

and

$$
\mathbf{Z}_{t}=\binom{W_{1, t}}{W_{3, t}}
$$

(d) Find the symmetric positive definite matrix square-root

$$
M^{1 / 2}=\left(\begin{array}{ll}
a & b \\
b & a
\end{array}\right)
$$

where M is given by $\left.{ }^{*}\right)$.
[Hint: You might find it useful to substitute $a=\cos \phi$ and $b=\sin \phi$, then find ϕ as a function of θ.]
2. (a) Let $X_{t}=\cos \left(W_{t}-c\right)$, where $c \in \mathbb{R}$ is a constant and W_{t} denotes Brownian motion. Use Itô's lemma to find the SDE satisfied by X_{t} and find $\mathbb{E}\left(\cos \left(W_{t}-c\right)\right)$.
(b) Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be an infinitely differentiable function and let W_{t} denote Brownian motion. Prove that

$$
\frac{d}{d t} \mathbb{E} f\left(W_{t}\right)=\frac{1}{2} \mathbb{E}\left(f^{(2)}\left(W_{t}\right)\right)
$$

Hence find $\mathbb{E}\left(W_{t}^{4}\right)$ and $\mathbb{E}\left(W_{t}^{6}\right)$.
6 pts
(c) Let $X \sim N\left(\mu, \sigma^{2}\right)$, where σ is positive. Calculate the integral

$$
\mathbb{E}\left(e^{X}-1\right)_{+} .
$$

[You may use standard properties of the cumulative distribution function

$$
\Phi(x)=(2 \pi)^{-1 / 2} \int_{-\infty}^{x} e^{-t^{2} / 2} d t, \quad x \in \mathbb{R}
$$

without proof, including

$$
\Phi(-x)=1-\Phi(x),
$$

for $x \in \mathbb{R}$.]
3. The drift-free Black-Scholes PDE is given by

$$
\begin{equation*}
0=-r f+r S \frac{\partial f}{\partial S}+r S^{2} \frac{\partial^{2} f}{\partial S^{2}}+\frac{\partial f}{\partial t} \tag{*}
\end{equation*}
$$

where $r>0$ is a constant.
(a) Prove that

$$
f(S, t)=S^{2} e^{3 r(T-t)}
$$

satisfies (*).

5 points

(b) Suppose $f(S, t)=V(t)$, i.e. f depends only on time t. Solve $\left(^{*}\right)$ subject to the expiry condition $f\left(S_{T}, T\right)=K$, where K is a constant.
(c) Hence, or otherwise, find the solution to $\left(^{*}\right)$ whose expiry price is given by

$$
f\left(S_{T}, T\right)=S_{T}^{2}-K
$$

5 points
(d) Use the transformation $S=e^{x}$ to restate (*) in terms of $x=\ln S$ instead of S.

5 points

