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1. Introduction

You can access these notes, and other material, via my office machine:

http://econ109.econ.bbk.ac.uk/brad/Methods/

My main lecture notes are available here:

http://econ109.econ.bbk.ac.uk/brad/Methods/new_methods_notes.pdf }

These notes are fairly stable, having evolved while teaching three different MSc
programmes: MSc Mathematical Finance at Imperial College, London, MSc Fi-
nancial Engineering here, and now MSc Mathematical Finance. I do still add new
examples and make minor changes, so please check you have the latest version.

For those students who are only taking the Autumn Term of this course (also
known as Continuous Time Stochastic Processes), Sections 2 and 3 are the
key sections, although I shall also include some material from Section 4 (specifically
Delta Hedging for the Binomial Model, to motive its continuous time analogue).

Some students will also be taking my Matlab course, but my Matlab notes are
available to all:

http://econ109.econ.bbk.ac.uk/brad/Methods/matlab_intro_notes.pdf

My friend and colleague Raymond Brummelhuis provided very lucid notes for
an earlier version of this course:

http://econ109.econ.bbk.ac.uk/brad/Methods/old_methods_notes_RB.pdf

Raymond’s notes are still highly useful, but please do be remember that these
notes define the current syllabus.

Past exams can be downloaded from

http://econ109.econ.bbk.ac.uk/brad/FinEngExams/

Many students will find my Numerical Analysis notes helpful too:

http://econ109.econ.bbk.ac.uk/brad/Methods/nabook.pdf

I wrote these notes for an undergraduate course in Numerical Analysis when
lecturing at Imperial College, London, from 1995–2001. However, they have often
been found useful by MSc students who need to improve their general understanding
of theoretical Numerical Analysis. The first section of the notes is on matrix algebra
and contain many examples and exercises, together with solutions.

Finally, there is lots of interesting material, including extensive notes for several
related courses (e.g. Analysis) available on my office Linux server, so please do
explore:

http://econ109.econ.bbk.ac.uk/brad/

Despite my providing you with lots of online notes, in my experience,
students will benefit enormously from the old-fashioned method of taking
notes as I lecture.

1.1. Reading List. There are many books on mathematical finance, but very few
good ones. My strongest recommendations are for the books by Higham and Kwok.
However, the following books are all useful, but these notes are mostly either self-
contained or refer to my own online notes.

(i) M. Baxter and A. Rennie, Financial Calculus, Cambridge University Press.
This gives a fairly informal description of the mathematics of pricing, con-
centrating on martingales. It’s not a source of information for efficient
numerical methods.
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(ii) A. Etheridge, A Course in Financial Calculus, Cambridge University Press.
This does not focus on the algorithmic side but is very lucid, although it
is probably better read once you are familiar with the contents of the first
term.

(iii) D. Higham, An Introduction to Financial Option Valuation, Cambridge
University Press. This book provides many excellent Matlab examples,
although its mathematical level is undergraduate.

(iv) J. Hull, Options, Futures and Other Derivatives, 6th edition. [Earlier edi-
tions are probably equally suitable for much of the course.] Fairly clear,
with lots of background information on finance. The mathematical treat-
ment is lower than the level of much of our course (and this is not a
mathematically rigorous book), but it’s still the market leader in many
ways.

(v) D. Kennedy, Stochastic Financial Models, Chapman and Hall. This is
an excellent mathematical treatment, but probably best left until after
completing the first term of Methods.

(vi) J. Michael Steele, Stochastic Calculus and Financial Applications, Springer.
This is an excellent book, but is one to read near the end of this term,
once you are more comfortable with fundamentals.

(vii) P. Wilmott, S. Howison and J. Dewynne, The Mathematics of Financial
Derivatives, Cambridge University Press. This book is very useful for
its information on partial differential equations. If your first degree was
in engineering, mathematics or physics, then you probably spent many
happy hours learning about the diffusion equation. This book is very
much mathematical finance from the perspective of a traditional applied
mathematician. It places much less emphasis on probability theory than
most books on finance.

(viii) P. Wilmott, Paul Wilmott introduces Quantitative Finance, 2nd edition,
John Wiley. More chatty than his previous book. The author’s ego grew
enormously between the appearance of these texts, but there’s some good
material here.

(ix) Y.-K. Kwok, Mathematical Models of Financial Derivatives, Springer. Rather
dry, but very detailed treatment of finite difference methods. If you need
a single book for general reference work, then this is probably it.

There are lots of books suitable for mathematical revision. The Schaum se-
ries publishes many good inexpensive textbooks providing worked examples. The
inexpensive paperback Calculus, by K. G. Binmore (Cambridge University Press)
will also be useful to students wanting an introduction to, say, multiple integrals, as
will Mathematical Methods for Science Students, by Geoff Stephenson. At a slightly
higher level, All you wanted to know about Mathematics but were afraid to ask, by
L. Lyons (Cambridge University Press, 2 vols), is useful and informal.

The ubiquitous Numerical Recipes in C++, by S. Teukolsky et al, is extremely
useful. Its coverage of numerical methods is generally reliable and it’s available
online at www.nr.com. A good hard book on partial differential equations is that
of A. Iserles (Cambridge University Press).

At the time of writing, finance is going through a turbulent period, in which
politicians profess their longstanding doubts that the subject was well-founded –
surprisingly, many omitted to voice such doubts earlier! It is good to know that
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we have been here before. The following books are included for general cultural
interest.

(i) M. Balen, A Very English Deceit: The Secret History of the South Sea
Bubble and the First Great Financial Scandal.

(ii) C. Eagleton and J. William (eds), Money: A History.
(iii) C. P. Kindleberger, R. Aliber and R. Solow, Manias, Panics, and Crashes:

A History of Financial Crises, Wiley. This is still a classic.
(iv) J. Lanchester, How to Speak Money, Faber. This is an excellent intro-

duction to finance and economics for all readers. Lanchester is a journalist
and author, as well as being a gifted expositor.

(v) N. N. Taleb, The Black Swan. In my view, this is greatly over-rated, but
you should still read it.

No text is perfect: please report any slips to b.baxter@bbk.ac.uk.
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2. The Geometric Brownian Motion Universe

We shall begin with a brisk introduction to the main topics, filling in the details
later. The real economy is vastly complex, so mathematical finance begins with
vast oversimplification.

Let r be the risk-free interest rate, which we shall assume constant. This is
really the interest paid by the state when borrowing money via selling bonds, and
it is nominally risk-free in any state that issues its own currency, although the
real value of that currency can greatly decrease. We assume that everyone in our
mathematical economy can borrow and lend at this rate, so that such debts (or
investments, if lent) satisfy Bt = B0 exp(rt). In reality, banks and companies
borrow and lend at a higher rate r+ δ, where δ increases with the perceived risk of
the lender, but this complication is ignored here.

Notation: In most (but not all) areas of mathematics, a function B depend-
ing on time t would be denoted B(t), but mathematical finance often uses the
alternative notation Bt which is very common in probability theory, statistics and
economics. I shall be consistent in using S(t) to denote the share price in Section
2, but we shall move to St in Section 3.

We shall assume that every risky asset (such as a share) is described by a random
process called geometric Brownian motion (GBM):

(2.1) S(t) = S(0)eβt+σWt , t > 0,

where Wt denotes Brownian motion, β ∈ R and σ is a non-negative parameter called
the volatility of the asset. You can think of Brownian motion as an important
generalization of random walk, but we shall postpone its detailed definition and
properties until Section 3. Fortunately all we need for now is the fundamental
property that WT is a normal (or Gaussian) random variable with mean zero and
variance T , that is,

(2.2) Wt ∼ N(0, t), for all t > 0.

As we shall see later, option pricing requires us to use β = r − σ2/2, that is,

(2.3) S(t) = S(0)e(r−σ
2/2)t+σWt , t > 0,

and this is usually called risk neutral GBM. The reason for the disappearance of the
parameter β when pricing options is rather deep and extremely important, but will
be explained later. All you need to know at present is that (2.1) is the mathematical
model for share prices in the real world, but the risk neutral variant (2.3) is used
when pricing options, i.e. contracts whose value depends on the asset price.

Thus, when pricing options, to generate sample prices S(T ) at some future time
T given the initial price S(0), we use

(2.4) S(T ) = S(0) exp
(
(r − σ2/2)T + σ

√
TZT

)
, where ZT ∼ N(0, 1),

because WT ∼ N(0, T ), so that we can write WT = T 1/2ZT .

Example 2.1. Generating sample prices at a fixed time T using (2.4) is particularly
easy in Matlab and Octave:

S = S0*exp((r-sigma^2/2)*T + sigma*sqrt(T)*randn(m,1)

will construct a column vector of m sample prices once you’ve defined S0, r, σ and
T . To calculate the sample average price, we type sum(S)/m.
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To analytically calculate ES(T ) we need the following simple, yet crucial, lemma.

Lemma 2.1. If W ∼ N(0, 1), then E exp(λW ) = exp(λ2/2).

Proof. We have

EeλW =

∫ ∞
−∞

eλt(2π)−1/2e−t
2/2 dt = (2π)−1/2

∫ ∞
−∞

e−
1
2 (t

2−2λt) dt.

The trick now is to complete the square in the exponent, that is,

t2 − 2λt = (t− λ)2 − λ2.
Thus

EeλW = (2π)−1/2
∫ ∞
−∞

exp

(
−1

2
([t− λ]2 − λ2)

)
dt = eλ

2/2.

This is also described in detail in Example 6.3. �

Lemma 2.2. For every σ ≥ 0, we have the expected growth

(2.5) ES(t) = S(0)ert, t ≥ 0.

Proof. This is an easy consequence of Lemma 2.1. �

The option pricing risk-neutral geometric Brownian motion universe might there-
fore seem rather strange, because every asset has the same expected growth ert as
the risk-free interest rate. Thus our universe of all possible assets in a risk-neutral
world is specified by one parameter only: the volatility σ. Please do remember that
this is not the asset price in the market, but simply a mathematical device required
for pricing options based on the asset.

A financial derivative is any function f(S, t). We shall concentrate on the fol-
lowing particular class of derivatives.

Definition 2.1. A European option is any function f ≡ f(S, t) that satisfies the
conditional expectation equation

(2.6) f(S(t), t) = e−rhE
(
f(S(t+ h), t+ h)|S(t)

)
, for any h > 0.

We shall often simply write this as

f(S(t), t) = e−rhEf(S(t+ h), t+ h)

but you should take care to remember that this is an expected future value given
the asset’s current value S(t). We see that (2.6) describes a contract f(S, t) whose
current value is the discounted value of its expected future value in the risk-neutral
GBM universe.

We can learn a great deal by studying the mathematical consequences of (2.6)
and (2.3).

Example 2.2. A plain vanilla European put option is simply an insurance contract
that allows us to sell one unit of the asset, for exercise price K, at time T in the
future. If the asset’s price S(T ) is less than K at this expiry time, then the option is
worth K−S(T ), otherwise it’s worthless. Such contracts protect us if we’re worried
that the asset’s price might drop. The pricing problem here to calculate the value
of the contract at time zero given its value at expiry, namely

(2.7) fP (S(T ), T ) = (K − S(T ))+ ,
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where (z)+ := max{z, 0}.

Typically, we know the value of the option f(S(T ), T ) for all values of the asset
S(T ) at some future time T . Our problem is to compute its value at some earlier
time, because we’re buying or selling this option.

Example 2.3. A plain vanilla European call option gives us the right to buy one
unit of the asset at the exercise price K at time T . If the asset’s price S(T ) exceeds
K at this expiry time, then the option is worth S(T )−K, otherwise it’s worthless,
implying the expiry value

(2.8) fC(S(T ), T ) = (S(T )−K)+ ,

using the same notation as Example 2.2. Such contracts protect us if we’re worried
that the asset’s price might rise.

How do we compute f(S(0), 0)? The difficult part is computing the expected
future value Ef(S(T ), T ). This can be done analytically for a tiny number of
options, including the European Put and Call (see Theorem 2.5), but usually we
must resort to a numerical calculation. This leads us to our first algorithm: Monte
Carlo simulation. Here we choose a large integer N and generate N pseudo-random
numbers Z1, Z2, . . . , ZN that have the normalized Gaussian distribution; in Matlab,
we simply write Z = randn(N,1). Using (2.3), these generate the future asset prices

(2.9) Sk = S(0) exp
(

(r − σ2

2
)T + σ

√
TZk

)
, k = 1, . . . , N.

We then approximate the future expected value by an average, that is, we take

(2.10) f(S(0), 0) ≈ e−rT

N

N∑
k=1

f(Sk, T ).

Monte Carlo simulation has the great advantage that it is extremely simple to
program. Its disadvantage is that the error is usually a multiple of 1/

√
N , so that

very large N is needed for high accuracy (each decimal place of accuracy requires
about a hundred times more work). We note that (2.10) will compute the value of
any European option that is completely defined by a known final value f(S(T ), T ).

We shall now use Monte Carlo to approximately evaluate the European Call and
Put contracts. In fact, Put-Call parity, described below in Theorem 2.3, implies
that we only need a program to calculate one of these, because they are related by
the simple formula

(2.11) fC(S(0), 0)− fP (S(0), 0) = S(0)−Ke−rT .
Here’s the Matlab program for the European Put.

%

% These are the parameters chosen in Example 11.6 of

% OPTIONS, FUTURES AND OTHER DERIVATIVES,

% by John C. Hull (Prentice Hall, 4th edn, 2000)

%

%% initial stock price

S0 = 42;

% unit of time = year

% 250 working days per year
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% continuous compounding risk-free rate

r = 0.1;

% exercise price

K = 40;

% time to expiration in years

T = 0.5;

% volatility of 20 per cent annually

sigma = 0.2;

% generate asset prices at expiry

Z = randn(N,1);

ST = S0*exp( (r-(sigma^2)/2)*T + sigma*sqrt(T)*Z );

% calculate put contract values at expiry

fput = max(K - ST,0.0);

% average put values at expiry and discount to present

mc_put = exp(-r*T)*sum(fput)/N

% calculate analytic value of put contract

wK = (log(K/S0) - (r - (sigma^2)/2)*T)/(sigma*sqrt(T));

a_put = K*exp(-r*T)*Phi(wK) - S0*Phi(wK - sigma*sqrt(T))

The function Phi denotes the cumulative distribution function for the normalized
Gaussian distribution, that is,

(2.12) Φ(x) = P(Z ≤ x) =

∫ x

−∞
(2π)−1/2e−s

2/2 ds, for x ∈ R,

where Z ∼ N(0, 1).
Unfortunately, Matlab only provides the very similar error function, defined by

erf(y) =
2√
π

∫ y

0

exp(−s2) ds, y ∈ R.

It’s not hard to prove that

Φ(t) =
1

2

(
1 + erf(t/

√
2)
)
, t ∈ R.

We can add this to Matlab using the following function.

function Y = Phi(t)

Y = 0.5*(1.0 + erf(t/sqrt(2)));

We have only revealed the tip of a massive iceberg in this brief introduction.
Firstly, the Black–Scholes model, where asset prices evolve according to (2.3), is
rather poor: reality is far messier. Further, there are many types of option which
are path-dependent: the value of the option at expiry depends not only on the final
price S(T ), but on its previous values {S(t) : 0 ≤ t ≤ T}. In particular, there are
American options, where the contract can be exercised at any time before its expiry.
All of these points will be addressed in our course, but you should find that Hull’s
book provides excellent background reading (although his mathematical treatment
is often sketchy). Higham provides a clear Matlab-based exposition.

Although the future expected value usually requires numerical computation,
there are some simple cases that are analytically tractable. These are particularly
important because they often arise in examinations!
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2.1. European Puts and Calls. It’s not too hard to calculate the values of these
options analytically. Further, the next theorem gives an important relation between
the prices of call and put options.

Theorem 2.3 (Put-Call parity). European Put and Call options, each with exercise
price K and expiry time T , satisfy

(2.13) fC(S, t)− fP (S, t) = S −Ke−rτ , for S ∈ R and 0 ≤ t ≤ T,

where τ = T − t, the time-to-expiry.

Proof. The trick is the observation that

y = y+ − (−y)+,

for any y ∈ R. Thus

S(T )−K = (S(T )−K)+ − (K − S(T ))+

= fC(S(T ), T )− fP (S(T ), T ),

which implies

e−rτE (S(T )−K|S(t) = S) = fC(S, t)− fP (S, t).

Now

E (S(T )|S(t) = S) = (2π)−1/2
∫ ∞
−∞

Se(r−σ
2/2)τ+σ

√
τwe−w

2/2 dw

= Se(r−σ
2/2)τ (2π)−1/2

∫ ∞
−∞

e−
1
2 (w2−2σ

√
τw) dw

= Serτ ,

and some simple algebraic manipulation completes the proof. �

This is a useful check on the Monte Carlo approximations of the options’ values.
To derive their analytic values, we shall need the cumulative distribution function

(2.14) Φ(y) = (2π)−1/2
∫ y

−∞
e−z

2/2 dz, y ∈ R,

for the Gaussian probability density, that is, P(Z ≤ y) = Φ(y) and P(a ≤ Z ≤ b) =
Φ(b)−Φ(a), for any normalized Gaussian random variable Z. Further, we have the
following relation which will be of use in subsequent formulae.

Lemma 2.4. We have 1− Φ(a) = Φ(−a), for any a ∈ R.

Proof. Observe that

1− Φ(a) =

∫ ∞
a

(2π)−1/2e−s
2/2 ds

=

∫ −a
−∞

(2π)−1/2e−u
2/2 du

= Φ(−a),

where we have made the substitution u = −s. �
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Theorem 2.5. A European Put option satisfies

(2.15) fP (S, t) = Ke−rτΦ(w(K))− SΦ(w(K)− σ
√
τ), for S ∈ R,

where τ = T − t, i.e. the time-to-expiry, and w(K) is defined by the equation

K = Se(r−σ
2/2)τ+σ

√
τw(K),

that is

(2.16) w(K) =
log(K/S)− (r − σ2/2)τ

σ
√
τ

.

Proof. We have

E (fP (S(T ), T )|S(t) = S) = (2π)−1/2
∫ ∞
−∞

(
K − Se(r−σ

2/2)τ+σ
√
τw
)
+
e−w

2/2 dw.

Now the function

w 7→ K − S exp((r − σ2/2)τ + σ
√
τw)

is strictly decreasing, so that

K − Se(r−σ
2/2)τ+σ

√
τw ≥ 0

if and only if w ≤ w(K), where w(K) is given by (2.16). Hence

E (fP (S(T ), T )|S(t) = S) = (2π)−1/2
∫ w(K)

−∞

(
K − Se(r−σ

2/2)τ+σ
√
τw
)
e−w

2/2 dw

= KΦ(w(K))− Se(r−σ
2/2)τ (2π)−1/2

∫ w(K)

−∞
e−

1
2 (w2−2σ

√
τw) dw

= KΦ(w(K))− SerτΦ(w(K)− σ
√
τ).

Thus

fP (S, t) = e−rτE (fP (S(T ), T )|S(t) = S)

= Ke−rτΦ(w(K))− SΦ(w(K)− σ
√
τ).

�

There is an almost standard notation for Theorem 2.5, which is contained in the
following corollary.

Corollary 2.6. A European Put option satisfies

(2.17) fP (S, t) = Ke−rτΦ(−d−)− SΦ(−d+), for S ∈ R,

where τ = T − t, i.e. the time-to-expiry, and

(2.18) d± =
log(S/K) + (r ± σ2/2)τ

σ
√
τ

.

Proof. This is simply rewriting Theorem 2.5 in terms of (2.18). �

We can now calculate the price of a European call using Corollary 2.6 and the
Put-Call parity Theorem 2.3.
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Corollary 2.7. A European Call option satisfies

(2.19) fC(S, t) = SΦ(d+)−Ke−rτΦ(d−), for S ∈ R,
where τ = T − t, i.e. the time-to-expiry, and d± is given by (2.18).

Proof. Theorem 2.3 implies that

fC(S, t) = fP (S, t) + S −Ke−rτ

= Ke−rτΦ(−d−)− SΦ(−d+) + S −Ke−rτ

= S (1− Φ(−d+))−Ke−rτ (1− Φ(−d−))

= SΦ(d+)−Ke−rτΦ(d−),

using Lemma 2.4. �

Exercise 2.1. Modify the proof of Theorem 2.5 to derive the analytic price of a
European Call option. Check that your price agrees Corollary 2.7.

2.2. Digital Options. A digital option is simply an option that only takes the
values 0 and 1, that is, it is the indicator function for some event. Recall that, for
any indicator function IA, we have

EIA = P(A).

Our first example is the digital call option with exercise price K and expiry time
T is defined by

(2.20) fDC(S(T ), T ) =

{
1 if S(T ) ≥ K,

0 otherwise.

Theorem 2.8. The digital call option fDC satisfies

(2.21) fDC(S, t) = e−rτΦ(d−),

where τ = T − t and d− is defined by (2.18).

Proof. Its price at any earlier time t ∈ [0, t) is therefore given by

fDC(S, t) = e−rτE (fDC(S(T ), T )|S(t) = S)

= e−rτEfDC(Se(r−σ
2/2)τ+στ1/2Z ,(2.22)

(2.23)

where Z ∼ N(0, 1).
Now

Se(r−σ
2/2)τ+στ1/2Z ≥ K

if and only if
logS + (r − σ2/2)τ + στ1/2Z ≥ logK,

because the logarithm is an increasing function. Rearranging this inequality, we
find

Z ≥ − log(S/K)− (r − σ2/2)τ

στ1/2
= −d−.

Thus

fDC(S, t) = e−rτP (Z ≥ −d−)

= e−rτ (1− Φ(−d−))

= e−rτΦ(d−),
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by Lemma 2.4. �

It is now simple to define and price the digital put option fDP , which is defined
by

(2.24) fDP (S(T ), T ) =

{
1 if S(T ) < K,

0 otherwise.

A pair of digital put and call options with the same exercise price K and expiry
time T satisfy a digital put-call parity relation, specifically

fDC(S(T ), T ) + fDP (S(T ), T ) ≡ 1,

at expiry, which implies

(2.25) fDC(S, t) + fDP (S, t) ≡ e−rτ , for S ∈ R,

where τ = T − t.

Theorem 2.9. The digital put option fDP satisfies

(2.26) fDP (S, t) = e−rτΦ(−d−),

where τ = T − t and d− is defined by (2.18).

Proof. We use (2.25) and Lemma 2.4:

fDP (S, t) = e−rτ − fDC(S, t) = e−rτ (1− Φ(d−)) = e−rτΦ(−d−).

�

Another way to express digital calls and puts is as follows. Observe that

(2.27) fDC(S(T ), T ) = (S(T )−K)
0
+ and fDP (S(T ), T ) = (K − S(T ))

0
+ .

Thus we have shown that

E
(
(S(T )−K)+ |S(t) = S

)
= SerτΦ(d+)−KΦ(d−),

E
(

(S(T )−K)
0
+ |S(t) = S

)
= Φ(d−),

E
(
(K − S(T ))+ |S(t) = S

)
= KΦ(−d−)− SerτΦ(−d+),

E
(

(K − S(T ))
0
+ |S(t) = S

)
= Φ(−d−),

2.3. European Puts and Calls. The first and second partial derivatives of option
prices are important both numerically and financially. A fairly standard nomencla-
ture has evolved: for any option f , its partial derivative ∂f/∂S ≡ ∂Sf is called the
“Delta” of the option. It is not our aim to provide an exhaustive list of the Greek
(and non-Greek) letters used to denote these partial derivatives, but it is important
to see how some of them are calculated.

Theorem 2.10. If we let fC denote the call option whose value is given by Theorem
2.7, then

(2.28) ∂SfC(S, t) = Φ(d+),

where d+ is defined by (2.18).

This calculation is made easier by several preliminary results.
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Lemma 2.11. We have

(2.29) ∂Sd± =
1

Sστ1/2
.

Proof. Now

d± =
logS − logK + (r ± σ2/2)τ

στ1/2
,

so that

∂Sd± =
∂S logS

στ1/2
=

1

Sστ1/2
.

�

Lemma 2.12. The function Φ defined by (2.12) has derivative

(2.30) Φ′(x) = (2π)−1/2e−x
2/2, for x ∈ R.

Proof. This is the fundamental theorem of calculus applied to the definition of
(2.12). �

Lemma 2.13. We have

(2.31)
1

2
d2+ −

1

2
d2− = log(S/K) + rτ,

where d± is defined by (2.18).

Proof. Let use write d± = a± b, where

a =
log(S/K) + rτ

στ1/2

and

b =
σ2τ/2

στ1/2
.

Hence
d2+ − d2− = (a+ b)

2 − (a− b)2 = 4ab,

and so
1

2

(
d2+ − d2−

)
= 2ab = log(S/K) + rτ.

�

Lemma 2.14. We have

(2.32) Se−d
2
+/2 −Ke−rτe−d

2
−/2 = 0.

Proof. Using Lemma 2.13, we see that

logK − rτ − 1

2
d2− = logS − 1

2
d2+,

and taking the exponential we find

Ke−rτe−d
2
−/2 = Se−d

2
+/2,

as required. �

We can now assemble these partial results to prove Theorem 2.10.
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Proof. Theorem 2.10: Partially differentiating fC with respect to S, we obtain

∂SfC = Φ(d+) + L,

where

L =
Se−d

2
+/2 −Ke−rτe−d

2
−/2

Sστ1/2(2π)1/2
,

by Lemma 2.11 and Lemma 2.12. Hence ∂SfC = Φ(d+), by Lemma 2.14. �

Theorem 2.15. If fP denotes the put option with exercise price K and expiry time
T , then

(2.33) ∂SfP (S, t) = −Φ(−d+),

where d+ is defined by (2.18).

Proof. If we partially differentiate the put-call parity relation (2.13) with respect
to S, then we obtain

∂fC − ∂fP = 1.

Hence, using Lemma 2.4,

∂fP = ∂fC − 1 = Φ(d+)− 1 = − (1− Φ(d+)) = −Φ(−d+).

�

The Vega for any option V is simply ∂σV . It is also easily calculated for European
plain vanilla options.

Theorem 2.16. If fC denotes the call option with exercise price K and expiry
time T , then

(2.34) ∂σfC(S, t) = Sτ1/2(2π)−1/2e−d
2
+/2,

where d+ is defined by (2.18).

Proof. Partially differentiating (2.18) with respect to σ, we obtain

(2.35) ∂σd± = −
(

log(S/K) + rτ

τ1/2σ2

)
± 1

2
τ1/2.

Hence

∂σfC = SΦ′(d+)∂σd+ −Ke−rτΦ′(d−)∂σd−

= (2π)−1/2
(
Se−d

2
+/2∂σd+ −Ke−rτe−d

2
−/2∂σd−

)
= G1 +G2,

where

G1 = (2π)−1/2
(
Se−d

2
+/2 −Ke−rτe−d

2
−/2
)(− log(S/K) + rτ

σ2τ1/2

)
and

G2 =
1

2
τ1/2(2π)−1/2

(
Se−d

2
+/2 +Ke−rτe−d

2
−/2
)
.

Applying Lemma 2.14, we see that G1 = 0 and

G2 = Sτ1/2(2π)−1/2e−d
2
+/2.

�
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If we partially differentiate the put-call parity relation (2.13) with respect to σ,
then we find

∂σfC = ∂σfP .

The Theta of an option V is simply its partial derivative with respect to time,
i.e. ∂tV . For the plain vanilla calls, it’s useful to notice that

∂tV = −∂τV.

Theorem 2.17. If fC denotes the call option with exercise price K and expiry
time T , then

(2.36) ∂tfC(S, t) = −σSe
−d2+/2

2(2πτ)1/2
− rKe−rτΦ(d−).

where d± is defined by (2.18).

Proof. We first note that ∂t = −∂τ , where τ = T − t is the time to expiry, as usual.
Partially differentiating fC with respect to τ , we obtain

∂τfC(S, t) = SΦ′(d+)∂τd+ + rKe−rτΦ(d+)−Ke−rτΦ′(d−)∂τd−

= A1 +A2 +A3.

Now

A1 +A3 = SΦ′(d+)∂τd+ −Ke−rτΦ′(d−)∂τd−

= SΦ′(d+) (∂τd+ − ∂τd−) ,

using Lemma 2.14. It is not difficult to check that

∂τd+ − ∂τd− = στ−1/2.

Hence

A1 +A3 =
1

2
στ−1/2Φ′(d+) =

Sσ

2(2πτ)1/2
e−d

2
+/2.

Adding this expression to A2, we obtain ∂τfC . �

3. Brownian Motion

3.1. Simple Random Walk. Let X1, X2, . . . be a sequence of independent ran-
dom variables all of which satisfy

(3.1) P (Xi = ±1) = 1/2

and define

(3.2) Sn = X1 +X2 + · · ·+Xn.

We can represent this graphically by plotting the points {(n, Sn) : n = 1, 2, . . .},
and one way to imagine this is as a random walk, in which the walker takes identical
steps forwards or backwards, each with probability 1/2. This model is called simple
random walk and, whilst easy to define, is a useful laboratory in which to improve
probabilistic intuition.

Another way to imagine Sn is to consider a game in which a fair coin is tossed
repeatedly. If I win the toss, then I win £1; losing the toss implies a loss of £1.
Thus Sn is my fortune at time n.
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Firstly note that

ESn = EX1 + · · ·+ EXn = 0.

Further, EX2
i = 1, for all i, so that varXi = 1. Hence

varSn = varX1 + varX2 + · · ·+ varXn = n,

since X1, . . . , Xn are independent random variables.

3.2. Discrete Brownian Motion. We begin with a slightly more complicated
random walk this time. We choose a timestep h > 0 and let Z1, Z2, . . . be indepen-
dent N(0, h) Gaussian random variables. We then define a curve B(h)

t by defining
B(h)

0 = 0 and

(3.3) B(h)(kh) = Z1 + Z2 + · · ·+ Zk,

for positive integer k. We then join the dots to obtain a piecewise linear function.
More precisely, we define

B(h)
t = B(h)

kh + (t− kh)

(
B(h)

(k+1)h −B(h)
kh

h

)
, for t ∈ (kh, (k + 1)h).

The resultant random walk is called discrete Brownian motion.

Proposition 3.1. If 0 ≤ a ≤ b ≤ c and a, b, c ∈ hZ, then the discrete Brown-
ian motion increments B(h)

c − B(h)
b and B(h)

b − B(h)
a are independent random

variables. Further, B(h)
c −B(h)

b ∼ N(0, c− b) and B(h)
b −B(h)

a ∼ N(0, b− a).

Proof. Exercise. �

3.3. Basic Properties of Brownian Motion. It’s not obvious that discrete
Brownian motion has a limit, in some sense, when we allow the timestep h to
converge to zero. However, it can be shown that this is indeed the case (and will
see the salient features of the Lévy–Cieselski construction of this limit later). For
the moment, we shall state the defining properties of Brownian motion.

Definition 3.1. There exists a stochastic process Wt, called Brownian motion,
which satisfies the following conditions:

(i) W0 = 0;
(ii) If 0 ≤ a ≤ b ≤ c, then the Brownian increments Wc −Wb and Wb −Wa

are independent random variables. Further, Wc −Wb ∼ N(0, c − b) and
Wb −Wa ∼ N(0, b− a);

(iii) Wt is continuous almost surely.

Proposition 3.2. Wt ∼ N(0, t) for all t > 0.

Proof. Just set a = 0 and b = t in (ii) of Definition 3.1. �

The increments of Brownian motion are independent Gaussian random variables,
but the actual values Wa and Wb are not independent random variables, as we shall
now see.

Proposition 3.3. If a, b ∈ [0,∞), then E (WaWb) = min{a, b}.
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Proof. We assume 0 < a < b, the remaining cases being easily checked. Then

E (WaWb) = E
(
Wa [Wb −Wa] +W 2

a

)
= E (Wa [Wb −Wa]) + E

(
W 2
a

)
= 0 + a

= a.

�

Brownian motion is continuous almost surely but it is easy to see that it cannot
be differentiable. The key observation is that

(3.4)
Wt+h −Wt

h
∼ N(0,

1

h
).

In other words, instead of converging to some limiting value, the variance of the
random variable (Wt+h −Wt)/h tends to infinity, as h→ 0.

3.4. Martingales. A martingale is a mathematical version of a fair game, as we
shall first illustrate for simple random walk.

Proposition 3.4. We have

E (Sn+k|Sn) = Sn.

Proof. The key observation is that

Sn+k = Sn +Xn+1 +Xn+2 + · · ·+Xn+k

and Xn+1, . . . , Xn+k are all independent of Sn = X1 + · · ·+Xn. Thus

E (Sn+k|Sn) = Sn + EXn+1 + EXn+2 + · · ·+ EXn+k = Sn.

�

To see why this encodes the concept of a fair game, let us consider a biased coin
with the property that

E (Sn+10|Sn) = 1.1Sn.

Hence
E (Sn+10`|Sn) = 1.1`Sn.

In other words, the expected fortune Sn+10` grows exponentially with `. For exam-
ple, if we ensure that S4 = 3, by fixing the first four coin tosses in some fashion,
then our expected fortune will grow by 10% every 10 tosses thereafter.

3.5. Brownian Motion and Martingales.

Proposition 3.5. Brownian motion is a martingale, that is, E (Wt+h|Wt) = Wt,
for any h > 0.

Proof.

E (Wt+h|Wt) = E ([Wt+h −Wt] +Wt|Wt)

= E ([Wt+h −Wt]|Wt) +Wt

= E ([Wt+h −Wt]) +Wt

= 0 +Wt

= Wt.

�
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We can sometimes use a similar argument to prove that functionals of Brownian
motion are martingales.

Proposition 3.6. The stochastic process Xt = W 2
t − t is a martingale, that is,

E (Xt+h|Xt) = Xt, for any h > 0.

Proof.

E (Xt+h|Xt) = E
(

[Wt+h −Wt +Wt]
2 − [t+ h]|Wt

)
= E

(
[Wt+h −Wt]

2 + 2Wt [Wt+h −Wt] +W 2
t − t− h|Wt

)
= E[Wt+h −Wt]

2 +W 2
t − t− h

= h+W 2
t − t− h

= Xt.

�

The following example will be crucial.

Proposition 3.7. Geometric Brownian motion

(3.5) Yt = eα+βt+σWt

is a martingale, that is, E (Yt+h|Yt) = Yt, for any h > 0, if and only if β = −σ2/2.

Proof.

E (Yt+h|Yt) = E
(
eα+β(t+h)+σWt+h |Yt

)
= E

(
Yte

βh+σ(Wt+h−Wt)|Yt
)

= YtEeβh+σ(Wt+h−Wt)

= Yte
(β+σ2/2)h.

�

In this course, the mathematical model chosen for option pricing is risk-neutral
geometric Brownian motion: we choose a geometric Brownian motion St with the
property that St = e−rtYt is a martingale, where Yt is given by (3.5). Thus we have

St = eα+(β−r)t+σWt

and Proposition 3.7 implies that β − r = −σ2/2, i.e.

St = eα+(r−σ2/2)t+σWt = S0e
(r−σ2/2)t+σWt .

3.6. The Black–Scholes Equation. We can also use (2.6) to derive the famous
Black–Scholes partial differential equation, which is satisfied by any European op-
tion. The key is to choose a small positive h in (2.6) and expand. We shall need
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Taylor’s theorem for functions of two variables, which states that

G(x+ δx, y + δy) = G(x, y) +

(
∂G

∂x
δx+

∂G

∂y
δy

)
+

1

2

(
∂2G

∂x2
(δx)2 + 2

∂2G

∂x∂y
(δx)(δy) +

∂2G

∂y2
(δy)2

)
+ · · · .

(3.6)

Further, it simplifies matters to use “log-space”: we introduce u(t) := logS(t),
where log ≡ loge in these notes (not logarithms to base 10). In log-space, (2.3)
becomes

(3.7) u(t+ h) = u(t) + (r − σ2/2)h+ σδWt,

where

(3.8) δWt = Wt+h −Wt ∼ N(0, h).

We also introduce

(3.9) g(u(t), t) := f(exp(u(t), t)),

so that (2.6) takes the form

(3.10) g(u(t), t) = e−rhEg(u(t+ h), t+ h).

Now Taylor expansion yields the (initially daunting)

g(u(t+ h), t+ h) = g(u(t) + (r − σ2/2)h+ σδWt, t+ h)

= g(u(t), t) +
∂g

∂u

(
(r − σ2/2)h+ σδWt

)
+

1

2

∂2g

∂u2
σ2 (δWt)

2
+ h

∂g

∂t
+ · · · ,(3.11)

ignoring all terms of higher order than h. Further, since δWt ∼ N(0, h), i.e. EδWt =
0 and E[(δWt)

2] = h, we obtain

(3.12) Eg(u(t+h), t+h) = g(u(t), t) +h

(
∂g

∂u
(r − σ2/2) +

1

2

∂2g

∂u2
σ2 +

∂g

∂t

)
+ · · · .

Recalling that

e−rh = 1− rh+
1

2
(rh)2 + · · · ,

we find

g = (1− rh+ · · · )
(
g + h

[
∂g

∂u
(r − σ2/2) +

1

2

∂2g

∂u2
σ2 +

∂g

∂t

]
+ · · ·

)
= g + h

(
−rg +

∂g

∂u
(r − σ2/2) +

1

2

∂2g

∂u2
σ2 +

∂g

∂t

)
+ · · · .(3.13)

For this to be true for all h > 0, we must have

(3.14) −rg +
∂g

∂u
(r − σ2/2) +

1

2

∂2g

∂u2
σ2 +

∂g

∂t
= 0,

and this is the celebrated Black–Scholes partial differential equation (PDE). Thus,
instead of computing an expected future value, we can calculate the solution of the
Black–Scholes PDE (3.14). The great advantage gained is that there are highly
efficient numerical methods for solving PDEs numerically. The disadvantages are
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complexity of code and learning the mathematics needed to exploit these methods
effectively.

Exercise 3.1. Use the substitution S = exp(u) to transform (3.14) into the non-
linear form of the Black–Scholes PDE.

3.7. Itô Calculus. Equation (3.12) is really quite surprising, because the second
derivative contributes to the O(h) term. This observation is at the root of the Itô
rules. We begin by considering the quadratic variation In[a, b] of Brownian motion
on the interval [a, b]. Specifically, we choose a positive integer n and let nh = b−a.
We then define

(3.15) In[a, b] =

n∑
k=1

(
Wa+kh −Wa+(k−1)h

)2
.

We shall prove that EIn[a, b] = b − a, for every positive integer n, but that
var In[a, b]→ 0, as n→∞. We shall need the following simple property of Gaussian
random variables.

Lemma 3.8. Let Z ∼ N(0, 1). Then EZ4 = 3.

Proof. Integrating by parts, we obtain

EZ4 =

∫ ∞
−∞

s4(2π)−1/2e−s
2/2 ds

= (2π)−1/2
∫ ∞
−∞

s3
d

ds

(
−e−s

2/2
)
ds

= (2π)−1/2
{[
−s3e−s

2/2
]∞
−∞
−
∫ ∞
−∞

3s2
(
−e−s

2/2
)
ds

}
= 3.

�

Exercise 3.2. Calculate EZ6 when Z ∼ N(0, 1). More generally, calculate EZ2m

for any positive integer m.

Proposition 3.9. We have EIn[a, b] = b− a and var In[a, b] = 2(b− a)2/n.

Proof. Firstly,

EIn[a, b] =

n∑
k=1

E
(
Wa+kh −Wa+(k−1)h

)2
=

n∑
k=1

h = nh = b− a.

Further, the Brownian increments Wa+kh−Wa+(k−1)h are independent N(0, h) ran-
dom variables. We shall define independent N(0, 1) random variables Z1, Z2, . . . , Zn
by

Wa+kh −Wa+(k−1)h =
√
hZk, 1 ≤ k ≤ n.
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Hence

var In[a, b] =

n∑
k=1

var
(√

hZk

)2
=

n∑
k=1

var
[
hZ2

k

]
=

n∑
k=1

h2 var
[
Z2
k

]
=

n∑
k=1

h2
(
EZ4

k −
[
EZ2

k

]2)
=

n∑
k=1

2h2

= 2nh2

= 2(b− a)2/n.

�

With this in mind, we define ∫ b

a

(dWt)
2

= b− a

and observe that we have shown that∫ b

a

(dWt)
2

=

∫ b

a

dt,

for any 0 ≤ a < b. Thus we have really shown the Itô rule

dW 2
t = dt.

Using a very similar technique, we can also prove that

dtdWt = 0.

We first define

Jn[a, b] =

n∑
k=1

h
(
Wa+kh −Wa+(k−1)h

)
,

where nh = b− a, as before.

Proposition 3.10. We have EJn[a, b] = 0 and var Jn[a, b] = (b− a)3/n2.

Proof. Firstly,

EJn[a, b] =

n∑
k=1

Eh
(
Wa+kh −Wa+(k−1)h

)
= 0.
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The variance satisfies

var Jn[a, b] =

n∑
k=1

varh
(
Wa+kh −Wa+(k−1)h

)
=

n∑
k=1

h2 var
(
Wa+kh −Wa+(k−1)h

)
=

n∑
k=1

h3

= nh3

= (b− a)3/n2.

�

With this in mind, we define∫ b

a

dtdWt = 0, for any 0 ≤ a < b,

and observe that we have shown that

dtdWt = 0.

Exercise 3.3. Setting nh = b− a, define

Kn[a, b] =

n∑
k=1

h2.

Prove that Kn[a, b] = (b− a)2/n→ 0, as n→∞. Thus∫ b

a

(dt)
2

= 0,

for any 0 ≤ a < b. Hence we have (dt)2 = 0.

Proposition 3.11 (Itô Rules). We have dW 2
t = dt and dWtdt = dt2 = 0.

Proof. See Propositions 3.9, 3.10 and Exercise 3.3 �

The techniques used in Propositions 3.9 and 3.10 are crucial examples of the
basics of stochastic integration. We can generalize this technique to compute other
useful stochastic integrals, as we shall now see. However, computing these stochastic
integrals directly from limits of stochastic sums is cumbersome compared to direct
use of the Itô rules: compare the proof of Proposition 3.12 to the simplicity of
Example 3.3.

Proposition 3.12. We have∫ t

0

WsdWs =
1

2

(
W 2
t − t

)
.

Proof. We have already seen that, when h = t/n,

(3.16)

n∑
k=1

(
Wkh −W(k−1)h

)2 → t,
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as n→∞. Further, we shall use the telescoping sum

(3.17)

n∑
k=1

(
W 2
kh −W 2

(k−1)h

)
= W 2

nh −W 2
0 = W 2

t .

Subtracting (3.16) from (3.17), we obtain
(3.18)
n∑
k=1

[(
W 2
kh −W 2

(k−1)h

)
−
(
Wkh −W(k−1)h

)2]
= 2

n∑
k=1

W(k−1)h
(
Wkh −W(k−1)h

)
.

Now the LHS converges to W 2
t − t, whilst the RHS converges to

2

∫ t

0

WsdWs,

whence (3.12). �

Example 3.1. Here we shall derive a useful formula for

(3.19)

∫ t

0

f(s)dWs,

where f is continuously differentiable. The corresponding discrete stochastic sum is

(3.20) Sn =

n∑
k=1

f(kh)
(
Wkh −W(k−1)h

)
where nh = t, as usual. The key trick is to introduce another telescoping sum:

(3.21)

n∑
k=1

(
f(kh)Wkh − f((k − 1)h)W(k−1)h

)
= f(t)Wt.

Subtracting (3.21) from (3.20) we find

Sn − f(t)Wt = −
n∑
k=1

(f(kh)− f((k − 1)h))W(k−1)h

= −
n∑
k=1

(
hf ′(kh) +O(h2)

)
W(k−1)h

→ −
∫ t

0

f ′(s)Wsds,(3.22)

as n→∞. Hence

(3.23)

∫ t

0

f(s)dWs = f(t)Wt −
∫ t

0

f ′(s)Ws ds.

Exercise 3.4. Modify the technique of Example 3.1 to prove that

(3.24) E

[(∫ t

0

h(s)dWs

)2
]

=

∫ t

0

h(s)2 ds.

This is the Itô isometry property.

We now come to Itô’s lemma itself.
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Lemma 3.13 (Itô’s Lemma for univariate functions). If f is any infinitely differ-
entiable univariate function and Xt = f(Wt), then

(3.25) dXt = f ′(Wt)dWt +
1

2
f (2)(Wt)dt.

Proof. We have

Xt+dt = f(Wt+dt)

= f(Wt + dWt)

= f(Wt) + f ′(Wt)dWt +
1

2
f (2)(Wt)dW

2
t

= Xt + f ′(Wt)dWt +
1

2
f (2)(Wt)dt.

Subtracting Xt from both sides gives (3.25). �

Example 3.2. Let Xt = ecWt , where c ∈ C. Then, setting f(x) = exp(cx) in
Lemma 3.13, we obtain

dXt = Xt

(
cdWt +

1

2
c2dt

)
.

Example 3.3. Let Xt = W 2
t . Then, setting f(x) = x2 in Lemma 3.13, we obtain

dXt = 2WtdWt + dt.

If we integrate this from 0 to T , say, then we obtain

XT −X0 = 2

∫ T

0

WtdWt +

∫ T

0

dt,

or

W 2
T = 2

∫ T

0

WtdWt + T,

that is ∫ T

0

WtdWt =
1

2

(
W 2
T − T

)
.

This is an excellent example of the Itô rules greatly simplifying direct calculation
with stochastic sums, because it is much easier than the direct proof of Proposition
3.12.

Example 3.4. Let Xt = Wn
t , where n can be any positive integer. Then, setting

f(x) = xn in Lemma 3.13, we obtain

dXt = nWn−1
t dWt +

1

2
n(n− 1)Wn−2

t dt.

We can also integrate Itô’s Lemma, as follows.

Example 3.5. Integrating (3.25) from a to b, we obtain∫ b

a

dXt =

∫ b

a

f ′(Wt)dWt +
1

2

∫ b

a

f (2)(Wt)dt,

i.e.

Xb −Xa =

∫ b

a

f ′(Wt)dWt +
1

2

∫ b

a

f (2)(Wt)dt.
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Lemma 3.13 is not quite sufficient to deal with geometric Brownian motion,
hence the following bivariate variant.

Lemma 3.14 (Itô’s Lemma for bivariate functions). If g(x1, t), for x1, t ∈ R, is
any infinitely differentiable function and Yt = g(Wt, t), then

(3.26) dYt =
∂g

∂x1
(Wt, t)dWt +

(
1

2

∂2g

∂x21
(Wt, t) +

∂g

∂t
(Wt, t)

)
dt.

Proof. We have

Yt+dt = g(Wt+dt, t+ dt)

= g(Wt + dWt, t+ dt)

= g(Wt, t) +
∂g

∂x1
(Wt, t)dWt +

1

2

∂2g

∂x21
(Wt, t)dW

2
t +

∂g

∂t
(Wt, t)dt

= g(Wt, t) +
∂g

∂x1
(Wt, t)dWt +

(
1

2

∂2g

∂x21
(Wt, t) +

∂g

∂t
(Wt, t)

)
dt

Subtracting Yt from both sides gives (3.26).
�

Example 3.6. Let Xt = eα+βt+σWt . Then, setting f(x1, t) = exp(α + βt + σx1)
in Lemma 3.13, we obtain

dXt = Xt

(
σdWt +

(
1

2
σ2 + β

)
dt

)
.

Example 3.7. Let Xt = eα+(r−σ2/2)t+σWt . Then, setting β = r−σ2/2 in Example
3.6, we find

dXt = Xt (σdWt + rdt) .

Exercise 3.5. Let Xt = W 2
t − t. Find dXt.

3.8. Itô rules and SDEs. Suppose now that the asset price St is given by the
SDE

(3.27) dSt = St (µdt+ σdWt) ,

that is, St is a geometric Brownian motion. Then the Itô rules imply that

(3.28) (dSt)
2

= σ2S2
t dt.

Hence, if we define Xt = f(St), then
(3.29)

dXt = f ′(St)dSt+
1

2
f (2)(St) (dSt)

2
= σf ′(St)StdWt+dt

(
µf ′(St)St +

1

2
σ2S2

t f
(2)(St)

)
.

We illustrate this with the particularly important example of solving the SDE
for geometric Brownian motion.

Example 3.8. If f(x) = log x, then f ′(x) = 1/x, f (2)(x) = −1/x2 and (3.29)
becomes

dXt = σ
1

St
StdWt + dt

(
µ

1

St
St +

1

2
σ2S2

t

(
−1

S2
t

))
= σdWt + dt

(
µ− σ2/2

)
.
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Integrating from t0 to t1, say, we obtain

Xt1 −Xt0 = σ (Wt1 −Wt0) +
(
µ− σ2/2

)
(t1 − t0) ,

or

log
St1
St0

= σ (Wt1 −Wt0) +
(
µ− σ2/2

)
(t1 − t0) .

Taking the exponential of both sides, we obtain

St1 = St0e
(r−σ2/2)(t1−t0)+σ(Wt1

−Wt0).

3.9. Multivariate Geometric Brownian Motion. So far we have considered
one asset only. In practice, we need to construct a multivariate GBM model that
allows us to incorporate dependencies between assets via a covariance matrix. To
do this, we first take a vector Brownian motion Wt ∈ Rn: its components are
independent Brownian motions. Its covariance matrix Ct at time t is simply a
multiple of the identity matrix:

Ct = EWtW
T
t = tI.

Now take any real, invertible, symmetric n× n matrix A and define

Zt = AWt.

The covariance matrix Dt for this new stochastic process is given by

Dt = EZtZ
T
t = EAWtW

T
t A = A

(
EWtW

T
t

)
A = tA2,

and A2 is a symmetric positive definite matrix.

Exercise 3.6. Prove that A2 is symmetric positive definite if A is real, symmetric
and invertible.

In practice, we calculate the covariance matrix M from historical data, hence
must construct a symmetric A satisfying A2 = M . Now a covariance matrix is
precisely a symmetric positive definite matrix, so that the following linear algebra
is vital. We shall use ‖x‖ to denote the Euclidean norm of the vector x ∈ Rn, that
is

(3.30) ‖x‖ =
( n∑
k=1

x2k

)1/2
, x ∈ Rn.

Further, great algorithmic and theoretical importance attaches to those n×n matri-
ces which preserve the Euclidean norm. More formally, an n×n matrix Q is called
orthogonal if ‖Qx‖ = ‖x‖, for all x ∈ Rn. It turns out that Q is an orthogonal
matrix if and only if QTQ = I, which is equivalent to stating that its columns are
orthonormal vectors. See Section 7 for further details.

Theorem 3.15. Let M ∈ Rn×n be symmetric. Then it can be written as M =
QDQT , where Q is an orthogonal matrix and D is a diagonal matrix. The elements
of D are the eigenvalues of M , while the columns of Q are the eigenvectors. Further,
if M is positive definite, then its eigenvalues are all positive.

Proof. Any good linear algebra textbook should include a proof of this fact; a proof
is given in my numerical linear algebra notes. �
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Given the spectral decomposition M = QDQT , with D = diag (λ1, λ2, . . . , λn),
we define

D1/2 = diag (λ
1/2
1 , λ

1/2
2 , . . . , λ1/2n )

when M is positive definite. We can now define the matrix square-root M1/2 by

(3.31) M1/2 = QD1/2QT .

Exercise 3.7. Prove that (M1/2)2 = M directly from (3.31).

Given the matrix square-root M1/2 for a chosen symmetric. positive definite
matrix M , we now define the assets

(3.32) Sk(t) = e(r−Mkk/2)t+(M1/2Wt)
k , k = 1, 2, . . . , n,

where
(
M1/2Wt

)
k

denotes the kth element of the vector M1/2Wt. We now need
to check that our assets remain risk-neutral.

Proposition 3.16. Let the assets’ stochastic processes be defined by (3.32). Then

ESk(t) = ert,

for all k ∈ {1, 2, . . . , n}.
Proof. The key calculation is

Ee(M
1/2Wt)

k = Ee
∑n
`=1(M

1/2)k`Wt(`)

= E
n∏
`=1

e(M
1/2)k`Wt(`)

=

n∏
`=1

Ee(M
1/2)k`Wt(`)

=

n∏
`=1

e(M
1/2)2k`t/2

= e(t/2)
∑n
`=1(M

1/2)2k`

= e(t/2)Mkk ,

using the independence of the components of Wt. �

Exercise 3.8. Compute E[Sk(t)2].

Exercise 3.9. What’s the covariance matrix for the assets S1(t), . . . , Sn(t)?

In practice, it is usually easier to describe the covariance structure of multivariate
Brownian motion via the Itô rules, which take the simple form

(3.33) dWtdW
T
t = M dt,

whereM ∈ Rn×n is a symmetric positive definite matrix and Wt is an n-dimensional
Brownian motion.

Proposition 3.17. If Xt = f(Wt), then

(3.34) dXt = ∇f(Wt)
T dWt +

1

2
dWT

t D
2f(Wt)dWt

or

(3.35) dXt =

n∑
j=1

∂f

∂xj
dWj,t +

dt

2

n∑
j=1

n∑
k=1

∂2f

∂xj∂xk
Mjk.
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Proof. This is left as an exercise. �

Example 3.9. If n = 2 and

f(x1, x2) = ea1x1+a2x2 ,

and the correlated Brownian motions W1,t and W2,t satisfy

dW1,tdW2,t = ρdt,

for some constant correlation coefficient ρ ∈ [−1, 1], then Xt = f(W1,t,W2,t) satis-
fies

dXt =

(
a1dW1,t + a2dW2,t +

1

2
dt
(
a21 + 2ρa1a2 + a22

))
Xt.

Example 3.10. If n = 3 and

f(x1, x2, x3) = ea1x1+a2x2+a3x3 ,

and the correlated Brownian motions W1,t,W2,t,W3,t satisfy

dW1,tdW2,t = M12dt, dW2,tdW3,t = M23dt, dW3,tdW1,t = M31dt,

where M ∈ R3×3 is a symmetric positive definite matrix which also satisfies

M11 = M22 = M33 = 1,

then Xt = f(W1,t,W2,t,W3,t) satisfies

dXt =

(
a1dW1,t + a2dW2,t + a3dW3,t +

1

2
dt
(
a21 + a22 + a23 + 2a2a3M23 + 2a3a1M31 + 2a1a2M12

))
Xt.

Example 3.11. If

f(x) = ea
Tx, x ∈ Rn,

then

∇f(x) = af(x)

and

D2f(x) = aaT f(x).

Let Wt be any n-dimensional Brownian motion satisfying

dWtdW
T
t = Mdt,

where M ∈ Rn×n is a symmetric positive definite matrix. Then Xt = f(Wt)
satisfies

dXt =

(
aT dWt +

1

2
dWT

t MdWt

)
f(x),

or, in coordinate form,

dXt =

 n∑
j=1

ajdWj,t +
1

2
dt

n∑
j=1

n∑
k=1

ajakMjk

 f(x).
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Proposition 3.18. If Yt = g(Wt, t), then

(3.36) dYt = ∇g(Wt)
T dWt +

∂g

∂t
dt+

1

2
dWT

t D
2g(Wt)dWt

or

(3.37) dYt =

n∑
j=1

∂g

∂xj
dWj,t +

∂g

∂t
dt+

dt

2

n∑
j=1

n∑
k=1

∂2g

∂xj∂xk
Mjk.

Proof. Exercise. �

Example 3.12. If n = 2 and

g(x1, x2) = ea1x1+a2x2+bt,

and the correlated Brownian motions W1,t and W2,t satisfy

dW1,tdW2,t = ρdt,

for some constant correlation coefficient ρ ∈ [−1, 1], then Xt = f(W1,t,W2,t) satis-
fies

dXt =

(
a1dW1,t + a2dW2,t + bdt+

1

2
dt
(
a21 + 2ρa1a2 + a22

))
Xt.

Example 3.13. If

g(x, t) = ea
Tx+bt, x ∈ Rn,

then

∇g(x, t) = ag(x, t),
∂g

∂t
= bg(x, t),

and
D2g(x, t) = aaT g(x, t).

Let Wt be any n-dimensional Brownian motion satisfying

dWtdW
T
t = Mdt,

where M ∈ Rn×n is a symmetric positive definite matrix. Then Yt = g(Wt, t)
satisfies

dYt =

(
aT dWt + bdt+

1

2
dWT

t MdWt

)
Yt,

or, in coordinate form

dYt =

 n∑
j=1

ajdWj,t + bdt+
1

2
dt

n∑
j=1

n∑
k=1

ajakMjk

Yt.
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3.10. Asian Options. European Put and Call options provide a useful laboratory
in which to understand and test methods. However, the main aim of Monte Carlo
is to calculate option prices for which there is no convenient analytic formula. We
shall illustrate this with Asian options. Specifically, we shall consider the option

(3.38) fA(S, T ) =

(
S(T )− 1

T

∫ T

0

S(τ) dτ

)
+

.

This is a path dependent option: its value depends on the history of the asset price,
not simply its final value.

Why would anyone trade Asian options? Consider a bank’s corporate client
trading in, say, Britain and the States. The client’s business is exposed to exchange
rate volatility: the pound’s value in dollars varies over time. Therefore the client
may well decide to hedge by buying an option to trade dollars for pounds at a
set rate at time T . This can be an expensive contract for the writer of the option,
because currency values can “blip”. An alternative contract is to make the exchange
rate at time T a time-average, as in (3.38). Any contract containing time-averages
of asset prices is usually called an Asian option, and there are many variants of
these. For example, the option dual to (3.38) (in the sense that a call option is dual
to a put option) is given by

(3.39) gA(S, T ) =

(
1

T

∫ T

0

S(τ) dτ − S(T )

)
+

.

Pricing (3.38) via Monte Carlo is fairly simple. We choose a positive integer M
and subdivide the time interval [0, T ] into M equal subintervals. We evolve the
asset price using the equation

(3.40) S(
(k + 1)T

M
) = S(

kT

M
)e(r−σ

2/2) TM+σ
√

T
M Zk , k = 0, 1, . . . ,M − 1,

where Z0, Z1, . . . , ZM−1 are independent N(0, 1) independent pseudorandom num-
bers. We can use the simple approximation

T−1
∫ T

0

S(τ) dτ ≈M−1
M−1∑
k=0

S(
kT

M
).

Exercise 3.10. Write a Matlab program to price the discrete Asian option defined
by

(3.41) fM (S, T ) =

(
S(T )−M−1

M−1∑
k=0

S(kT/M)

)
+

.

We can also study the average

(3.42) A(T ) = T−1
∫ T

0

S(t) dt

directly, and this is the subject of a recent paper of Raymond and myself. For
example,

(3.43) EA(T ) = T−1
∫ T

0

ES(t) dt.
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Exercise 3.11. Prove that

(3.44) EA(T ) = S(0)

(
erT − 1

rT

)
.

Exercise 3.12. In a similar vein, find expressions for ES(a)S(b) and E
(
A(T )2

)
.
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3.11. The Ornstein–Uhlenbeck Process. This interesting SDE displays mean-
reversion and requires a slightly more advanced technique. We consider the SDE

(3.45) dXt = −αXtdt+ σdWt, t ≥ 0,

where α > 0 and σ ≥ 0 are constants and X0 = x0.
It’s very useful to consider the special case σ = 0 first, in which case the SDE

(3.45) becomes the ODE

(3.46)
dXt

dt
+ αXt = 0.

There is a standard method for solving (3.46) using an integrating factor. Specifi-
cally, if we multiply (3.46) by exp(αt), then we obtain

(3.47)
d

dt

(
Xte

αt
)

= 0,

so that Xt exp(αt) is constant. Hence, recalling the initial condition X0 = x0, we
must have

(3.48) Xt = x0e
−αt.

Thus the solution decays exponentially to zero, at a rate determined by the positive
constant α, for any initial value x0.

Fortunately the integrating factor method also applies to the σ > 0 case, with a
little more work. Multiplying (3.45) by expαt, we obtain

eαt (dXt + αXtdt) = σeαtdWt,

or

(3.49) d
(
Xte

αt
)

= σeαtdWt,

using the infinitesimal increments variant on the product rule for differentiation.
Integrating (3.49) from 0 to s, we find

(3.50) Xse
αs − x0 =

∫ s

0

d
(
Xte

αt
)

= σ

∫ s

0

eαtdWt,

or

(3.51) Xs = x0e
−αs + e−αs

∫ s

0

eαtdWt.

We can say more using the following important property of stochastic integrals.

Proposition 3.19. Let f : [0,∞)→ R be any infinitely differentiable function and
define the stochastic process

(3.52) Fs =

∫ s

0

f(t)dWt.

Then EFs = 0 and

(3.53) varFs =

∫ s

0

f(t)2dt.
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Proof. The key point is that (3.52) is the limit of the stochastic sum

Sn =

n∑
k=1

f(kh)
(
Wkh −W(k−1)h

)
,

where h > 0 and nh = s. Now the increments Wkh−W(k−1)h are independent and
satisfy

Wkh −W(k−1)h ∼ N(0, h),

by the axioms of Brownian motion, so

ESn = 0,

for all n. By independence of the terms in the sum, we see that

varSn =

n∑
k=1

var
(
f(kh)

(
Wkh −W(k−1)h

))
=

n∑
k=1

f(kh)2 var
(
Wkh −W(k−1)h

)
= h

n∑
k=1

f(kh)2

→
∫ s

0

f(t)2 dt,

as n→∞. �

Applying Proposition 3.19 to the Ornstein–Uhlenbeck process solution (3.51),
we obtain EXs = x0 exp(−αs) and

varXs = varσe−αs
∫ s

0

eαtdWt

= σ2e−2αs
∫ s

0

e2αtdt

= σ2e−2αs
(
e2αs − 1

2α

)
= σ2

(
1− e−2αs

2α

)
.
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3.12. Feynman–Kac. The derivation of the Black–Scholes PDE earlier is really
the first example of a much more general link between expectations of functions of
Brownian motion and PDEs.

If we consider the stochastic process Xt = u(Wt, t), then Itô’s Lemma 3.14 states
that

(3.54) du(Wt, t) = uxdWt +

(
ut +

1

2
uxx

)
dt.

Thus, if u satisfies the PDE

(3.55) ut +
1

2
uxx = 0,

then the dt component vanishes in (3.54), implying

(3.56) du(Wt, t) = ux(Wt, t)dWt.

If we now choose any times 0 ≤ t0 < t1, then integrating (3.56) yields

(3.57) u(Wt1 , t1)− u(Wt0 , t0) =

∫ t1

t0

du(Wt, t) =

∫ t1

t0

ux(Wt, t)dWt.

Taking the expectation of (3.57), conditioned on Wt0 = X, say, we obtain

(3.58) E (u(Wt1 , t1)|Wt0 = X)−u(X, t0) = E
(∫ t1

t0

ux(Wt, t) dWt|Wt0 = X

)
= 0,

by the independent increments property of Brownian motion. In other words, the
solution to the PDE (3.55) is given by

(3.59) u(X, t0) = E (u(Wt1 , t1)|Wt0 = X) .

Now

Wt1 = Wt1 −Wt0 +Wt0 = Wt1 −Wt0 +X,

so we can rewrite (3.59) as

(3.60) u(X, t0) = Eu(X +Wt1 −Wt0 , t1),

or

(3.61) u(X, t0) = Eu(X +
√
t1 − t0Z, t1),

where Z ∼ N(0, 1). Now that we have derived (3.61), it’s clearer to replace t0 by
t, t1 by T and X by x, respectively, to obtain

(3.62) u(x, t) = Eu(x+
√
τZ, T ),

where τ = T − t is the time to expiry. The key point here is that we have a solution
to the PDE (3.55) (which is called the time-reversed diffusion equation) expressed
as an expectation. If we express this expectation in terms of the N(0, 1) PDF, then
we obtain

(3.63) u(x, t) =

∫ ∞
−∞

u(x+
√
τs, T )(2π)−1/2e−s

2/2 ds.

Example 3.14. Suppose the expiry value of u is given by

(3.64) u(y, T ) =

{
1 if a ≤ y ≤ b,
0 otherwise.
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Then (3.63) implies that the solution of (3.55) is given by

u(x, t) =

∫ ∞
−∞

u(x+
√
τs, T )(2π)−1/2e−s

2/2 ds

=

∫ b−x√
τ

a−x√
τ

(2π)−1/2e−s
2/2 ds

= Φ

(
b− x√
τ

)
− Φ

(
a− x√
τ

)
,

because

a ≤ x+
√
τs ≤ b

if and only if
a− x√
τ
≤ x ≤ b− x√

τ
.

Exercise 3.13. Show that, in terms of the time to expiry τ = T − t, the PDE
(3.55) becomes the diffusion equation

uτ =
1

2
uxx,

with solution

u(x, τ) = Eu(x+
√
τZ, 0).

3.13. Feynman–Kac and Black–Scholes I. Suppose we consider the stochastic
process St defined by the SDE

(3.65)
dSt
St

= rdt+ σdWt,

which is, of course, geometric Brownian motion. We can solve this SDE using the
technique of Example 3.8.

Example 3.15. The stochastic process logSt satisfies the SDE

(3.66) d logSt =
(
r − σ2/2

)
dt+ σdWt,

whence, integrating from t0 to t1, we obtain

(3.67) log
St1
St0

=
(
r − σ2/2

)
(t1 − t0) + σ (Wt1 −Wt0) .

Taking the exponential, we find

(3.68) St1 = St0e
(r−σ2/2)(t1−t0)+σ(Wt1−Wt0).

Applying Itô’s Lemma to the stochastic process V (St, t), where St is defined by
the SDE (3.65), we obtain

(3.69) dV (St, t) =

(
Vt +

1

2
σ2S2

t VSS + rStVS

)
dt+ σStVSdWt.

Hence, if V (S, t) satisfies the PDE

(3.70) Vt +
1

2
σ2S2VSS + rSVS = 0,
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together with the boundary condition

(3.71) V (S, T ) = F (S),

for some known function F (S), then integrating (3.69) from t = t0 to t = T , we
find

(3.72) V (ST , T )− V (St0 , t0) =

∫ T

t0

σStVSdWt,

or, using the boundary condition (3.71),

(3.73) F (ST )− V (St0 , t0) =

∫ T

t0

σStVSdWt,

If we now take the expectation of (3.72), conditioned on St0 = S, then

(3.74) E (F (ST )|St0 = S)− V (S, t0) = 0,

the RHS vanishing because of the independent increments property of Brownian
motion. Now, setting t0 = t and t1 = T in (3.68), we can rewrite (3.74) as

(3.75) V (S, t) = EF (Se(r−σ
2/2)τ+στ1/2Z),

or

(3.76) V (S, t) = EV (Se(r−σ
2/2)τ+στ1/2Z , T ),

where

(3.77) τ = T − t
and Z ∼ N(0, 1).

3.14. Feynman–Kac and Black–Scholes II. To obtain Black–Scholes from Feynman–
Kac, we substitute

(3.78) V (S, t) = e−rtU(S, t)

in (3.70). Now

VS = e−rtUS , VSS = e−rtUSS and Vt = e−rt (Ut − rU) ,

so (3.70) becomes the Black–Scholes equation

(3.79) Ut +
1

2
σ2S2USS + rSUS − rU = 0.

Hence (3.76) becomes

(3.80) e−rtU(S, t) = e−rTEU(Se(r−σ
2/2)τ+στ1/2Z , T ),

or

(3.81) U(S, t) = e−rτEU(Se(r−σ
2/2)τ+στ1/2Z , T ).
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4. The Binomial Model Universe

The geometric Brownian Motion universe is an infinite one and, for practitioners,
has the added disadvantage of the mathematical difficulty of Brownian motion. It
is also possible to construct finite models with similar properties. This was first
demonstrated by Cox, Ross and Rubinstein in the late 1970s.

Our model will be entirely specified by two parameters, α > 0 and p ∈ [0, 1]. We
choose S0 > 0 and define

(4.1) Sk = Sk−1 exp(αXk), k > 0,

where the independent random variables X1, X2, . . . satisfy

(4.2) P (Xk = 1) = p, P (Xk = −1) = 1− p =: q.

Thus

(4.3) Sm = S0e
α(X1+X2+···+Xm), m > 0.

It is usual to display this random process graphically.
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p
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q

q
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q

p

p

q

p

q

p

q

p

q

p

At this stage, we haven’t specified p and α. However, we can easily price a Euro-
pean option given these parameters. If Sk denotes our Binomial Model asset price
at time kh, for some positive time interval h, then the Binomial Model European
option requirement is given by

f(Sk−1, (k − 1)h) = e−rhEf(Sk−1e
αXk , kh)

= e−rh
(
pf(Sk−1e

α, kh) + (1− p)f(Sk−1e
−α, kh)

)
.(4.4)

Thus, given the m+1 possible asset prices at expiry time mh, and their correspond-
ing option prices, we use (4.4) to calculate the m possible values of the option at
time (m− 1)h. Recurring this calculation provides the value of the option at time
0. Let’s illustrate this with an example.
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Example 4.1. Suppose eα = 2, p = 1/2 and D = e−rh. Let m = 4 and let’s use
the Binomial Model to calculate all earlier values of the call option whose expiry
value is

f(S(mh),mh) = (S(mh)− 1)+ .

Using (4.4), we obtain the following diagram for the asset prices.
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The corresponding diagram for the option prices is as follows.
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How do we choose the constants α and p? One way is to use them to mimic
geometric Brownian motion. Thus we choose a positive number h and use

(4.5) S(kh) = S((k − 1)h)e(r−σ
2/2)h+σ

√
hZ , k > 0,

where, as usual Z ∼ N(0, 1).

Lemma 4.1. In the Geometric Brownian Motion Universe, we have

(4.6) ES(kh)|S((k − 1)h) = S((k − 1)h)erh

and

(4.7) ES(kh)2|S((k − 1)h) = S((k − 1)h)2e(2r+σ
2)h.

Proof. These are easy exercises if you have digested Lemma 2.1 and Lemma 2.2:
everything rests on using the fact that E exp(cZ) = c2/2 when Z ∼ N(0, 1), for any
real (or complex) number c. �

There are analogous quantities in the Binomial Model.

Lemma 4.2. In the Binomial Model Universe, we have

(4.8) ESk|Sk−1 =
(
peα + (1− p)e−α

)
Sk−1

and

(4.9) ES2
k|Sk−1 =

(
pe2α + (1− p)e−2α

)
S2
k−1

Proof. You should find these to be very easy given the definitions (4.1), (4.2) and
(4.3); revise elementary probability theory if this is not so! �

One way to choose p and α is to require that the right hand sides of (4.6), (4.8)
and (4.7), (4.9) agree, that is,

erh = peα + (1− p)e−α,(4.10)

e(2r+σ
2)h = pe2α + (1− p)e−2α.(4.11)

This ensures that our Binomial Model preserves risk neutrality.
Rearranging (4.10) and (4.11), we find

(4.12) p =
erh − e−α

eα − e−α
=
e(2r+σ

2)h − e−2α

e2α − e−2α
.

Further, the elementary algebraic identity

e2α − e−2α =
(
eα + e−α

) (
eα − e−α

)
transforms (4.12) into

(4.13) erh − e−α =
e(2r+σ

2)h − e−2α

eα + e−α
.

Exercise 4.1. Show that (4.12) implies the equation

(4.14) eα + e−α = e(r+σ
2)h + e−rh,
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How do we solve (4.14)? The following analysis is a standard part of the theory of
hyperbolic trigonometric functions1, but no background knowledge will be assumed.
If we write

(4.15) y =
1

2

(
e(r+σ

2)h + e−rh
)
,

then (4.14) becomes

(4.16) eα + e−α = 2y,

that is

(4.17) (eα)2 − 2y(eα) + 1 = 0.

This quadratic in eα has solutions

(4.18) eα = y ±
√
y2 − 1

and, since (4.15) implies y ≥ 1, we see that each of these possible solutions is
positive. Thus the possible values for α are

(4.19) α1 = loge

(
y +

√
y2 − 1

)
and

(4.20) α2 = loge

(
y −

√
y2 − 1

)
.

Now

α1 + α2 = loge

[(
y +

√
y2 − 1

)]
+ loge

[(
y −

√
y2 − 1

)]
= loge

[(
y +

√
y2 − 1

)(
y −

√
y2 − 1

)]
= loge

[
y2 − (y2 − 1)

]
= loge 1

= 0.(4.21)

Since y +
√
y2 − 1 ≥ 1, for y ≥ 1, we deduce that α1 ≥ 0 and α2 = −α1. Since we

have chosen α > 0, we conclude

(4.22) α = loge

[
y +

√
y2 − 1

]
,

where y is given by (4.15).
Now (4.22) tells us the value of α required, but the expression is somewhat

complicated. However, if we return to (4.14), that is,

eα + e−α = e(r+σ
2)h + e−rh,

and consider small h, then α is also small and Taylor expansion yields

2 + α2 + · · · = 1 + (r + σ2)h+ · · ·+ 1− rh+ · · · ,

that is,

(4.23) α2 + · · · = σ2h+ · · · .

1Specifically, this is the formula for the inverse hyperbolic cosine.
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Cox and Ross had the excellent idea of ignoring the messy higher order terms, since
the model is only an approximation in any case. Thus the Cox–Ross Binomial Model
chooses

(4.24) α = σh1/2.

The corresponding equation for the probability p becomes

(4.25) p =
erh − e−σh1/2

eσh1/2 − e−σh1/2

It’s useful, but tedious, to Taylor expand the RHS of (4.25). We obtain

p =
1 + rh+ · · · −

(
1− σh1/2 + 1

2σ
2h+ · · ·

)
2
(
σh1/2 + σ3h3/2/6 + · · ·

)
=

σh1/2 + (r − σ2/2)h+ · · ·
2σh1/2 (1 + σ2h/6 + · · · )

=
1

2

[
1 + σ−1h1/2(r − σ2/2) + · · ·

1 + σ2h/6 + · · ·

]
=

1

2

[(
1 + σ−1h1/2(r − σ2/2) + · · ·

) (
1− σ2h/6 + · · ·

)]
=

1

2

[
1 + σ−1h1/2(r − σ2/2) + · · ·

]
,(4.26)

to highest order, so that

(4.27) 1− p =
1

2

[
1− σ−1h1/2(r − σ2/2) + · · ·

]
,

It’s tempting to omit the higher order terms, but we would then lose risk neutrality
in our Binomial Model.

Is the Binomial Model consistent with the Geometric Brownian Motion universe
as h→ 0? We shall now show that the definition of a sufficiently smooth European
option in the Binomial Model still implies the Black–Scholes PDE in the limit as
h→ 0.

Proposition 4.3. Let f : [0,∞)×[0,∞)→ R be an infinitely differentiable function
satisfying

(4.28) f(S, t− h) = e−rh
(
pf(Seσh

1/2

, t) + (1− p)f(Se−σh
1/2

, t))
)
,

for all h > 0, where p is given by (4.25). Then f satisfies the Black–Scholes PDE.

Proof. As usual, it is much more convenient to use log-space. Thus we define
u = logS and

g(u, t) = f(S, t).

Hence (4.28) becomes

(4.29) g(u, t− h) = e−rh
(
pg(u+ σh1/2, t) + (1− p)g(u− σh1/2, t)

)
,
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Using (4.26) and (4.27) and omitting terms whose order exceeds h for clarity, we
obtain

g − hgt + · · · = e−rh
(1

2

[
1 + h1/2σ−1(r − σ2/2)

] [
g + σh1/2gu +

1

2
σ2hguu

]
+

1

2

[
1− h1/2σ−1(r − σ2/2)

] [
g − σh1/2gu +

1

2
σ2hguu

])
= e−rh

(
g + h

[
(r − σ2/2)gu +

1

2
σ2guu

])
=
(

1− rh+O(h2)
)(
g + h

[
(r − σ2/2)gu +

1

2
σ2guu

])
= g + h

[
−rg + (r − σ2/2)gu +

1

2
σ2guu

]
.

(4.30)

Equating the O(h) terms on both sides of equation (4.30) yields the Black–Scholes
equation

−gt = −rg + (r − σ2/2)gu +
1

2
σ2guu.

�

4.1. The Binomial Model and Delta Hedging. We begin with (4.1), as before,
but this time do not impose risk neutrality to determine the parameters p and α.
Instead, we use a delta hedging argument.

At time tn−1 = (n− 1)h, we construct a new portfolio

(4.31) Πn−1 = f(Sn−1, tn−1)−∆n−1Sn−1.

and we choose ∆n−1 so that the evolution of Πn−1 is deterministic. Now, at time
tn = nh, the portfolio Πn−1 has the new value

(4.32) Πn = f(Sn−1e
αXn , tn)−∆n−1Sn−1e

αXn .

Thus Πn is deterministic if the two possible values of (4.32) are equal, that is,

(4.33) f(Sn−1e
α, tn)−∆n−1Sn−1e

α = f(Sn−1e
−α, tn)−∆n−1Sn−1e

−α.

It is useful to introduce the notation

(4.34) f± = f(Sn−1e
±α, tn).

Then (4.33) and (4.34) imply that

(4.35) ∆n−1Sn−1 =
f+ − f−
eα − e−α

.

Thus the resulting portfolio values are given by

(4.36) Πn−1 = f(Sn−1, tn−1)− f+ − f−
eα − e−α

and

Πn = f(Sn−1e
α, tn)− f+ − f−

eα − e−α
eα

=
f−e

α − f+e−α

eα − e−α
.(4.37)
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Now that the portfolio’s evolution from Πn−1 to Πn is deterministic, we must have
Πn = exp(rh)Πn−1, i.e.

(4.38)
f−e

α − f+e−α

eα − e−α
= erh

(
f(Sn−1, tn−1)− f+ − f−

eα − e−α

)
.

The key point here is that f(Sn−1, tn−1) is a linear combination of f+ and f−.
Specifically, if we introduce

(4.39) P =
erh − e−α

eα − e−α
,

then (4.38) becomes

(4.40) f(Sn−1, t
n−1) = e−rh (Pf+ + (1− P ) f−) .

Note that original model probability p does not occur in this formula: instead, it
is as if we had begun with the alternative binomial model

(4.41) Sn = Sn−1e
αYn ,

where the independent Bernoulli random variables Y1, Y2, . . . , Yn satisfy P(Yk =
1) = P and P(Yk = −1) = 1− P , where P is given by (4.39). Indeed, we have

(4.42) ESn|Sn−1 = Sn−1EeαYn = Sn−1e
rh.

Exercise 4.2. Prove that ESn|Sn−1 = Sn−1e
rh.

4.2. ∆-Hedging for GBM. We begin with the real world asset price

(4.43) St = eα+βt+σWt ,

where we do not assume there is any connection between the parameters α, β and
σ: this is not risk-neutral GBM. It is a simple exercise in Itô calculus (see Example
3.6) to prove that

(4.44) dSt = St
(
σdWt +

(
β + σ2/2

)
dt
)

and

(4.45) (dSt)
2

= σ2S2
t dt.

By analogy with delta hedging in the Binomial Model (4.31), let us assume that
St = S and define the portfolio

(4.46) Πt = f(St, t)−∆St,

where ∆ is a constant. Then

Πt+dt = f(St+dt, t+ dt)−∆St+dt

= f(S + dSt, t+ dt)−∆S −∆dSt

= f(S, t) + dStfS +
1

2
dS2

t fSS + dtft −∆S −∆dSt

= Πt + dSt (fS −∆) +
1

2
dS2

t fSS + dtft

= Πt + dSt (fS −∆) +

(
1

2
σ2S2fSS + ft

)
dt.(4.47)

In other words, we have the infinitesimal increment

(4.48) Πt+dt −Πt = dΠt = dSt (fS −∆) +

(
1

2
σ2S2fSS + ft

)
dt.



MATHEMATICAL AND NUMERICAL METHODS 45

Thus we eliminate the stochastic dSt component by setting

(4.49) ∆ = fS

and (4.47) then becomes

(4.50) dΠt =

(
ft +

1

2
σ2S2fSS

)
dt,

or

(4.51)
dΠt

dt
= ft +

1

2
σ2S2fSS .

Now there is no stochastic component in (4.50), so we must also have

(4.52)
dΠt

dt
= rΠt = r (f − fSS) ,

because all deterministic assets must grow at the risk-free rate. Equating (4.51)
and (4.52) yields

(4.53) ft +
1

2
σ2S2fSS = r (f − fSS) ,

or

(4.54) ft − rf + rfSS +
1

2
σ2S2fSS = 0,

which is the Black–Scholes PDE.
It is often useful to restate the Black–Scholes PDE in terms of the logarithm of

the asset price, i.e. via S = ex. Thus

∂S
dS

dx
= ∂x,

or

(4.55) S∂S = ∂x.

Hence

∂xx = S∂S (S∂S)

= S (∂S + S∂SS)

= S∂S + S2∂SS ,(4.56)

or, using (4.55),

(4.57) S2∂SS = ∂xx − ∂x.
Therefore substituting (4.55) and (4.57) in (4.54) yields

0 = ft − rf + rfx +
1

2
σ2 (fxx − fx)

= ft − rf +
(
r − σ2/2

)
fx +

1

2
σ2fxx.(4.58)

(4.59)
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5. The Partial Differential Equation Approach

One important way to price options is to solve the Black–Scholes partial dif-
ferential equation (PDE), or some variant of Black–Scholes. Hence we study the
fundamentals of the numerical analysis of PDEs.

5.1. The Diffusion Equation. The diffusion equation arises in many physical
and stochastic situations. In the hope that the baroque will serve as a mnemonic,
we shall model the diffusion of poison along a line. Let u(x, t) be the density of
poison at location x and time t and consider the stochastic model

(5.1) u(x, t) = Eu(x+ σ
√
hZ, t− h), x ∈ R, t ≥ 0,

where σ is a positive constant and Z ∼ N(0, 1). The idea here is that the poison
molecules perform a random walk along the line, just as share prices do in time. If
we assume that u has sufficiently many derivatives, then we obtain

u(x, t)

= E u(x, t) + σ
√
h
∂u

∂x
Z +

1

2
σ2hZ2 ∂

2u

∂x2
+O(h3/2)− h∂u

∂t
+O(h2)

= u(x, t) + h
(1

2
σ2 ∂

2u

∂x2
− ∂u

∂t

)
+O(h3/2).

In other words, dividing by h, we obtain(1

2
σ2 ∂

2u

∂x2
− ∂u

∂t

)
+O(h1/2) = 0.

Letting h→ 0, we have derived the diffusion equation

(5.2)
1

2
σ2 ∂

2u

∂x2
=
∂u

∂t
.

This important partial differential equation is often called the heat equation.

Exercise 5.1. The d-dimensional form of our stochastic model for diffusion is
given by

u(x, t) = Eu(x + σ
√
hZ, t− h), x ∈ Rd, t ≥ 0.

Here Z ∈ Rd is a normalized Gaussian random vector: its component are indepen-
dent N(0, 1) random variables and its probability density function is

p(z) = (2π)−d/2 exp(−‖z‖2/2), z ∈ Rd.
Assuming u is sufficiently differentiable, prove that u satisfies the d-dimensional
diffusion equation

∂u

∂t
=
σ2

2

d∑
k=1

∂2u

∂x2k
.

Variations on the diffusion equation occur in many fields including, of course,
mathematical finance. For example, the neutron density2 N(x, t) in Uranium 235
or Plutonium approximately obeys the partial differential equation

∂N

∂t
= αN + β

d∑
k=1

∂2N

∂x2k
.

2In mathematical finance, we choose our model to avoid exponential growth, but this is not
always the aim in nuclear physics.
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In fact, the Black–Scholes PDE is really the diffusion equation in disguise, as we
shall now show. In log-space, we consider any solution f(S̃, t) of the Black–Scholes
equation, that is,

(5.3) −rf + (r − σ2/2)
∂f

∂S̃
+

1

2
σ2 ∂

2f

∂S̃2
+
∂f

∂t
= 0.

The inspired trick, a product of four centuries of mathematical play with differential
equations, is to substitute

(5.4) f(S̃, t) = u(S̃, t)eαS̃+βt

and to find the PDE satisfied by u. Now

∂f

∂S̃
=

(
uα+

∂u

∂S̃

)
eαS̃+βt

and
∂2f

∂S̃2
=

(
uα2 + 2α

∂u

∂S̃
+
∂2u

∂S̃2

)
eαS̃+βt.

Substituting in the Black–Scholes equation results in

−ru+
(
r − σ2/2

)(
αu− ∂u

∂S̃

)
+
σ2

2

(
α2u+ 2α

∂u

∂S̃
+
∂2u

∂S̃2

)
+ βu+

∂u

∂t
= 0,

or

0 =
1

2
σ2 ∂

2u

∂x2
+
∂u

∂t
+
∂u

∂S̃

(
(r − σ2/2) + ασ2

)
+u

(
−r + α(r − σ2/2) + α2σ2/2 + β

)
.

We can choose α and β to be any real numbers we please. In particular, if we set
α = −σ−2(r − σ2/2), then the ∂u/∂S̃ term vanishes. We can then solve for β to
kill the u term.

Exercise 5.2. Find the value of β that annihilates the u term.

The practical consequence of this clever trick is that every problem involving the
Black–Scholes PDE can be transformed into an equivalent problem for the diffusion
equation. Therefore we now study methods for solving the diffusion equation.

There is an analytic solution for the diffusion equation that is sometimes useful.
If we set h = t in (5.1), then we obtain

(5.5) u(x, t) = Eu(x+ σ
√
tZ, 0),

that is,

u(x, t) =

∫ ∞
−∞

u(x+ σ
√
tz, 0)(2π)−1/2 exp(−z2/2) dz(5.6)

=

∫ ∞
−∞

u(x− w, 0)G(w, t) dw,(5.7)

using the substitution w = −σ
√
tz, where

G(w, t) = (2πσ2t)−1/2 exp

(
− w2

2σ2t

)
, w ∈ R.

This is called the Green’s function for the diffusion equation. Of course, we must
now evaluate the integral. As for European options, analytic solutions exist for
some simple cases, but numerical integration must be used in general.
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5.2. Finite Difference Methods for the Diffusion Equation. The simplest
finite difference method is called explicit Euler and it’s a BAD method. Fortunately
the insight gained from understanding why it’s bad enables us to construct good
methods. There is another excellent reason for you to be taught bad methods and
why they’re bad: stupidity is a renewable resource. In other words, simple bad
methods are often rediscovered.

We begin with some finite difference approximations to the time derivative

∂u

∂t
≈ u(x, t+ k)− u(x, t)

k

and the space derivative, using the second central difference

∂2u

∂x2
≈ u(x+ h, t)− 2u(x, t) + u(x− h, t)

h2
.

Exercise 5.3. Show that

g(x+ h)− 2g(x) + g(x− h)

h2
= g(2)(x) +

h2

12
g(4)(x) +O(h4)

and find the next two terms in the expansion.

Our model problem for this section will be the zero boundary value problem:

∂u

∂t
=
∂2u

∂x2
, 0 ≤ x ≤ 1, t ≥ 0,

u(x, 0) = f(x), 0 ≤ x ≤ 1, u(0, t) = u(1, t) = 0, t ≥ 0.(5.8)

We now choose a positive integer M and positive numbers T and k. We then
set h = 1/M , N = T/k and generate a discrete approximation

{Unm : 0 ≤ m ≤M, 0 ≤ n ≤ N, }

to the values of the solution u at the points of the rectangular grid

{(mh, nk) : 0 ≤ m ≤M, 0 ≤ n ≤ N}

using the recurrence

(5.9) Un+1
m = Unm + µ

(
Unm+1 − 2Unm + Unm−1

)
, n ≥ 0, 1 ≤ m ≤M − 1,

where

(5.10) µ =
k

h2

and the boundary values for u imply the relations

(5.11) Un0 = UnM = 0 and U0
m = u(mh, 0), 0 ≤ m ≤M.

This is called explicit Euler.
In matrix terms3, we have

(5.12) Un = TUn−1, n ≥ 1,

3How do we find T? Equation ((5.12)) implies

Un
m = (TUn−1)m =

M−1∑
`=1

Tm`U
n−1
` = µUn

m−1 + (1 − 2µ)Un
m + µUn

m+1.
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where

(5.13) Un =

 Un1
...

UnM−1

 ∈ RM−1

and T ∈ R(M−1)×(M−1) is the tridiagonal symmetric Toeplitz (TST) matrix defined
by

(5.14) T =


1− 2µ µ
µ 1− 2µ µ

. . .
. . .

. . .

µ 1− 2µ µ
µ 1− 2µ


Hence

(5.15) Un = TnU0.

Unfortunately, explicit Euler is an unstable method unless µ ≤ 1/2. In other
words, the numbers {Unm : 1 ≤ m ≤ M − 1} grow exponentially as n→∞. Here’s
an example using Matlab.

Example 5.1. The following Matlab fragment generates the explicit Euler approx-
imations.

% Choose our parameters

mu = 0.7;

M=100; N=20;

% Pick (Gaussian) random initial values

uold = randn(M-1,1);

% construct the tridiagonal symmetric Toeplitz matrix T

T = (1-2*mu)*diag(ones(M-1,1)) + mu*( diag(ones(M-2,1),1) + diag(ones(M-2,1),-1) );

% iterate and plot

plot(uold)

hold on

for k=1:N

unew = T*uold;

plot(unew)

uold = unew;

end

If we run the above code for M = 6 and

U0 =


−0.034942

0.065171
−0.964159

0.406006
−1.450787

 ,
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then we obtain

U20 =


−4972.4

8614.6
−9950.7

8620.5
−4978.3

 .

Further, ‖U40‖ = 2.4 × 108. The exponential instability is obvious. Experiment
with different values of µ, M and N .

The restriction µ ≤ 1/2, that is k ≤ h2/2, might not seem particularly harm-
ful at first. However, it means that small h values require tiny k values, and tiny
timesteps imply lots of work: an inefficient method. Now let’s derive this stabil-
ity requirement. We begin by studying a more general problem based on (5.15).
Specifically, let A ∈ Rn×n be any symmetric matrix4. Its spectral radius ρ(A) is
simply its largest eigenvalue in modulus, that is,

(5.16) ρ(A) = max{|λ1|, |λ2|, . . . , |λn|}.

Theorem 5.1. Let A ∈ Rn×n be any symmetric matrix and define the recurrence
xk = Axk−1, for k ≥ 1, where x0 ∈ Rn can be any initial vector.

(i) If ρ(A) < 1, then limk→∞ ‖xk‖ = 0, for any initial vector x0 ∈ Rn.
(ii) If ρ(A) ≤ 1, then the norms of the iterates ‖x1‖, ‖x2‖, . . . remain bounded.
(iii) If ρ(A) > 1, then we can choose x0 ∈ Rn such that limk→∞ ‖xk‖ =∞.

Proof. We use the spectral decomposition introduced in Theorem 3.15, so that
A = QDQT , where Q ∈ Rn×n is an orthogonal matrix and D ∈ Rn×n is a diagonal
matrix whose diagonal elements are the eigenvalues λ1, . . . , λn of A. Then

xk = Axk−1 = A2xk−2 = · · · = Akx0

and

Ak =
(
QDQT

) (
QDQT

)
· · ·
(
QDQT

)
= QDkQT .

Hence
xk = QDkQTx0

and, introducing zk := QTxk, we obtain

zk = Dkz0,

and it is important to observe that ‖zk‖ = ‖QTxk‖ = ‖xk‖, because QT is an
orthogonal matrix. Since D is a diagonal matrix, this matrix equation is simply n
linear recurrences, namely

zk(`) = λk` z0(`), ` = 1, 2, . . . , n.

The following consequences are easily checked.

(i) If ρ(A) < 1, then each of these scalar sequences tends to zero, as k →∞,
which implies that ‖xk‖ → 0.

(ii) If ρ(A) = 1, then each of these scalar sequences is bounded, which implies
that the sequence ‖xk‖ remains bounded.

4All of this theory can be generalized to nonsymmetric matrices using the Jordan canonical
form, but this advanced topic is not needed in this course.
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(iii) If ρ(A) > 1, then there is at least one eigenvalue, λi say, for which |λi| > 1.
Hence, if z0(i) 6= 0, then the sequence |zk(i)| = |λki z0(i)| → ∞, as k →∞.

�

Definition 5.1. Let A ∈ Rn×n be any symmetric matrix. We say that A is spec-
trally stable if its spectral radius satisfies ρ(A) ≤ 1.

Example 5.2. Let A ∈ Rn×n be a symmetric matrix whose distinct eigenvalues
are 0.1, 0.1, . . . , 0.1, 10. If x0 ∈ Rn contains no component of the eigenvector cor-
responding to the eigenvalue 10, i.e. z0(n) = 0, then, in exact arithmetic, we shall
still obtain ‖xk‖ → 0, as k →∞. However, a computer uses finite precision arith-
metic, which implies that, even if z0(n) = 0, it is highly likely that z0(m) 6= 0,
for some m > 0, since the matrix-vector product is not computed exactly. This
(initially small) nonzero component will grow exponentially.

Theorem 5.1 is only useful when we can deduce the magnitude of the spectral
radius. Fortunately, this is possible for an important class of matrices.

Definition 5.2. We say that a matrix T (a, b) ∈ Rm×m is tridiagonal, symmetric
and Toeplitz (TST) if it has the form

(5.17) T (a, b) =


a b
b a b

. . .
. . .

. . .

b a b
b a

 , a, b ∈ R.

TST matrices arise naturally in many applications. Fortunately they’re one of the
few nontrivial classes of matrices for which the eigenvalues and eigenvectors can
be analytically determined rather easily. In fact, every TST matrix has the same
eigenvectors, because

(5.18) T (a, b) = aI + 2bT0,

where T0 = T (0, 1/2) (this is not a recursive definition, simply an observation given
(5.18)). Hence, if T0v = λv, then T (a, b)v = (a + 2bλ)v. Thus we only need to
study T0.

In fact, every eigenvalue of T0 lies in the interval [−1, 1]. The proof is interesting
because it’s our only example of using a different norm. For any vector w ∈ Rm,
we define its infinity norm to be

‖w‖∞ = max{|w1|, |w2|, . . . , |wm|}.

Exercise 5.4. Show that
‖T0z‖∞ ≤ ‖z‖∞,

for any vector z ∈ Rm.

We shall state our result formally for ease of reference.

Lemma 5.2. Every eigenvalue λ of T0 satisfies |λ| ≤ 1.

Proof. If T0v = λv, then

|λ|‖v‖∞ = ‖λv‖∞ = ‖T0v‖∞ ≤ ‖v‖∞.
Hence |λ| ≤ 1. �
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Proposition 5.3. The eigenvalues of T0 ∈ Rm×m are given by

(5.19) λj = cos

(
jπ

m+ 1

)
, j = 1, . . . ,m,

and the corresponding eigenvector v(j) has components

(5.20) v
(j)
k = sin

(
πjk

m+ 1

)
, j, k = 1, . . . ,m.

Proof. Suppose v is an eigenvector for T0, so that

vj+1 + vj−1 = 2λvj , 2 ≤ j ≤ m− 1,

and

v2 = 2λv1, vm−1 = 2λvm.

Thus the elements of the vector v are m values of the recurrence relation defined
by

vj+1 + vj−1 = 2λvj , j ∈ Z,
where v0 = vm+1 = 0. Here’s a rather slick trick: we know that |λ| ≤ 1, and a
general theoretical result states that the eigenvalues of a real symmetric matrix are
real, so we can write λ = cos θ, for some θ ∈ R. The associated equation for this
recurrence is therefore the quadratic

t2 − 2t cos θ + 1 = 0

which we can factorize as (
t− eiθ

) (
t− e−iθ

)
= 0.

Thus the general solution is

vj = reijθ + se−ijθ, j ∈ Z,

where r and s can be any complex numbers. But v0 = 0 implies s = −r, so we
obtain

vj = sin jθ, j ∈ Z,
on using the fact that every multiple of a sequence satisfying the recurrence is
another sequence satisfying the recurrence. The only other condition remaining to
be satisfied is vm+1 = 0, so that

sin ((m+ 1)θ) = 0,

which implies (m+ 1)θ is some integer multiple of π. �

Exercise 5.5. Prove that the eigenvectors given in Proposition 5.3 are orthogonal
by direct calculation.

The spectral radius of the matrix T driving explicit Euler, defined by (5.15), is
now an easy consequence of our more general analysis of TST matrices.

Corollary 5.4. Let T ∈ R(M−1)×(M−1) be the matrix driving explicit Euler, defined
by (5.15). Then ρ(T ) ≤ 1 if and only if µ ≤ 1/2. Hence explicit Euler is spectrally
stable if and only if µ ≤ 1/2
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Proof. We need only observe that T = T (1−2µ, µ), so that Proposition 5.3 implies
that its eigenvalues are

λk = 1− 2µ+ 2µ cos(
πk

M
)

= 1− 4µ sin2

(
πk

2M

)
, k = 1, 2, . . . ,M − 1.

Thus ρ(T ) ≤ 1 if and only if µ ≤ 1/2, for otherwise |1− 4µ| > 1. �

We can also use TST matrices to understand implicit Euler: here we use

(5.21) Un+1
m = Unm + µ

(
Un+1
m+1 − 2Un+1

m + Un+1
m−1

)
, 1 ≤ m ≤M − 1.

In matrix form, this becomes

(5.22) T (1 + 2µ,−µ)Un+1 = Un,

using the notation of (5.17). Before using Proposition 5.3 to derive its eigenvalues,
we need a simple lemma.

Lemma 5.5. Let A ∈ Rn×n be any symmetric matrix, having spectral decomposi-
tion A = QDQT . Then A−1 = QD−1QT .

Proof. This is a very easy exercise. �

Proposition 5.6. Implicit Euler is spectrally stable for all µ ≥ 0.

Proof. By Proposition 5.3, the eigenvalues of T (1 + 2µ,−µ) are given by

λk = 1 + 2µ− 2µ cos(
πk

M
)

= 1 + 4µ sin2(
πk

2M
).

Thus every eigenvalue of T (1 + 2µ,−µ) exceeds 1, which implies (by Lemma 5.5)
that every eigenvalue of its inverse lies in the interval (0, 1). Thus implicit Euler is
spectrally stable for all µ ≥ 0. �

We have yet to prove that the answers produced by these methods converge to
the true solution as h → 0. We illustrate the general method using explicit Euler,
for µ ≤ 1/2, applied to the diffusion equation on [0, 1] with zero boundary (5.8). If
we define the error

(5.23) Enm := u(mh, nk)− Unm.

then

(5.24) En+1
m − Enm − µ

(
Enm+1 − 2Enm + Enm−1

)
= L(x, t),

where the Local Truncation Error (LTE) L(x, t) is defined by

(5.25) L(x, t) = u(x, t+ k)− u(x, t)− µ (u(x+ h, t)− 2u(x, t) + u(x− h, t)) ,

recalling that, by definition,

(5.26) 0 = Un+1
m − Unm − µ

(
Unm+1 − 2Unm + Unm−1

)
, 1 ≤ m ≤M − 1.



54 BRAD BAXTER

Thus we form the LTE by replacing Unm by u(x, t) in (5.26)5. Taylor expanding and
recalling that k = µh2, we obtain

L(x, t) = kut(x, t) +O(k2)− µ
(
h2uxx(x, t) +O(h4)

)
= µh2uxx(x, t)− µh2uxx(x, t) +O(h4)

= O(h4),(5.27)

using the fact that ut = uxx. Now choose a time interval [0, T ]. Since L(x, t) is a
continuous function, (5.27) implies the inequality

(5.28) |L(x, t)| ≤ Ch4, for 0 ≤ x ≤ 1 and 0 ≤ t ≤ T,
where the constant C depends on T . Further, rearranging (5.24) yields

(5.29) En+1
m = Enm + µ

(
Enm+1 − 2Enm + Enm−1

)
+ L(x, t),

and applying inequality (5.28), we obtain

(5.30) |En+1
m | ≤ (1− 2µ)|Enm|+ µ|Enm+1|+ µ|Enm−1|+ Ch4,

because 1 − 2µ ≥ 0 for µ ≤ 1/2. If we let ηn denote the maximum modulus error
at time nk, i.e.

(5.31) ηn = max{|En1 |, |En2 |, . . . , |EnM−1|}
then (5.31) implies

(5.32) |En+1
m | ≤ (1− 2µ)ηn + 2µηn + Ch4 = ηn + Ch4,

whence

(5.33) ηn+1 ≤ (1− 2µ)ηn + 2µηn + Ch4 = ηn + Ch4.

Therefore, recurring (5.33)

(5.34) ηn ≤ ηn−1 + Ch4 ≤ ηn−2 + 2Ch4 ≤ · · · ≤ η0 + nCh4 = Cnh4,

since E0
m ≡ 0. Now

(5.35) n ≤ N :=
T

k
=

T

µh2
,

so that (5.34) and (5.35) jointly provide the upper bound

(5.36) |Unm − u(mh, nk)| ≤
(CT
µ

)
h2,

for 1 ≤ m ≤ M − 1 and 0 ≤ n ≤ N . Hence we have shown that the explicit Euler
approximation has uniform O(h2) convergence for 0 ≤ t ≤ T . The key here is the
order, not the constant in the bound: halving h reduces the error uniformly by 4.

Exercise 5.6. Refine the expansion of the LTE in (5.27) to obtain

L(x, t) = kut(x, t)+
1

2
k2utt(x, t)+O(k3)−µ

(
h2uxx(x, t) +

1

12
h4uxxxx(x, t) +O(h6)

)
.

Hence prove that

L(x, t) =
1

2
µh4utt(x, t) (µ− 1/6) +O(h6).

5You will see the same idea in the next section, where this will be called the associated func-
tional equation.



MATHEMATICAL AND NUMERICAL METHODS 55

Hence show that, if µ = 1/6 in explicit Euler, we obtain the higher-order uniform
error

|Unm − u(mh, nk)| ≤ Dh4,
for 1 ≤ m ≤M − 1 and 0 ≤ n ≤ T/k, where D depends on T .

Implicit Euler owes its name to the fact that we must solve linear equations to
obtain the approximations at time (n + 1)h from those at time nh. This linear
system is tridiagonal, so Gaussian elimination only requires O(n) time to complete,
rather than the O(n3) time for a general n × n matrix. In fact, there is a classic
method that provides a higher order than implicit Euler together with excellent
stability: Crank–Nicolson is the implicit method defined by

Un+1
m − µ

2

(
Un+1
m+1 − 2Un+1

m + Un+1
m−1

)
= Unm +

µ

2

(
Unm+1 − 2Unm + Unm−1

)
.(5.37)

In matrix form, we obtain

(5.38) T (1 + µ,−µ/2)Un+1 = T (1− µ, µ/2)Un,

or

(5.39) Un+1 = T (1 + µ,−µ/2)−1T (1− µ, µ/2)Un.

Now every TST matrix has the same eigenvectors. Thus the eigenvalues of the
product of TST matrices in (5.39) are given by

(5.40) λk =
1− µ+ µ cos(πkM )

1 + µ− µ cos πkM
=

1− 2µ sin2( πk2M )

1 + 2µ sin2( πk2M )
.

Hence |λk| ∈ (0, 1) for all µ ≥ 0.

Exercise 5.7. Calculate the LTE of Crank-Nicolson when h = k.

5.3. The Fourier Transform and the von Neumann Stability Test. Given
any univariate function f : R→ R for which the integral

(5.41)

∫ ∞
−∞
|f(x)| dx

is finite, we define its Fourier transform by the relation

(5.42) f̂(z) =

∫ ∞
−∞

f(x) exp(−ixz) dx, z ∈ R.

The Fourier transform is used in this course to understand stability properties,
solve some partial differential equations and calculate the local truncation errors
for finite difference methods. It can also be used to derive analytic values of certain
options, as well as providing several key numerical methods.

Proposition 5.7. (i) Let

(5.43) Taf(x) = f(x+ a), x ∈ R.
We say that Taf is the translate of f by a. Then

(5.44) T̂af(z) = exp(iaz)f̂(z), z ∈ R.
(ii) The Fourier transform of the derivative is given by

(5.45) f̂ ′(z) = izf̂(z), z ∈ R.
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Proof. (i)

T̂af(z) =

∫ ∞
−∞

Taf(x)e−ixz dx

=

∫ ∞
−∞

f(x+ a)e−ixz dx

=

∫ ∞
−∞

f(y)e−i(y−a)z dy

= eiaz f̂(z).

(ii) Integrating by parts and using the fact that limx→±∞ f(x) = 0, which is
a consequence of (5.41), we obtain

f̂ ′(z) =

∫ ∞
−∞

f ′(x)e−ixz dx

=
[
f(x)e−ixz

]x=∞
x=−∞ −

∫ ∞
−∞

f(x)
(
−ize−ixz

)
dx

= izf̂(z).

�

Exercise 5.8. We have f̂ (2)(z) = (iz)2f̂(z) = −z2f̂(z). Find f̂ (k)(z)

Many students will have seen some use of the Fourier transform to solve differ-
ential equations. It is also vitally important to finite difference operators.

Example 5.3. Let’s analyse the second order central difference operator using the
Fourier transform. Thus we take

g(x) =
f(x+ h)− 2f(x) + f(x− h)

h2
.

and observe that

ĝ(z) = h−2
(
eihz − 2 + e−ihz

)
f̂(z) = 2h−2 (cos(hz)− 1) f̂(z).

Now6

cos(hz) = 1− h2z2

2
+
h4z4

4!
− · · · ,

so that

ĝ(z) = 2h−2
(
−h

2z2

2
+
h4z4

4!
− · · ·

)
f̂(z)

= −z2f̂(z) +
h2z4

12
f̂(z) + · · ·

= f̂ (2)(z) + h2
f̂ (4)(z)

12
+ · · · .

Taking the inverse transform, we have computed the Taylor expansion of g:

g(x) = f (2)(x) + (1/12)h2f (4)(x) + · · · .

6Commit this Taylor expansion to memory if you don’t already know it!
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Of course, there’s no need to use the Fourier transform to analyse the second
order central difference operator, but we have to learn to walk before we can run!

We shall also need the Fourier transform for functions of more than one variable.
For any bivariate function f(x1, x2) that tends to zero sufficiently rapidly at infinity,
we define

(5.46) f̂(z1, z2) =

∫ ∞
−∞

∫ ∞
−∞

f(x1, x2)e−i(x1z1+x2z2) dx1dx2, z1, z2 ∈ R.

In fact, it’s more convenient to write this using a slightly different notation:

(5.47) f̂(z) =

∫
R2

f(x) exp(−ixT z) dx, z ∈ R2.

This is still a double integral, although only one integration sign is used. Similarly,
for a function f(x), x ∈ Rn, we define

(5.48) f̂(z) =

∫
Rn
f(x) exp(−ixT z) dx, z ∈ Rn.

Here

xT z =

n∑
k=1

xkzk, x, z ∈ Rn.

The multivariate version of Proposition 5.7 is as follows.

Proposition 5.8. (i) Let

(5.49) Taf(x) = f(x + a), x ∈ Rn.

We say that Taf is the translate of f by a. Then

(5.50) T̂af(z) = exp(iaT z)f̂(z), z ∈ Rn.

Further, if α1, . . . , αn are non-negative integers and |α| = α1 + · · · + αn,
then

(ii)

(5.51)
∂̂|α|f

∂xα1
1 ∂xα2

2 · · · ∂x
αn
n

(z) = (iz1)α1(iz2)α2 · · · (izn)αn f̂(z), z ∈ Rn.

Proof. The proof is not formally examinable, but very similar to the multivariate
result. �

5.4. Stability and the Fourier Transform. We can also use Fourier analysis to
avoid eigenanalysis when studying stability. We shall begin abstractly, but soon
apply the analysis to explicit and implicit Euler for the diffusion equation.

Suppose we have two sequences {uk}k∈Z and {vk}k∈Z related by

(5.52)
∑
k∈Z

bkvk =
∑
k∈Z

akuk.

In most applications, uk ≈ u(kh), for some underlying function, so we study the
associated functional equation

(5.53)
∑
k∈Z

bkv(x+ kh) =
∑
k∈Z

aku(x+ kh).



58 BRAD BAXTER

The advantage of widening our investigation is that we can use the Fourier transform
to study (5.53). Specifically, we have

(5.54) v̂(z)
∑
k∈Z

bke
ikhz = û(z)

∑
k∈Z

ake
ikhz,

or

(5.55) v̂(z) =

(
a(hz)

b(hz)

)
û(z) =: R(hz)û(z),

where

(5.56) a(w) =
∑
k∈Z

ake
ikw and b(w) =

∑
k∈Z

bke
ikw.

Example 5.4. For explicit Euler, we have

vk = µuk+1 + (1− 2µ)uk + µuk−1, k ∈ Z,
so that the associated functional equation is

v(x) = µu(x+ h) + (1− 2µ)u(x) + µu(x− h), x ∈ R,
whose Fourier transform is given by

v̂(z) =
(
µeihz + 1− 2µ+ µe−ihz

)
û(z)

= (1− 2µ(1− cos(hz))) û(z)

=
(
1− 4µ sin2(hz/2)

)
û(z).(5.57)

Thus v̂(z) = r(hz)û(z), where r(w) = 1− 4µ sin2(w/2).

When we advance forwards n steps in time using explicit Euler, we obtain in
Fourier transform space

(5.58) ûn(z) = r(hz)ûn−1(z) = (r(hz))
2
ûn−2(z) = · · · = (r(hz))

n
û0(z).

Thus, if |r(w)| < 1, for all w ∈ R,then limn→∞ ûn(z) = 0, for all z ∈ R. However, if
|r(hz0)| > 1, then, by continuity, |r(hz)| > 1 for z sufficiently close to z0. Further,
since r(hz) is periodic, with period π/h, we deduce that |r(hz)| > 1 on π/h-integer
shifts of an interval centred at z0. Hence limn→∞ ûn(z) =∞. Further, there is an
intimate connection between u and û in the following sense.

Theorem 5.9 (Parseval’s Theorem). If f : R→ R is continuous, then

(5.59)

∫ ∞
−∞
|f(x)|2 dx =

1

2π

∫ ∞
−∞
|f̂(z)|2 dz.

Proof. Not examinable. �

Hence limn→∞ ûn(z) =∞ implies

lim
n→∞

∫ ∞
−∞
|un(x)|2 dx =∞.

this motivated the brilliant Hungarian mathematician John von Neumann to anal-
yse the stability of finite difference operators via the Fourier transform.

Definition 5.3. If |r(hz)| ≤ 1, for all z ∈ R, then we say that the finite difference
operator is von Neumann stable, or Fourier stable.

Theorem 5.10. Explicit Euler is von Neumann stable if and only if µ ≤ 1/2, while
implicit Euler is von Neumann stable for all µ > 0.



MATHEMATICAL AND NUMERICAL METHODS 59

Proof. For explicit Euler, we have already seen that

ûn(z) = r(hz)ûn−1(z),

where

r(w) = 1− 4µ sin2(w/2).

Thus |r(w)| ≤ 1, for all w ∈ R, if and only if |1− 4µ| ≤ 1, i.e. µ ≤ 1/2.
For implicit Euler, we have the associated functional equation

un+1(x) = un(x) + µ (un+1(x+ h)− 2un+1(x) + un+1(x− h)) , x ∈ R.
Hence (

−µeihz + (1 + 2µ)− µe−ihz
)
ûn+1(z) = ûn(z), z ∈ R,

or (
1 + 4µ sin2(hz/2)

)
ûn+1(z) = ûn(z), z ∈ R.

Therefore

̂un+1(z) =
1

1 + 4µ sin2(hz/2)
ûn(z) =: r(hz)ûn(z), z ∈ R,

and 0 ≤ r(hz) ≤ 1, for all z ∈ R. �

Exercise 5.9. Prove that Crank–Nicolson (5.37) is von Neumann stable for all
µ ≥ 0.

5.5. Option Pricing via the Fourier transform. The Fourier transform can
also be used to calculate solutions of the Black–Scholes equation, and its variants,
and this approach provides a powerful analytic and numerical technique.

We begin with the Black–Scholes equation in “log-space”:

(5.60) 0 = −rg + (r − σ2/2)gx + (σ2/2)gxx + gt,

where the asset price S = ex and subscripts denote partial derivatives. We now let
ĝ(z, t) denote the Fourier transform of the option price g(x, t) at time t, that is,

(5.61) ĝ(z, t) =

∫ ∞
−∞

g(x, t)e−ixz dx, z ∈ R,

The Fourier transform of (5.60) is therefore given by

(5.62) 0 = −rĝ + iz(r − σ2/2)ĝ − 1

2
σ2z2ĝ + ĝt.

In other words, we have, for each fixed z ∈ R, the ordinary differential equation

(5.63) ĝt = −
(
−r + iz(r − σ2/2)− 1

2
σ2z2

)
ĝ, ,

with solution

(5.64) ĝ(z, t) = ĝ(z, t0)e
−
(
−r+iz(r−σ2/2)− 1

2σ
2z2
)
(t−t0)

.

When pricing a European option, we know the option’s expiry value g(x, T ) and
wish to calculate its initial price g(x, 0). Substituting t = T and t0 = 0 in (5.64),
we therefore obtain

(5.65) ĝ(z, 0) = e

(
−r+iz(r−σ2/2)− 1

2σ
2z2
)
T
ĝ(z, T ).
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In order to apply this, we shall need to know the Fourier transform of a Gaussian.

Proposition 5.11. Let G(x) = exp(−λ‖x‖2), for x ∈ Rd, where λ is a positive
constant. Then its Fourier transform is the Gaussian

(5.66) Ĝ(z) = (π/λ)d/2 exp(−‖z‖2/(4λ)), z ∈ Rd.

Proof. It’s usual to derive this result via contour integration, but here is a neat
proof via Itô’s lemma and Brownian motion. Let c ∈ C be any complex number
and define the stochastic process Xt = exp(cWt), for t ≥ 0. Then a straightforward
application of Itô’s lemma implies the relation

dXt = Xt

(
cdWt + (c2/2)dt

)
.

Taking expectations and defining m(t) = EXt, we obtain the differential equation
m′(t) = (c2/2)m(t), whence m(t) = exp(c2t/2). In other words,

EecWt = ec
2t/2,

which implies, on recalling that Wt ∼ N(0, t) and setting α = ct1/2,

EeαZ = eα
2/2,

for any complex number α ∈ C.
�

Corollary 5.12. The Fourier transform of the univariate Gaussian probability
density function

p(x) = (2πσ2)−1/2e−x
2/(2σ2), x ∈ R,

is

p̂(z) = e−σ
2z2/2, z ∈ R.

Proof. We simply set λ = 1/(2σ2) in Proposition 5.11. �

Exercise 5.10. Calculate the Fourier transform of the multivariate Gaussian prob-
ability density function

p(x) = (2πσ2)−d/2e−‖x‖
2/(2σ2),x ∈ Rd.

The cumulative distribution function (CDF) for the Gaussian probability density
N(0, σ2) is given by

(5.67) Φσ2(x) =

∫ x

−∞
(2πσ2)−1/2e−y

2/(2σ2) dy, x ∈ R.

Thus the fundamental theorem of calculus implies that

Φ′σ2(x) = (2πσ2)−1/2e−x
2/(2σ2).

Exercise 5.11. Calculate the price of the option whose expiry price is given by

f(S(T ), T ) =

{
1 if a ≤ S(T ) ≤ b,
0 otherwise.

In other words, this option is simply a bet that pays £1 if the final asset price lies
in the interval [a, b].
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5.6. Fourier Transform Conventions. There are several essentially identical
Fourier conventions in common use, but their minor differences are often confusing.
The most general definition is

(5.68) f̂(z) = A

∫ ∞
−∞

f(x)eiCxz dx,

where A and C are nonzero real constants. The Fourier Inversion Theorem then
takes the form

(5.69) f(x) =
A−1C

2π

∫ sign(C)∞

− sign(C)∞
f̂(z)e−iCxz dx,

where

sign(C) =

{
1 C > 0,

−1 C < 0.

Example 5.5. The following four cases are probably the most commonly encoun-
tered.

(i) C = −1, A = 1:{
f̂(z) =

∫∞
−∞ f(x)e−ixz dx

f(x) = −1
2π

∫ −∞
+∞ f̂(z)eixz dz = 1

2π

∫∞
−∞ f̂(z)eixz dz.

(ii) C = 2π, A = 1: {
f̂(z) =

∫∞
−∞ f(x)e2πixz dx

f(x) =
∫∞
−∞ f̂(z)e−2πixz dz.

(iii) C = 1, A = 1/
√

2π:{
f̂(z) = 1√

2π

∫∞
−∞ f(x)eixz dx

f(x) = 1√
2π

∫∞
−∞ f̂(z)e−ixz dz.

(iv) C = 1, A = 1: {
f̂(z) =

∫∞
−∞ f(x)eixz dx

f(x) = 1
2π

∫∞
−∞ f̂(z)e−ixz dz.

It’s not hard to show that

(5.70) T̂af(z) = e−iaCz f̂(z)

and

(5.71) f̂ ′(z) = −iCzf̂(z),

where Taf(x) = f(x+ a), for any a ∈ C.

Example 5.6. For the same four examples given earlier, we obtain the following
shifting and differentiation formulae.

(i) C = −1, A = 1:

T̂af(z) = eiaz f̂(z), f̂ ′(z) = izf̂(z).

(ii) C = 2π, A = 1:

T̂af(z) = e−2πiaz f̂(z), f̂ ′(z) = −2πizf̂(z).
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(iii) C = 1, A = 1/
√

2π:

T̂af(z) = e−iaz f̂(z), f̂ ′(z) = −izf̂(z).

(iv) C = 1, A = 1:

T̂af(z) = e−iaz f̂(z), f̂ ′(z) = −izf̂(z).

Which, then, should we choose? It’s entirely arbitrary but, once made, the choice
is likely to be permanent, since changing convention greatly increases the chance
of algebraic errors. I have chosen C = −1 and A = 1 in lectures, mainly because
it’s probably the most common choice in applied mathematics. It was also the
convention chosen by my undergraduate lecturers at Cambridge, so the real reason
is probably habit!



MATHEMATICAL AND NUMERICAL METHODS 63

6. Mathematical Background Material

I’ve collected here a miscellany of mathematical methods used (or reviewed)
during the course.

6.1. Probability Theory. You may find my more extensive notes on Probability
Theory useful:

http://econ109.econ.bbk.ac.uk/brad/Probability_Course/probnotes.pdf

A random variable X is said to have (continuous) probability density function
p(t) if

(6.1) P(a < X < b) =

∫ b

a

p(t) dt.

We shall assume that p(t) is a continuous function (no jumps in value). In partic-
ular, we have

1 = P(X ∈ R) =

∫ ∞
−∞

p(t) dt.

Further, because

0 ≤ P(a < X < a+ δa) =

∫ a+δa

a

p(t) dt ≈ p(a)δa,

for small δa, we conclude that p(t) ≥ 0, for all t ≥ 0. In other words, a probability
density function is simply a non-negative function p(t) whose integral is one. Here
are two fundamental examples.

Example 6.1. The Gaussian probability density function, with mean µ and vari-
ance σ2, is defined by

(6.2) p(t) = (2πσ2)−1/2 exp

(
− (t− µ)2

2σ2

)
.

We say that the Gaussian is normalized if µ = 0 and σ = 1.

To prove that this is truly a probability density function, we require the impor-
tant identity

(6.3)

∫ ∞
−∞

e−Cx
2

dx =
√
π/C,

which is valid for any C > 0. [In fact it’s valid for any complex number C whose
real part is positive.]

Example 6.2. The Cauchy probability density function is defined by

(6.4) p(t) =
1

π(1 + t2)
.

This distribution might also be called the Mad Machine Gunner distribution; imag-
ine our killer sitting at the origin of the (x, y) plane. He7 is firing (at a constant
rate) at the infinite line y = 1, his angle θ (with the x-axis) of fire being uniformly
distributed in the interval (0, π). Then the bullets have the Cauchy density.

7The sexism is quite accurate, since males produce vastly more violent psychopaths than
females.
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If you draw some graphs of these probability densities, you should find that,
for small σ, the graph is concentrated around the value µ. For large σ, the graph
is rather flat. There are two important definitions that capture this behaviour
mathematically.

Definition 6.1. The mean, or expected value, of a random variable X with p.d.f
p(t) is defined by

(6.5) EX :=

∫ ∞
−∞

tp(t) dt.

It’s very common to write µ instead EX when no ambiguity can arise. Its variance
Var X is given by

(6.6) Var X :=

∫ ∞
−∞

(t− µ)
2
p(t) dt.

Exercise 6.1. Show that the Gaussian p.d.f. really does have mean µ and variance
σ2.

Exercise 6.2. What happens when we try to determine the mean and variance of
the Cauchy probability density defined in Example 6.4?

Exercise 6.3. Prove that Var X = E(X2)− (EX)2.

We shall frequently have to calculate the expected value of functions of random
variables.

Theorem 6.1. If ∫ ∞
−∞
|f(t)|p(t) dt

is finite, then

(6.7) E (f(X)) =

∫ ∞
−∞

f(t)p(t) dt.

Example 6.3. Let X denote a normalized Gaussian random variable. We shall
show that

(6.8) EeλX = eλ
2/2,

Indeed, applying (6.7), we have

EeλX =

∫ ∞
−∞

eλt(2π)−1/2e−t
2/2 dt = (2π)−1/2

∫ ∞
−∞

e−
1
2 (t

2−2λt) dt.

The trick now is to complete the square in the exponent, that is,

t2 − 2λt = (t− λ)2 − λ2.

Thus

EeλX = (2π)−1/2
∫ ∞
−∞

exp

(
−1

2
([t− λ]2 − λ2)

)
dt = eλ

2/2.

Exercise 6.4. Let W be any Gaussian random variable with mean zero. Prove
that

(6.9) E
(
eW
)

= e
1
2E(W 2).
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6.2. Differential Equations. A differential equation, or ordinary differential equa-
tion (ODE), is simply a functional relationship specifying first, or higher derivatives,
of a function; the order of the equation is just the degree of its highest derivatives.
For example,

y′(t) = 4t3 + y(t)2

is a univariate first-order differential equation, whilst or

y′(t) = Ay(t),

where y(t) ∈ Rd and A ∈ Rd×d is a first-order differential equation in d-variables. A
tiny class of differential equations can be solved analytically, but numerical methods
are required for the vast majority. The numerical analysis of differential equations
has been one of the most active areas of research in computational mathematics
since the 1960s and excellent free software exists. It is extremely unlikely that any
individual can better this software without years of effort and scholarship, so you
should use this software for any practical problem. You can find lots of information
at www.netlib.org and www.nr.org. This section contains the minimum relevant
theory required to make use of this software.

You should commit to memory one crucial first-order ODE:

Proposition 6.2. The general solution to

(6.10) y′(t) = λy(t), t ∈ R,
where λ can be any complex number, is given by

(6.11) y(t) = c exp(λt), t ∈ R.
Here c ∈ C is a constant. Note that c = y(0), so we can also write the equation as
y(t) = y(0) exp(λt).

Proof. If we multiply the equation y′ − λy = 0 by the integrating factor exp(−λt),
then we obtain

0 =
d

dt
(y(t) exp(−λt)) ,

that is
y(t) exp(−λt) = c,

for all t ∈ R. �

In fact, there’s a useful slogan for ODEs: try an exponential exp(λt) or use
reliable numerical software.

Example 6.4. If we try y(t) = exp(λt) as a trial solution in

y′′ + 2y′ − 3y = 0,

then we obtain
0 = exp(λt)

(
λ2 + 2λ− 3

)
.

Since exp(λt) 6= 0, for any t, we deduce the associated equation

λ2 + 2λ− 3 = 0.

The roots of this quadratic are 1 and −3, which is left as an easy exercise. Now
this ODE is linear: any linear combination of solutions is still a solution. Thus we
have a general family of solutions

α exp(t) + β exp(−3t),
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for any complex numbers α and β. We need two pieces of information to solve for
these constants, such as y(t1) and y(t2), or, more usually, y(t1) and y′(t1). In fact
this is the general solution of the equation.

In fact, we can always change an mth order equation is one variable into an
equivalent first order equation in m variables, a technique that I shall call vector-
izing (some books prefer the more pompous phrase “reduction of order”). Most
ODE software packages are designed for first order systems, so vectorizing has both
practical and theoretical importance.

For example, given

y′′(t) = sin(t) + (y′(t))
3 − 2 (y(t))

2
,

we introduce the vector function

z(t) =

(
y(t)
y′(t)

)
,

Then

z′(t) =

(
y′

y′′

)
=

 y′

sin(t) + (y′)
3 − 2 (y)

2

 .

In other words, writing

z(t) =

(
z1(t)
z2(t)

)
≡
(
y(t)
y′(t)

)
,

we have derived

z′ =

(
z2

sin(t) + z32 − 2z21

)
,

which we can write as
z′ = f(z, t).

Exercise 6.5. You probably won’t need to consider ODEs of order exceeding two
very often in finance, but the same trick works. Given

y(n)(t) =

n−1∑
k=0

ak(t)y(k)(t),

we define the vector function z(t) ∈ Rn−1 by

zk(t) = y(k)(t), k = 0, 1, . . . , n− 1.

Then z′(t) = Mz(t). Find the matrix M .

6.3. Recurrence Relations. In its most general form, a recurrence relation is
simply a sequence of vectors v(1),v(2), . . . for which some functional relation gener-
ates v(n) given the earlier iterates v(1), . . . ,v(n−1). At this level of generality, very
little more can be said. However, the theory of linear recurrence relations is simple
and very similar to the techniques of differential equations.

The first order linear recurrence relation is simply the sequence {an : n =
0, 1, . . .} of complex numbers defined by

an = can−1.

Thus
an = can−1 = c2an−2 = c3an−3 = · · · = cna0

and the solution is complete.
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The second order linear recurrence relation is slightly more demanding. Here

an+1 + pan + qan−1 = 0

and, inspired by the solution for the first order recurrence, we try an = cn, for some
c 6= 0. Then

0 = cn−1
(
c2 + pc+ q

)
,

or
0 = c2 + pc+ q.

If this has two distinct roots c1 and c2, then one possible solution to the second
order recurrence is

un = p1c
n
1 + p2c

n
2 ,

for constants p1 and p2. However, is this the full set of solutions? What happens if
the quadratic has only one root?

Proposition 6.3. Let {an : n ∈ Z} be the sequence of complex numbers satisfying
the recurrence relation

an+1 + pan + qan−1 = 0, n ∈ Z.
If α1 and α2 are the roots of the associated quadratic

t2 + pt+ q = 0,

then the general solution is
an = c1α

n
1 + c2α

n
2

when α1 6= α2. If α1 = α2, then the general solution is

an = (v1n+ v2)αn1 .

Proof. The same vectorizing trick used to change second order differential equations
in one variable into first order differential equations in two variables can also be
used here. We define a new sequence {b(n) : n ∈ Z} by

b(n) =

(
an−1
an

)
.

Thus

b(n) =

(
an−1

−pan−1 − qan−2

)
,

that is,

(6.12) b(n) = Ab(n−1),

where

(6.13) A =

(
0 1
−q −p

)
.

This first order recurrence has the simple solution

(6.14) b(n) = Anb(0),

so our analytic solution reduces to calculation of the matrix power An. Now let
us begin with the case when the eigenvalues λ1 and λ2 are distinct. Then the
corresponding eigenvectors w(1) and w(2) are linearly independent. Hence we can
write our initial vector b(0) as a unique linear combination of these eigenvectors:

b(0) = b1w
(1) + b2w

(2).
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Thus
b(n) = b1A

nw(1) + b2A
nw(2) = b1λ

n
1w(1) + b1λ

n
2w(2).

Looking at the second component of the vector, we obtain

an = c1λ
n
1 + c2λ

n
2 .

Now the eigenvalues of A are the roots of the quadratic equation

det (A− λI) = det

(
−λ 1
−q −p− λ

)
,

in other words the roots of the quadratic

λ2 + pλ+ q = 0.

Thus the associated equation is precisely the characteristic equation of the matrix
A in the vectorized problem. Hence an = c1α

n
1 + c2α

n
2 .

We only need this case in the course, but I shall lead you through a careful
analysis of the case of coincident roots. It’s a good exercise for your matrix skills.

First note that the roots are coincident if and only if p2 = 4q, in which case

A =

(
0 1

−p2/4 −p

)
,

and the eigenvalue is −p/2. In fact, subsequent algebra is simplified if we substitute
α = −p/2, obtaining

A =

(
0 1
−α2 2α

)
.

The remainder of the proof is left as the following exercise. �

Exercise 6.6. Show that
A = αI + uvT ,

where

u =

(
1
α

)
, v =

(
−α
1

)
and note that vTu = 0. Show also that

A2 = α2I + 2αuvT , A3 = α3I + 3α2uvT ,

and use proof by induction to demonstrate that

An = αnI + nαn−1uvT .

Hence find the general solution for an.
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6.4. Mortgages – a once exotic instrument. The objective of this section is
to illustrate some of the above techniques for analysing difference and differential
equations via mortgage pricing. You are presumably all too familiar with a repay-
ment mortgage: we borrow a large sum M for a fairly large slice T of our lifespan,
repaying capital and interest using N regular payments. The interest rate is as-
sumed to be constant and it’s a secured loan: our homes are forfeit on default. How
do we calculate our repayments?

Let h = T/N be the interval between payments, let Dh : [0, T ]→ R be our debt
as a function of time, and let A(h) be our payment. We shall assume that our
initial debt is Dh(0) = 1, because we can always multiply by the true initial cost
M of our house after the calculation. Thus D must satisfy the equations

(6.15) Dh(0) = 1, Dh(T ) = 0 and Dh(`h) = Dh((`− 1)h)erh −A(h).

We see that Dh(h) = erh −A(h), while

Dh(2h) = Dh(h)erh −A(h) = e2rh −A(h)
(
1 + erh

)
.

The pattern is now fairly obvious:

(6.16) Dh(`h) = e`rh −A(h)

`−1∑
k=0

ekrh,

and summing the geometric series8

(6.17) Dh(`h) = e`rh −A(h)

(
e`rh − 1

erh − 1

)
.

In order to achieve D(T ) = 0, we choose

(6.18) A(h) =
erh − 1

1− e−rT
.

Exercise 6.7. What happens if T →∞?

Exercise 6.8. Prove that

(6.19) Dh(`h) =
1− e−r(T−`h)

1− e−rT
.

Thus, if t = `h is constant (so we increase ` as we reduce h), then

(6.20) Dh(t) =
1− e−r(T−t)

1− e−rT
.

Almost all mortgages are repaid by 300 monthly payments for 25 years. However,
until recently, many mortgages calculated interest yearly, which means that we
choose h = 1 in Exercise 6.7 and then divide A(1) by 12 to obtain the monthly
payment.

Exercise 6.9. Calculate the monthly repayment A(1) when M = 105, T = 25,
r = 0.05 and h = 1. Now repeat the calculation using h = 1/12. Interpret your
result.

8Many students forget the simple formula. If S = 1 + a + a2 + · · · + am−2 + am−1, then
aS = a + a2 + · · · + am−1 + am. Subtracting these expressions implies (a − 1)S = am − 1, all

other terms cancelling.
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In principle, there’s no reason why our repayment could not be continuous,
with interest being recalculated on our constantly decreasing debt. For continuous
repayment, our debt D : [0, T ]→ R satisfies the relations

(6.21) D(0) = 1, D(T ) = 0 and D(t+ h) = D(t)erh − hA.

Exercise 6.10. Prove that

(6.22) D′(t)− rD(t) = −A,
where, in particular, you should prove that (6.21) implies the differentiability of
D(t). Solve this differential equation using the integrating factor e−rt. You should
find the solution

(6.23) D(t)e−rt − 1 = A

∫ t

0

(−e−rτ ) dτ = A

(
e−rt − 1

r

)
.

Hence show that

(6.24) A =
r

1− e−rT
and

(6.25) D(t) =
1− e−r(T−t)

1− e−rT
,

agreeing with (6.20), i.e. Dh(kh) = D(kh), for all k. Prove that limr→∞D(t) = 1
for 0 < t < T and interpret.

Observe that

(6.26)
A(h)

Ah
=
erh − 1

rh
≈ 1 + (rh/2),

so that continuous repayment is optimal for the borrower, but that the mortgage
provider is making a substantial profit. Greater competition has made yearly re-
calculations much rarer, and interest is often paid daily, i.e. h = 1/250, which is
rather close to continuous repayment.

Exercise 6.11. Construct graphs of D(t) for various values of r. Calculate the
time t0(r) at which half of the debt has been paid.

6.5. Pricing Mortgages via lack of arbitrage. There is a very slick arbi-
trage argument to deduce the continuous repayment mortgage debt formula (6.25).
Specifically, the simple fact that D(t) is a deterministic financial instrument implies,
via arbitrage, that D(t) = a+b exp(rt), so we need only choose the constants a and
b to satisfy D(0) = 1 and D(T ) = 1, which imply a+ b = 1 and a+ b exp(rT ) = 0.
Solving these provides a = exp(rT )/(exp(rT )− 1) and b = −1/(exp(rT )− 1), and
equivalence to (6.25) is easily checked.
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7. Numerical Linear Algebra

I shall not include much explicitly here, because you have my longer lecture notes
on numerical linear algebra:

http://econ109.econ.bbk.ac.uk/brad/Methods/nabook.pdf

Please do revise the first long chapter of those notes if need to brush up on
matrix algebra.

You will also find my Matlab notes useful:

http://econ109.econ.bbk.ac.uk/brad/Methods/matlab_intro_notes.pdf

7.1. Orthogonal Matrices. Modern numerical linear algebra began with the com-
puter during the Second World War, its progress accelerating enormously as com-
puters became faster and more convenient in the 1960s. One of the most vital
conclusions of this research field is the enormous practical importance of matrices
which leave Euclidean length invariant. More formally:

Definition 7.1. We shall say that Q ∈ Rn×n is distance-preserving if ‖Qx‖ = ‖x‖,
for all x ∈ Rn.

The following simple result is very useful.

Lemma 7.1. Let M ∈ Rn×n be any symmetric matrix for which xTMx = 0, for
every x ∈ Rn. Then M is the zero matrix.

Proof. Let e1, e2, . . . , en ∈ Rn be the usual coordinate vectors. Then

Mjk = eTj Mek =
1

2
(ej + ek)

T
M (ej + ek) = 0, 1 ≤ j, k ≤ n.

�

Theorem 7.2. The matrix Q ∈ Rn is distance-preserving if and only if QTQ = I.

Proof. If QTQ = I, then

‖Qx‖2 = (Qx)T (Qx) = xTQTQx = xTx = ‖x‖2,
and Q is distance-preserving. Conversely, if ‖Qx‖2 = ‖x‖2, for all x ∈ Rn, then

xT
(
QTQ− I

)
x = 0, x ∈ Rn.

Since QTQ − I is a symmetric matrix, Lemma 7.1 implies QTQ − I = 0, i.e.
QTQ = I. �

The condition QTQ = I simply states that the columns of Q are orthonormal
vectors, that is, if the columns of Q are q1,q2, . . . ,qn, then ‖q1‖ = · · · = ‖qn‖ = 1
and qTj qk = 0 when j 6= k. For this reason, Q is also called an orthogonal matrix.
We shall let O(n) denote the set of all (real) n× n orthogonal matrices.

Exercise 7.1. Let Q ∈ O(n). Prove that Q−1 = QT . Further, prove that O(n) is
closed under matrix multiplication, that is, Q1Q2 ∈ O(n) when Q1, Q2 ∈ O(n). (In
other words, O(n) forms a group under matrix multiplication. This observation is
important, and O(n) is often called the Orthogonal Group.)
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