BIRKBECK (University of London)

School of Computing and Mathematical Sciences

Financial Modelling and Data Science

EMMS011S7

Homework 1

Due via Moodle upload or email (to b.baxter@bbk.ac.uk) on January 22, 2024.

Answer **ALL** questions. All questions carry the same weight.

You do **NOT** need to include detailed proofs of standard results from my notes unless the question explicitly asks for details.

1. In this question, you may assume that $\mathbb{E} \exp(cZ) = \exp(c^2/2)$ when $Z \sim N(0, 1)$, for any $c \in \mathbb{R}$.

Let $S_t = e^{\sigma W_t}$, where W_t is Brownian motion and σ is a positive constant.

(a) Show that

$$\mathbb{E}\left(S_t S_T\right) = e^{\sigma^2 (T+3t)/2},$$

for $0 \le t \le T$.

(b) Define the time average

$$A_T = \frac{1}{T} \int_0^T S_t \, dt, \qquad \text{for } T > 0.$$

Find $\mathbb{E}A_T$ and $\mathbb{E}(S_TA_T)$.

5 pts

5 pts

(c) Let $W_{1,t}$ and $W_{2,t}$ be two independent Brownian motions. We define $W_{3,t}$ by

$$W_{3,t} = W_{1,t}\cos\theta + W_{2,t}\sin\theta,$$

where $0 < \theta < \pi/2$ is a constant. Find the matrix M, where

$$\mathbb{E}(\mathbf{Z}_t \mathbf{Z}_t^T) = tM \tag{(*)}$$

and

$$\mathbf{Z}_t = \left(\begin{array}{c} W_{1,t} \\ W_{3,t} \end{array}\right).$$

5 pts

(d) Find the symmetric positive definite matrix square-root

$$M^{1/2} = \left(\begin{array}{cc} a & b \\ b & a \end{array}\right)$$

where M is given by (*).

[**Hint:** You might find it useful to substitute $a = \cos \phi$ and $b = \sin \phi$, then find ϕ as a function of θ .]

5pts

2. (a) Let $X_t = \cos(W_t - c)$, where $c \in \mathbb{R}$ is a constant and W_t denotes Brownian motion. Use Itô's lemma to find the SDE satisfied by X_t and find $\mathbb{E}(\cos(W_t - c))$.

6 pts

(b) Let $f : \mathbb{R} \to \mathbb{R}$ be an infinitely differentiable function and let W_t denote Brownian motion. Prove that

$$\frac{d}{dt}\mathbb{E}f(W_t) = \frac{1}{2}\mathbb{E}\left(f^{(2)}(W_t)\right).$$

Hence find $\mathbb{E}(W_t^4)$ and $\mathbb{E}(W_t^6)$.

6 pts

(c) Let $X \sim N(\mu, \sigma^2)$, where σ is positive. Calculate the integral

$$\mathbb{E}\left(e^X-1\right)_+.$$

[You may use standard properties of the cumulative distribution function

$$\Phi(x) = (2\pi)^{-1/2} \int_{-\infty}^{x} e^{-t^2/2} dt, \qquad x \in \mathbb{R},$$

without proof, including

$$\Phi(-x) = 1 - \Phi(x),$$

for $x \in \mathbb{R}$.]

8 pts

3. The drift-free Black–Scholes PDE is given by

$$0 = -rf + rS\frac{\partial f}{\partial S} + rS^2\frac{\partial^2 f}{\partial S^2} + \frac{\partial f}{\partial t},\qquad(*)$$

where r > 0 is a constant.

(a) Prove that

$$f(S,t) = S^2 e^{3r(T-t)}$$

satisfies (*).

5 points

- (b) Suppose f(S,t) = V(t), i.e. f depends only on time t. Solve (*) subject to the expiry condition $f(S_T,T) = K$, where K is a constant. 5 points
- (c) Hence, or otherwise, find the solution to (*) whose expiry price is given by

$$f(S_T, T) = S_T^2 - K.$$

5 points

(d) Use the transformation $S = e^x$ to restate (*) in terms of $x = \ln S$ instead of S.

5 points