Music and Sound

MS1: Quarter-comma meantone was the most common meantone temperament in the sixteenth and seventeeth centuries. We begin at D and ascend up and down in six tempered fifths: instead of using $3 / 2$ we use $5^{1 / 4}$. In other words, we generate

$$
A^{b}-E^{b}-B^{b}-F-C-G-\mathbf{D}-A-E-B-F^{\sharp}-C^{\sharp}-G^{\sharp} .
$$

(a) Show that $C-E$ is a perfect third. Are there any other perfect thirds?
(b) What is the difference between A^{b} and G^{\sharp} in this system? If the last step (i.e. G^{\sharp}) is replaced by a copy of A^{b}, but in the same octave as G^{\sharp}, find the interval $C^{\sharp}-G^{\sharp}$. Will the difference be audible?

Solutions:

MS1 (a) Let $r=5^{1 / 4}$, so that $r^{4}=5$ and $C-G-D-A-E$ takes us 2 octaves above, so the E immediately above C satisfies

$$
\frac{P(E)}{P(C)}=5 / 4
$$

where $P(E)$ denotes the pitch, or frequency, of E (this notation was used in class). There are 8 pure Major Thirds in this system:

$$
A^{b}-C, C-E, E^{b}-G, G-B, B^{b}-D, D-F^{\sharp}, F-A, A-C^{\sharp} .
$$

(b) If the frequency $P(D)=f \mathrm{~Hz}$, then the meantone scale frequencies are as follows:

$$
\begin{array}{ccccccccccccc}
A^{b} & E^{b} & B^{b} & F & C & G & \mathbf{D} & A & E & B & F^{\sharp} & C^{\sharp} & G^{\sharp} \\
r^{-6} f & r^{-5} f & r^{-4} f & r^{-3} f & r^{-2} f & r^{-1} f & f & r f & r^{2} f & r^{3} f & r^{4} f & r^{5} f & r^{6} f
\end{array}
$$

Thus

$$
\frac{P\left(G^{\sharp}\right)}{P\left(A^{b}\right)}=r^{12}=5^{3}=125
$$

instead of $2^{7}=128$. The error in cents is

$$
1200 \frac{\ln \frac{128}{125}}{\ln 2}=1200\left(\frac{7 \ln 2-3 \ln 5}{\ln 2}\right) \approx 41.06 \text { cents }
$$

and

$$
\frac{128}{125}=\frac{2^{7}}{5^{3}}=\frac{2^{10}}{10^{3}}=1.024
$$

If we set G^{\sharp} equal to 7 octaves above A^{b} to close the system, then

$$
P\left(G^{\sharp}\right)=2^{7} r^{-6} f \quad \text { and } \quad P\left(C^{\sharp}\right)=r^{5} f .
$$

Hence

$$
\frac{P\left(G^{\sharp}\right)}{P\left(C^{\sharp}\right)}=\frac{2^{7} r^{-6}}{r^{5}}=\frac{2^{7}}{r^{11}}=\left(\frac{2^{7}}{r^{12}}\right) r=\frac{2^{7}}{5^{3}} r=\frac{2^{10}}{10^{3}} r=1.024 r \approx 1.53123715 .
$$

Comparing this to a perfect $5^{\text {th }}$, we have the frequency ratio

$$
W=\frac{\frac{2^{10}}{10^{3}} r}{\frac{3}{2}}=\frac{1.024 r}{1.5} .
$$

In cents, we find

$$
1200 \frac{\ln W}{\ln 2} \approx 35.68 \text { cents }
$$

which is obviously audible, being much larger than 5 cents: this is the so-called Wolf interval of meantone you have heard in lectures.

