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1. INTRODUCTION

Market prices of liquidly traded financial assets depend on a huge
number of factors: macro-economic ones like interest rates, inflation,
balanced or unbalanced budgets, micro-economic and business-specific
factors like flexibility of labor markets, sale numbers, investments, and
also on more elusive psychological factors like the aggregate expec-
tations, illusions and disillusions of the various market players, both
professional ones (stock brokers, market makers, fund managers, banks
and institutional investors like pension funds), and humble private in-
vestors (like professors of finance, seeking to complement their modest
revenue). Although many people have dreamed (and still do dream) of
all-encompassing deterministic models for, for example, stock prices,
the number of potentially influencing factors seems to high to realis-
tically hope for such a thing. Already in the first half of the 20-th
century researchers began to realize that a statistical approach to fi-
nancial markets might be the best one. This started in fact right at
the beginning of the century, in 1900, when a young French mathe-
matician, Louis Bachelier, defended a thesis at the Sorbonne in Paris,
France, on a probabilistic model of the French bourse. In his thesis,
he developed the first mathematical model of what later came to be
known as ”Brownian motion”, with the specific aim of giving a sta-
tistical description of the prices of financial transactions on the Paris
stock market. The phrase with which he ended his thesis, that ”the
bourse, without knowing it, follows the laws of probability”, are still
a guiding principle of modern quantitative finance. Sadly, Bachelier’s
work was forgotten for about half a century, but was rediscovered in
the ’60’s (in part independently), and adapted by the economist Paul
Samuelson to give what is still the basic model of the price of a freely
traded security, the so-called exponential (or geometric) Brownian mo-
tion'. The role of probability in finance has since then only increased,

IPeter Bernstein’s book, Capital Ideas, gives a passionate account of the history of quantitative
finance in the 20-th century
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and quite sophisticated tools of modern mathematical probability, like
stochastic differential calculus, martingales and stopping times, in com-
bination with an array of equally sophisticated analytic and numerical
methods, are routinely used in the daily business of pricing and hedg-
ing and risk assessment of ever more sophisticated financial products.
The aim of the Mathematical methods Module of The MSC Financial
Engineering is to teach you the necessary mathematical background to
the modern theory of asset pricing. As such, it splits quite naturally
into two parts: part I, to be taught during the Autumn semester, will
concentrate on the necessary probability theory, while part II, to be
given in the Spring Semester (Birkbeck College does not acknowledge
the existence of Winter), will treat the numerical mathematics which
is necessary to get reliable numbers out of the various mathematical
models to which you will be exposed.

As already stated, Modern Quantitative Finance is founded upon
the concept of stochastic processes as the basic description of the price
of liquidly traded assets, in particular those which serve as underlying
for derivative instruments like options, futures, swaps and the like. To
price these derivatives it makes extensive use of what is called stochastic
calculus (also known s Ito calculus, in honor of its inventor). Stochas-
tic calculus can be thought of as the extension of ordinary differential
calculus to the case where the variables (both dependent and indepen-
dent) can be random, that is, have a value which depends on chance.
Recall that in ordinary calculus, as invented by Newton and Leibniz in
the 17-th century, one is interested in the behavior of functions of, in
the simplest case, one independent variable,

y=f(z), z€R.

In particular, it became important to know how the dependent variable
y changes if = changes by some small amount Az. The answer is given
by the derivative, f'(z), and by the relation:

Ay=Af(x) = flz+Az)— f(z)
~ f'(z)Ax,

where ~ means that we are neglecting higher powers of Az. If we
would not make such an approximation, we would have to include fur-
ther terms of the Taylor series (provided f is sufficiently many times
differentiable):

flx+ Ax) = f(z) =
aes &) (r
f’(x)A:U+—f2(! >(Ax)2+~~'+ / l{:'( )

It is convenient at this point to follow our 17-th and 18-th century
mathematical ancestors, and introduce what are called infinitesimals

(Az)F +... .
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dx (also called differentials). These are non-zero quantities whose
higher powers are equal to 0:

(dz)? = (dx)* =--- =0.
We then simply write f'(z) = (f(x + dz) — f(z))/dz, or :
df (z) = f'(x)dz.

The mathematical problem with infinitesimals is that they cannot be
real numbers, since no non-zero real number has its square equal to
0. For applied mathematics this is less of a problem, since simply
thinks of dr as a number which is so small that its square and higher
powers can safely be neglected. Physicists and engineers, unlike pure
mathematicians, never stopped to use infinitesimals anyhow. Moreover,
although mathematically not quite rigorous, if used with care, they
generally lead to correct results, and most trained mathematicians can
take any argument involving these infinitesimals and routinely convert
it in a mathematically flawless proof leading to the same final result.
What is more, infinitesimals can often be used to great effect to bring
out the basic intuition which underlies results which might otherwise
seem miraculous or obscure.

A case in point will be stochastic calculus, which aims to extend
the notion of derivative to the case where x and y above are replaced
by random variables (which we will systematically denote by capital
letters, like X and Y'). In this case the small changes dX will be
stochastic also, and we have to try and establish a relation between an
infinitesimal stochastic change of the independent (stochastic) variable
, dX, and the corresponding change in Y = f(X), f(X +dX) — f(X).
In fact, in most applications, such an X will be a specific instance
X = X;, of an infinite family of stochastic variables (X;);>0, where t
is a positive real (non-stochastic!) parameter interpreted as time; for
example, X; might represent the market price of a stock at the future
time ¢ > 0. The first thing to do then is to establish a relation between
dX,; and dt.

It turns out that, for a large class of stochastic processes called diffu-
sion processes , or Ito processes®, the right interpretation of dX, is that
of being a Gaussian random variable, with variance proportional to dt,
and therefore basically of size ~ v/dt. This means that (dX;)? will be
of size ~ dt, and can not be neglected anymore in the Taylor expansion
of f(X,+dX,). However, (dX;)? ~ (dt)*/? and this and higher powers
will still count as 0. We therefore expect a formula like :

A(X) = [(X)AX; + 3 f (X)X,

which is basically the statement of the famous [to lemma. Moreover,
(dX¢)? turns out not to be stochastic anymore, but basically a multiple

2in honor of K. Ito , the inventor of stochastic calculus
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of dt. The simplest stochastic process for which this program can be
carried out is the afore-mentioned Brownian motion (W;):>o, which will
in fact serve as the basic building block for more complicated processes.
Brownian motion turns out to be continuous, in the sense that if two
consecutive times s < t are very close to each other, the (chance-)
values Wy and W; will be very close also, with probability 1. Modern
Finance also uses other kinds of processes, which can suddenly jump
from one value to another between one instant of time and the next.
There is a similar basic building block in this case, which is called
the Poisson process, in which the jumps are of a fixed size and occur
at a fixed mean rate. In the much more complicated Lévy processes,
which have recently become quite popular in financial modelling, the
random variable can jump at different rates, and the jump sizes will
be stochastic also, instead of being fixed. For all of these processes,
people have established analogues of the Ito lemma mentioned above.
Although we will briefly look at these more complicated processes at
the end (time allowing), our emphasis will be on Brownian motion and
diffusion processes.

To properly set up all of this in a mathematically rigorous way one
is usually obliged to undergo (one is tempted to say, ”suffer”) an ex-
tensive preparation in abstract probability theory from what is called
the measure theoretic point of view. It turns out, however, that the
basic rules of Ito calculus can be explained, and motivated, using a
more intuitive, 19-th century, approach to probability, if one is willing
to accept infinitesimals. In the first part of these lectures we will follow
such an approach, with the aim of familiarizing you as quickly as possi-
ble with stochastic calculus, including processes with jumps. This will
probably take the first 4 to 5 weeks. Afterwards we will take a closer
look at the measure-theoretic foundations of modern probability, and
at least sketch how the material explained in the first half fits into the
new, more abstract framework, and can be used to make things rigor-
ous. I would like to stress, however, that mathematical rigor is not the
only aim there. An equally important point is that the measure the-
oretic approach to probability will allow us to formalize the concepts
like that of ”information contained in a rv or in a stochastic process up
till time ¢”, "martingale” and of "stopping times”. A martingale is a
stochastic process which can be thought of as a fair (gambling) game,
in the sense that at each point in time and given all information on
how the game as developed up till that point in time, one’s expected
gain when continuing to play still equals one’s expected loss (think of
repeatedly tossing a perfect coin). In a world without interest rates,
idealized stock prices should be martingales: this is one way of formu-
lating the so-called Efficient Market Hypothesis. Stopping times are
(future) random times at which you (or somebody else) will have taken
some action depending on the information that will have been made
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available at that future time. These are basic for, for example, under-
standing American style contracts, or any kind of situation in which
investors are free to chose their time of action. Finally, the abstract
approach will allow us to ”"change probabilities”, and clarify the con-
cept of risk neutral investors as (hypothetical) investors which accord
different probabilities to the same events as non-risk neutral ones, to
the effect that they do not require to be awarded for risk taking. All
the material to be presented in the second half of these lectures will be
fundamental for the Spring term of the Pricing module, where we will
explain pricing using the martingale method.

The end of an example, exercise, definition, theorem, lemma or
proposition will be indicated by a double Dollar sign, $$. Starred
remarks, examples, etc. mostly serve to put the material in a wider
mathematical context, and can be skipped without loss of continuity.
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2. REVIEW OF PROBABILITY THEORY (19-TH CENTURY STYLE)

2.1. Real random variables. In the first half of these lecturers we
will use an informal approach to probability theory, using ” probability”
and "random variables” as the, for the moment unexplained, primitive
notions of the theory (much like "points” and ”lines” in Geometry),
for which we will trust upon commonly shared intuition. In particular,
a real-valued random wvariable will be a quantity, whose exact value we
are not sure about, but of which we do know the various probabilities
that it will lie in any given interval of real numbers. That is, a real
random variable X will (at this stage of the theory) be characterized
by various probabilities, like

(1) P(a < X <) := (Probability that X will lie between a and b ),
which, by definition, will be a number between 0 and 1:
Pla < X <) €[0,1].

Here P stands for ‘probability’, and a and b can be any pair of real
numbers. We also allow a or b to be Foo, respectively. By convention,
X < ooand X < oo are trivially fulfilled statements, whose probability
is 1, and X < —oo is an empty statement, whose probability is 0. We
obviously want P(a < X < b) to be a number between 0 and 1.

Random variables will systematically be denoted by capital letters
X, Y, Z, etc., while ordinary real numbers will be denoted by lower case
letters x, y, z (this convention will later on be extended to vector valued
random variables and ordinary vectors). We will usually abbreviate
‘random variable’ by ‘rv’.

Easiest to understand are probably what are called discrete random
variables, those which effectively will only assume values in some dis-
crete (possibly infinite) set of real numbers {zy, xs, -, }. Such a dis-
crete rv X is completely determined by the various probabilities that
X actually equals one of these x;:

This clearly implies that
Pla< X <b) = Z Dy
j: aéflfjgb

In particular, this probability is 0 if none of the z;’s lie between a and
b.

The following is an example of a discrete rv which is basic in mathe-
matical finance:

Example 2.1. In the binomial option pricing model one supposes that
Sy, the price of the underlying security N days into the future, can
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take on the values
dNSO, dN_IUSO, s dN_jUjSO, tee ,UNS() (O S j S N),

So being today’s price and u and d two fixed positive real numbers (we
are assuming that in any one day, the stock’s price can only go up or
down by a fixed fraction, u respectively d). The probability that Sy is
any of these values then is defined as:

P (SN = dN_jujS()) = ( J;f ) pN_j(l - p)j.

Here p is the probability of a daily ‘up move’ (price moving from S to
wS in going from one day to the next), and 1 — p that of a ‘down move’

(S — dS). $$

Exercise 2.2. To have a well-defined discrete random variable, one

needs that
>opi=1
J

(Why?) Check that this is indeed the case for the binomial model
defined just now.
(Hint: Use a well-known formula from Algebra which is also called

‘binomial’.) $$
Another important example of a discrete rv is a Poisson rv:

Example 2.3. A Poisson rv N is a discrete rv, taking its values in
N={0,1,2,---}, for which

P(N =k)=pr = —¢

| >

$$

k
[

o

o0
Here A > 0 is a parameter. Here Y . p, = 1 since et = Z
k=0

One can go a long way using only discrete rv, but at some point it
becomes extremely convenient® to dispose of what are called continuous
random variables. These do not take on any particular real value with a
non-zero probability, but their probable values are, so to speak, spread
out over entire intervals, and often even over the whole of R. For such
a rv X we will have that P(X = a) = 0 for any a € R, but typically
Pla—e <X <a+¢)#0, for any € > 0. An very important example
of such a rv is what is called a standard normal random variable:

Example 2.4. X is called a standard normal random variable (one

also often uses the term ‘Gaussian rv’) if, for any a < b,

Pla < X <b) = be_“2/2d—x
7 V2

3and even essential: see the Central limit Theorem below!
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$$

The condition that P(—oco < X < oo) follows from the classical inte-
gral:

/ e 2y = V2

see any reasonable calculus textbook.

Standard normal rvs are a sort of ‘universal’ random variables in
probabilistic modelling, for reasons which will become clair when we
will discuss the Central Limit Theorem below.

An economical way of specifying all probabilities associated to a rv
is by defining what is called the cumulative distribution function:

Definition 2.5. The cumulative distribution function or cdf (often also
called the probability distribution function, or simple the distribution
function) of a rv X is the function Fy : R — [0, 1] defined by:

(3) Fx(z) = P(X < ).

Example 2.6. The cdf of a discrete rv defined by (2) is:

Fx(z)= > p;

Jjipj<w

Observe that Fx jumps by an amount of p; at the points a; (draw a
graph!). $$

From Fx we can find the other probabilities, like for example
Pla < X <b) = Fx(b) — Fx(a).

We list the properties which characterize a cdf Fx:

e 'x(z) » 0as z — —oo and Fx(z) — 1 as x — oo(since the
probability that X will take some real value is 1).

o [Fx is increasing: if x1 < x9 then Fy(x1) < Fx(xg) (since X <
xq will imply X < x5).

e [Fx is what is called right continuous: lgm . Fx(z+¢) = Fx(x),
e>0,e—

for all z € R.

*Remark 2.7. The mathematical reason for this third property is per-
haps not yet very clear at this point; the right continuity is in fact
connected with the fact that we have a <-sign in (3); if we would have
defined F'x with a <-sign, we would have had left-continuity. For the
moment one can just consider this third condition as a rule for what
to do in points where F'x jumps. We note in this connection that it is
a general mathematical result that an increasing function like F'x can
only have jump discontinuities. $3



MATHEMATICAL METHODS I MSC FINANCIAL ENGINEERING 9

Conversely, any function F' : R — [0, 1] with the above three prop-
erties will define a rv X by taking F' as its cdf, that is, by specifying
that

P(X <z) = F(x),
by definition. Equivalently, F'y = F.

An important class of rv is those having a probability density func-
tion:

Definition 2.8. A rv X is said to have a probability density function
of pdf if its cdf is of the form:

Fx(o)= [ flads,

for some (integrable) function f : R — R. This function f is (es-

sentially?) unique, and we write f = fx, to stress the dependence on
X.
$$

If X has a pdf, Fx is continuous, and for reasonable (say, continuous)
f, Fx will also be differentiable, with derivative

Fy(z) = f().
A standard normal variable has pdf

6722/2

o
Discrete random variables, such as Poisson rvs, do not have a pdf: since
their cdf have jumps, and are therefore not continuous.

*Remark 2.9. One can construct very curious cdf’s which are contin-
uous everywhere, have derivatives in almost alP their points, but which
do not have a pdf. If this derivative is equal to 0 almost everywhere,
such a cdf (and its associated rv) is called totally singular. Note that
the condition of being continuous prevents such a cdf to have jumps;
in particular, P(X = a) will still be 0, for any a € R. and we are still
far from having the cdf of a discrete rv. $$

A function f = f(z) will be the pdf of a random variable X iff® the

T

function F(z) = / f(y)dy has the properties of a cdf. This leads to

the following charggterizing properties of a pdf:
e f(x) > 0 everywhere (corresponding to Fx being increasing).

e might for example change f in a finite number of points without changing the integral

5

discussing measure theoretic probability
6

a term which has to be understood in a certain technical sense, which we’ll explain when

a very usefull abbreviation, standing for‘if and only if’
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e¢]
. / f(z)dx = 1. (corresponding to Fx(z) — 1 as © — oo or,

equivalently, to the total probability having to sum to 1 ).

Continuity, and therefore right continuity, is automatic for functions
F(z) which can be written as integrals.

Random variables X having a pdf are the easiest to work with. Al-
though the probability that such an X will take on precisely the value
x € R is equal to 0 for any real x, there is a useful alternative. Let dx
be an (calculus-style) infinitesimal:

dr #0, (dr)* = (dx)> =---=0.

(Such infinitesimals do not really exist, but we think of them as num-
bers which are so small, that their squares may be safely neglected
in any computation. An operative definition, in a computing context,
might be to take dx so small that all the significant digits of its square
are equal to 0, within machine precision or within the precision which
is significant for the problem at hand.) We then think of fx(z)dz as
being the probability that X lies in the infinitesimally small interval
between x and x + dx:

P(X € [z,x + dz]) = fx(z)dx.
Often we will be quite sloppy in our notations, and simply write
P(X =2) = fx(2),
although, strictly speaking, the left hand side is O here ... .

To see how this works, consider the definition of the mean of a con-
tinuous rv X. The mean of a discrete rv is equal to the sum of the
possible values it can assume times the probability that it will take on

that value:
Z ajIP(X = CL]‘).
J

For a rv X having a pdf one would like to take the sum over all possible
x of x-P(X € [z, 2+ dx]). The continuous analogue of a sum being an
integral, this leads to the following definition: :

(4) E(X) = /Rxf(m)dm

More generally, and for similar reasons, when we consider functions
g(X) of such a random variable X, its mean is given by the very im-
portant formula:

(5) E(g(X)) = / o) (x)dr,

provided this integral has a sense and is finite. The formula is very
important because, typically in Finance, present prices, e.g. of options,
can be expressed as means and in 99% (or perhaps even 100 %) of the
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cases when you will be analytically evaluating such a price, you will
have to use (5).

Particular examples of (5) are of course the mean E(X) of X itself
(corresponding to g(x) = x) and, putting pux = XE(X), the variance
of X:

© Va0 =E((X — ) = [ (2= xS

corresponding to g(x) = (z — px)? and again assuming the integral is
finite. We often write
Var(X) = o%,

where ox = /Var(X) is the standard deviation; ox is a measure of
how much, in the mean, X differs from its mean, px"'.
A very useful computational rule is that

Var(X) = E(X? — (E(X))? (exercise!)

Higher moments are often also very useful in finance, in particular
the following two:

(7)  Skewness: s(X)=E <M> - /R (“’ _“)3f(x)dx

o3 o

(8) Kurtosis: x(X)=E (M) - /R (””‘“)4 f(z)dx

o o

Skewness is an indication of whether the pdf is tilted to the right or
to the left of it’s mean: if s(X) > 0, then X has a bigger probability
to have values bigger p than to have values smaller than p, and vice
versa. A big kurtosis is an indication that |X| can have large values
with relatively big probability. These quantities play an important role
in the econometric analysis of financial returns. The following example
computes them for the benchmark case of a normal rv with arbitrary
mean and variance.

Example 2.10. (General normal or Gaussian variables) A rv X is
said to be normally distributed with mean g and variance o2 if X has
probability density:

(9)

In this case we write

1
oV 2

o~ (e-m)?/20%

X ~ N(p,0?).

Tanother measure of this deviation could be something like E(|X — px|), but experience as
learned that quadratic expressions like variances are much easier to compute with
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The standard normal rv corresponds to 4 = 0 and ¢ = 1. One eas-
ily checks that this is a correct definition, since this function is non-
negative, and since its total probability is equal to 1:

1 2 2
—(@=w)*/20% 1. — 1
e T .
/oo vV 2mo?

(The easiest way to see this is by making the successive changes of
variables © — x 4+ p and * — ox to reduce to the case of a standard
normal variable.)

If z ~ N(u,0?), then it’s mean, variance, skewness and kurtosis are,
respectively:

mean: /xe_($_“)2/2"2d—$ = L,

vV 2mo? B
dx

variance /(x — p)2e @ 20 = 0%,

V2mo?

1 / 3 (z—u)2/202 dx
skewness — [ (z — e~ (=) /20 = 0 (by symmetr
i NG s — 0 (by sy y)
1 d
kurtosis — /(x — ,u)4e—(ff—u)2/202_x —
o 2mo?

(To do these integrals, first make a change of variables, as above, to
get rid of the p and the o.) $$

If X is any, not necessarily normally distributed, rv, one often com-
pares its kurtosis with that of a normal distributed rv having the same
variance. This leads to the concept of excess kurtosis:

(10) Fexe (X) = K(X) — 3.

If the excess kurtosis is positive, the pdf of X is interpreted to have more
probability mass in the tails, or fatter tails , than that of a comparable
normal distribution, with the same mean and variance as X.

“Example 2.11. Random variables do not need to have a well-defined
mean or variance: the following is a classical example, dating back to
the 1800’s, when it caused much controversy among the French prob-
abilists. A random variable X is said to be Cauchy, or have a Cauchy
distribution, if its pdf is given by:

1 1

7l+ 22
This gives rise to a well-defined rv, since

1/°° dz
- =,
T J_ oo 1+ 22

as one easily checks, using that a primitive of (1 + z?)~! is arctan z. Is
the mean of X well-defined? This is not quite clear: on the one hand
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one might argue that (forgetting momentarily about the 1/7 in front):

0o R
/ Y _dz= lim Y _dr =0,

o 1+ 22 R—oo J_pl+ux

by symmetry. On the other hand, if one takes the limit of the integrals
over asymmetric intervals expanding to the whole of R, the answer
comes out quite differently. For example:

2R T 1 -
: : 2
A Tre® = A s
i L1 1+ 4R?
= lim —log | ——
R—o0 2 & 1+R2
= log2 # 0!

(Here log stands for the natural logarithm, with basis e.)
What is going on here? Mathematically speaking,

/_Zf(x)dx_ lim /abf(a:)dx

a——00,b—00

will be well-defined, that is, will be independent of the way a and b

tend to Foo, if
R

lim |f(z)|dz < oo,
R—o0 R

(readers familiar with the Lebesgue integral will note that this is equiv-
alent with the Lebesgue integrability of |f| on R), and it is clear that
in our example,

" x|

. T 2\
A [, ToaE — A los( T ) = o

Even if one argues that the symmetric definition of the mean is natural,
since in our example the pdf is symmetric, and therefore puts pux =
E(X) = 0, one runs into problems with the variance, since it is clear
that, e.g.

R $2

dr = 0.

lim
R—oo _R 1+ x2

(Use integration by parts, or estimate the integral from below by, for
example, flR 2?/(1 + 2 dx > flR(l/Q)dx =(R-1)/2 — 00.)

The Cauchy distribution is a particular example of a more general
class of distributions called the Lévy stable distributions, which also
include the normal distribution (which actually is the only member
of this class having a finite variance), and to which we will (hopefully)
devote some time at the end of these lectures. Lévy stable distributions
have been proposed as more accurate models of financial asset returns
than the traditional normal distributions (following pioneering work
by B. Mandelbroit and E. Fama in the '60’s), but are more difficult to
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work with for a number of technical reasons, not the least of which is
their infinite variance. $$

*Remark 2.12. How to define the mean E(X) and, more generally
E(g(X)) if X is neither discrete nor has a probability density? This
is not quite so obvious, but it turns out that for reasonable functions
g = g(x) : R — R the following definition is a natural generalization of

(5):
1 B0 = gm Y o(2) (m () - me (£)),

j=—00

This formula is motivated by the classical construction of an integral
b

/ g(x)dx as limit of sums over rectangles filling in the surface under
a

the graph of g, as you may recall from your calculus course (indeed,
the latter corresponds formally to taking Fx(x) = z, although this is
not a pdf). We will denote the right hand side of 11) by :

(12) / g(x)dFx (),

with the understanding that if Fx is differentiable (and X has a pdf
F)/( = fX)7 then
dFx(r) = fx(x)dz,

so that we get (5) again. $$
*Exercise 2.13. Convince yourself that, if X is a discrete rv, taking
values in {ay, as, - - - } with probabilities py, ps, - - -, then for continuous
9,

(13) [ strirs =Y mata)

As special cases we re-obtain the classical formulas for the mean and
variance f a discrete rv:

E(X)=px = > pja;,
j=1

and
n

Var(X) =) (a; — px)’p;-
j=1
What about (13) when g has a jump in x = a; and is right-continuous

there? And what if it is left-continuous? (Take a; = 0, to simplify).
$$

Exercise 2.14. Compute the mean and variance of a Poisson random
variable. $$
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Exercise 2.15. Let X be a rv with pdf f = fx. Show that X? also
has a pdf, which is given by:
1
BN (f(Vz + f(=Vx)).

As an application, compute the pdf of X? when X is standard normal.
The result is called a Xé) or x2-distribution with one degree of freedom.

$3

Exercise 2.16. Let Z be a standard normal variable. Compute the
pdf of X = e ; this is called an log-normal distribution. Compute the
mean and variance of X. $$

Exercise 2.17. A Student t-distribution with v > 2 degrees of freedom
has a pdf of the form:

72 —v/2
ty = Cl/ 1 )
@)= (1455)
C, being a normalization constant which is put there to insure that
[ t,(x)dx = 1. Show that if X is Student, then its mean exists. Also

show that its variance exists iff v > 3, and its skewness and kurtosis
iff, respectively, v > 4, v > 5.

(Hint: Use that the integral / dx/x” is finite iff a > 1.) $$
1

2.2. Random Vectors and Families of Random Variables. Con-
sider a vector of real random variables (Xi, -+, Xxn). When can we say
to know such a random vector? Clearly, we must know the probability
distribution Fx, of each of the X; individually, but we need to know
more. For example, we would also want to know joint probabilities
such as the one that a; < X; < by while ay < X5 < by, and similarly
for three or more of the X;’s. In fact, all this information can be gotten
out of the joint distribution function,

(14)  Fx, .. xy(@1,--son) =P(Xy <21, Xy <29, Xy < zn),

the probability that, simultaneously, X; < z; and X5 < x4, etc. One
can show that one can get joint probabilities like:

(15) P<a1<X1§b17a2<X2§b2,"',CLNSXNSbN),

from (14), by algebraic manipulations, but we will leave this as an

exercise to the interested reader (the answer can be found in most books

on probability theory; try to work it out for, two variables (X7, X5)).
We will again mostly work with (X3,---, Xx)’s having a multi-

variate probability density, in the (obvious) sense that there is a func-

tion fx,.. xy : RY — Rsg such that

(16)

1 TN
Fyy o xy (21, s 2N) = / T / Ixi e xn (s yn)dys - - dyn.
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We then say that (Xi,---,Xy) has joint pdf fy, .. x,. Note that in
this case (15) simply equals

b1 by
/ fX1,---,XNdy1"'dyN7
a1 a

N

where, to simplify the formulas, we will often leave out the variables of
fx1, xxn- Note that the definition of a joint pdf implies that

8N
Ixiexo)(@1, 0 on) = mFxl,..-,XN(%, C L TN).

If (Xy,---,Xy) has joint pdf fx, .. x,, then the natural definition
of the expectation of a function g(Xi, -+, Xy) of the X3, -+, Xy is:

3:/"'/9(-7%“' s ON) X1 xy (T, o) day - a
R R

We will usually write this more briefly as:

Blo(X o X)) = [ ofvoxyda,
R

with dr = dxq - - - day.
In particular, we define the means p.x; and the covariances Cov(X;, X;)
by:

(18) MX]- == ]E(XJ) :/ /IL‘ijh.."XNdCC,
RN
and
Cov(X;, X;) = E((Xi — px,)(X; — px;))

(19) = /RN (zi — px ) (@5 — px;) [ o xp A

The following is the multi-variable generalization of a normal rv:

Example 2.18. (jointly normally distributed random vectors) Let V =
(Vij)1<ij<n be a non-singular symmetric N x N-matrix:

Vi, =V €R, det(V) # 0.

We say that (Xi,---,Xy) are jointly normally distributed with mean
w= (g1, ,un) and variance-covariance matriz V if their joint pdf
is equal to:

exp(—{x, V-1z)/2

(2m)N/2\/det(V)

(20) le,m,XN(xl?"' 71:1\7) -
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Here V™1 stands for the inverse of V applied to z = (z1,- - zy) € RY,
and (-,-) stands for the Euclidian inner product on R":
(z,y) = 21y1 + -+ TNYN-
(Often also written as x'y, where ! stands for ‘transpose’). $$
Remark 2.19. One can check that if
(le e 7XN) ~ N(ILL7V)’
then
E(X;) = s,
and
COV(Xi,Xj) = V;J

This can be verified directly by using a bit of linear algebra and multi-
variable calculus, by diagonalizing V using a suitable rotation of R,
and using the change of variables formula for multiple integrals, details
left to the interested reader. An easier and more natural way to deal
with multi-variate normals will be introduced in section 3.4 below. $$

From the joint distribution of (X, -+, Xy) we can re-construct
the single cdf’s of the X; by taking what are called the marginals of
Fx, ... x,- For example, since, trivially, any X; < oo, we can write:

Fx, (1) = P(X; <)
= P(X1§$17X2<OO,"',XN<OO)
= I xy(71,00, - ,00),
the second equality being true since the condition X; < oo is always

trivially satisfied, and where we’ve put:

Fx, .. xy(x1,00,---,00) = lim --- Um Fx, oy (T1, 92, Yn).
Ya—00  yn—00

This is called taking a marginal of the joint distribution Fx, .. x,. In
the case that (Xi,---, Xy) has a joint pdf,

FXl(ml) :/ / / lev"'yXN(ylf" ayN)dyQ"'dyN-

We can in particular differentiate w.r.t. x;, and find that X; also has
a pdf, given by:

le(SUl):/ / fX1,"',XN(CC1,y2,"‘,yN)dyzmdyN-

That is, we find the pdf of X; by integrating out all variables other
than z;. The analogous construction applies for any fx;.



18 RAYMOND BRUMMELHUIS

*Remark 2.20. We will forgo the general definition of E(g(X7,- -+, Xx)
when there is no density: we will at most need this when X --- | Xy are
independent (see the following section), in which case dF, ... x, can be
interpreted as a repeated integral with respect to dFx, (x1) - - - dFx, (xn).
We will return to this point when (and if) needed.

We will very soon need to go beyond finite vectors of random vari-
ables, and consider infinite families of these. Indeed, a continuous time
stochastic process is defined as a collection of random variables (X;):>o,
one for each positive t, the latter playing the role of time. How do we
specify such a stochastic process? This turns out to be a bit delicate,
in particular as to the question of when to identify two such stochas-
tic processes, but for the moment we will use the following working
definition:

Definition 2.21. (Stochastic processes, provisional working definition)
A continuous-time stochastic process is a collection of random vari-
ables, X;, one for each t > 0 such that, for any finite collection
of times {t1,t9, - ,tx} we know the joint probability distribution
Fx, - xiy :RY — [0,1] of (X4, ,Xiy) (N can be arbitrarily big,
here). $$

*Remark 2.22. The delicacy here resides in the fact that ¢ ranges over
a continuous set. Discrete time stochastic processes (X, )nen are less
problematic in the sense that these are completely determined by all
joint distributions FY, ... x,, for arbitrarily large N.

For continuous ¢ one usually includes a (left- or right) continuity
condition on what are called the sample trajectories t — X;. To prop-
erly define these latter we will need to turn to the measure theoretic
approach to probability in the second half of these lectures. $$

2.3. Independent Random Variables and Conditional Proba-
bilities. The concept of independent rv is basic in probability and
statistics. Let us consider a pair of random variables (X, Y") with joint
probability distribution Fly y.

Definition 2.23. (independent random variables.) Two rv X and Y
are independent if, for all z,y,

(21) Fxy(z,y) = Fx(z)Fy(y)
$3$

One easily checks that if (X,Y) has a joint pdf, then X and Y are
independent iff

(22) fxy(z,y) = fx(x)fy(y),
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where fx and fy are the marginal pdfs:

fX(x)—/_ fxy(z,y)dy, etc.

One easily shows from this that E(XY) = E(X)E(Y) (the double in-
tegral just becomes a product of two one-dimensional integrals). More
generally (and for the same reason) we have:

Proposition 2.24.
(23) X, Y independent = E(g(X)h(Y)) =E(g9(X))E(h(Y)).
for any two functions g = g(x) and h = h(y) for which these expecta-

tions are well-defined.

*Remark 2.25. Having the right hand side of (23) for a sufficiently
large class of functions g and h, for example for all bounded continuous
functions, is in fact equivalent to definition (2.23). $$

If we recall that covariance of two rv X and Y:
cov(X,Y) =E ((X — ux)(Y — py)),
where px = E(X) and py = E(Y) are the means, then (23) implies:
X, Y independent = cov(X,Y) = 0.

For jointly normal rvs there is a well-known converse, which we men-
tion without proof (the easiest proof uses the concept of characteristic
function of a random vector):

Proposition 2.26. If (X,Y) is jointly normally distributed, then
cov(X,Y) = 0 implies that X and Y are independent. $$

But ATTENTION: 2.26 is NOT true if X and Y are NOT jointly
normal: "having covariance 07 is in general much weaker than being
independent, as the following example shows:

Example 2.27. Let X ~ N(0,1) be a standard normal rv, and let
Y = X? —1. Then E(X) = E(Y) = 0 (the latter since E(X?) = 1, and

cov(X,Y) = E(XY)

= E(X(X*-1)
= E(X?) - E(X)
= 0,

since E(X) = E(X?®) = 0. So X and Y have 0 covariance. However,
they are not independent: intuitively this is clear, since Y is even a
function of X, and therefore as dependent on X as can be! Formally,
if we take g(x) = 2> — 1 and (x) = x, then

E (g(X)h(Y)) = E (X2 = 1)?) > 0,

contradicting independence, by proposition 2.24. $$
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Working a little harder, one can find a joint pdf fxy such that
Cov(X,Y) =0, and such that both its marginals are normal, but such
that X and Y are still not independent. This shows that one has to be
very careful on how to formulate (2.26): one cannot replace ”(X,Y)
normally distributed” by ”X and Y normally distributed”.

If we recall, for later use, the definition of the correlation coefficient:

cov(X,Y
(24) p(xy) = )
v/ Var(X)+/Var(X)
which is always a number between —1 and 1, then X and Y independent
implies that p(X,Y) = 0, but the converse is not true, except again for
Gaussian rv.

The previous considerations generalize naturally to N-tuples of ran-
dom variables: X7, -, Xy will be called independent iff

(25) Fy, o xy (@1, 2n) = Fx,(01) -+ Fxy(2n),

for any x1,--- ,zy) € RY, and we have the natural generalization of
(23), which we will leave as an exercise.

We next turn to the concept of conditional probability for pairs of
random variables. The discussion here will be limited to rvs having den-
sities. The general case needs a considerably more abstract approach,
and will be treated in the second half of these lectures.

Recall, form elementary probability theory, that the conditional prob-
ability of some event A happening, given that B has (or will have)
happened, is defined as

P(A and B )
P(B)

For X,Y two rv with probability densities fx and fy, one can therefore
compute the conditional probability of X being in [x,x + dx] given that
Y isin [y, y + dy] as:

P(X € (z,z+do)|Y € (y,y + dy))

P(X € (z,z +dx),y € (y,y + dy))

P(Y € (y,y + dy))
fxy (@, y)dedy

P(A|B) =

fy(y)dy

[xy(z,y)
2% = X5 Y 4
(26) fr(y) )
assuming of course that Fy(y) # 0. We will often simply write this as:

fxy(z,y)
P(X =z2|Y =y) = ——————,
( | ) fr(y)

forgetting about the dz, and read the left hand side as ”the probability
density of X, given that Y = y.”
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If X and Y are independent, (26) simplifies to:
(27) P(X = z|Y = y) = fx(z),

which corresponds to intuition: if X and Y are independent, the prob-
ability of 7 X taking on the value z” doesn’t depend on what value Y
has taken.

We record the following useful formula’s:

b pd
Pla< X <bandc<Y <d) = / / fxy(z,y)dzdy
b pd
= [ Bex=aly = y)pty)dody
(P

d
_ / (a < X <BY =y)fy(y) dy

Again, the concept of conditional probability density generalizes in a
natural way from pairs of random variables to arbitrarily many random
variables; only the notations get a bit more involved. For example,
consider an N-tuple of rvs X = (Xy,---, Xy), with joint pdf fx =
fxy. xy, and pick ak, 1 <k < N.Ifz = (21, -+ ,zx) € RY, we split
x as

T = ( l‘,, {L'”),

with
a' = (x1, -, x3) € RF,
and
2" = (Tpy1, - ,on) € RVTE,
Similarly, we write
X = (X', X"),
where
X' = (X, -, Xp),
and

X" = (Xk—i-lv T 7XN)-
We can then write, symbolically, that fx = fx/ x». The probability
density of X', given that X" = x” is then equal to:

B fX (l",x”)

fxn(a”)
where fx»(z") is the marginal distribution of X", obtained by integrat-
ing out the a’-variables:

fX” (x//) — ) fX (x/, x”)dl‘/

(28) P(X' =2'| X" =2")

R
= /"‘/thn-,XN(fla"' y Lkey Tht1, * ,$N)d$1"'d$k~
R R
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Conditional densities are very useful in defining stochastic processes.
For example, a so-called Markov processes can be specified by defining
the conditional probability densities:

PX;=z|Xs=y), 0<s<t,

together with the defining Markov property that, for any s; < --- <
sy <t,

]P(Xt - £K|X31 = 81, 'XSN = SN) = ]P(Xt = x|X3N = yN)

The last equation is a mathematical way of stating that ”the future only
depends on the past via the present”. The "transition probabilities”
P(X; = x| X, = y) will have to satisfy certain consistency conditions,
as we will see in the next chapter.

2.4. The Central Limit Theorem. In its simplest form, the central
limit theorem is concerned with sums of rv which are independent and
identically distributed (usually abbreviated as 7id). The latter means all
X, have the same probability distribution functions: Fx, = Fx, = - -
We also require that their mean and variance are finite:

W= / zfx,(z)dr < oo, 0% := / (x — p)? f(x)dr < oo;
note that since they are identically distributed, all X; will identical
mean and variance.

A short computation shows that the sums Sy = X; + -+ + X will
have mean Ny and variance No?, which both tend to infinity with N.
We will therefore consider the normalized sums:

oV’ N ’

which have mean 0 and variance 1. The central limit theorem states
that, for big N, these normalized sums will approximately be dis-
tributed according to the standard normal distribution, no matter what
cdf of the X; we started with, provided it was one having finite mean
and variance. The precise formulation is as follows:

N

R X cei - X — N

SN:Z 1+ + XN o
j=1

Theorem 2.28. (Central Limit Theorem or CLT): Let Xy, Xa, -+ be
a sequence of iid rvs having mean p and variance o®. Then, for any
real numbers a < b,

b
~ 2 dl’
]P><CL<S <b> R ——
N= - a \ 2T

as N — oo. $$
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We will not prove this theorem here. Historically, it was first proved
in the case when the X; were itd Bernouilli, meaning that X; could take
on two values, 1 and 0, say, with probabilities p and 1 —p. In this case,
Sy has a binomial distribution, and one could use Stirling’s formula

for the asymptotic behavior of the binomial coefficients ( JZ ) . This

was a quite involved computation and a much slicker proof and more
generally valid proof can be given using the concept of a characteristic
function, which is also the basis of one of the modern proofs.

For the sums themselves, we infer that for big N:

b
d
P (aa\/N + Npu < Sy < obV/N + Nu> ~ / 612/2%,
a T

or
(B-Np)/oVN dr
]P’(A<SN<B):/ i
(A=Np)/oVN V2r

The CLT explains why the normal distribution so often occurs in
probabilistic modelling. When we want to model a random phenom-
enon which can be regarded as the sum of a lot of small independent
but basically identically distributed random influences, the CLT sug-
gests that it is reasonable to take a normally distributed rv for this.
This is the basic intuition behind modelling financial asset returns by
Gaussian rvs, as in the standard Geometric Brownian Motion model
for stock-prices. One has to be careful, however: theorem 2.28 is for
arbitrary but fixed a and b, and basically only tellAs us something about
the behavior of the centre of the distribution of Sy. Indeed, empirical
work during the 90’s (and also much earlier) has shown that the actual
stock returns have fat-tailed distributions, in the sense that very large
or very small returns occur with much larger probabilities tan predicted
by the normal model.

In the next chapter, we will use the CLT to introduce Brownian
motion as a limit of a sequence of random walks, and from there go on
to introduce the Ito calculus.

Exercise 2.29. (moments of the normal distribution) Let Z ~ N(0,1)
be a standard normal distribution, and let

° 2 dx
my = E(Z" :/ T —
(Z") - or

be its n-th moment.

(a) Explain why all odd moments of Z are 0.



24 RAYMOND BRUMMELHUIS

(b)Show that the even moments are related by mo, = (2k — 1)may_o,
and deduce from this that

(int: integrate by parts.)
(c) Now consider the odd moments of the absolute value |Z| of Z:

E(|Z|2k+l) = m2k+1'

Show that as long as 2k — 1 > 0, Mo, = 2k Mox_1, and deduce from

this that:
2
mgk“ = Qkk"\/j
T
$$

Exercise 2.30. Show that if Z ~ N(0,0?), then 07'Z ~ N(0,1). Use
this and the previous exercise to compute the moments of Z and of

|Z]. $$
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3. Brownian Motion

3.1. Introducing Brownian motion. Brownian motion is a funda-
mental building block of modern quantitative finance. Indeed, the basic
model for financial asset prices assumes that the log-returns follow a
Brownian motion with drift. A convenient way to understand Brown-
ian motion is by introducing it as a limit of random walks with ever
smaller step sizes. We already encountered the random walk in the
statement of the CLT: given an infinite sequence (X);>¢ if iid random
variables, the sequence (S;,)p=12... of sums

(29) Sp=X1+-+Xn, n=1,2---,

is called a (general) random walk. To fix ideas, people often consider
the classical random walk in which X is a random variable which can
only take the values £1, with equal probabilities:

B 1 with probability 1/2
(30) X5 = { —1 with probability 1/2 .

Such rvs, with more generally P(X,;, = 1) = p for an arbitrary p €
[0,1], are called Bernouilli random variables. The random walk can,
somewhat whimsically, be thought of as the path of a drunkard, walking
along a long road, who randomly takes either one step forward or one
step backward at regularly spaced times n = 1,2,---. We will assume
(30), for concreteness, although this is by no means necessary: having
E(X;) =0 and Var(X;) = 1 suffices for what follows.
We already know that

E(S,) = 0, VaR (S,) = n.

We will now consider a sequence of re-scaled random walks (Sle))n:LQ,...,
one for each N € N, having ever smaller step sizes N~!/2 by replacing
X; by X;/ V/N. We also imagine these steps to take place at times
j/N instead of j. It is convenient to embed these random walks in
a sequence of continuous time processes (Wt(N))tzo, defined as follows:
for a fixed N, divide the real half-line R>q = {t : ¢ > 0} in intervals
[n/N,(n + 1)/N) of size 1/N. For any t > 0, we can find a unique
positive integer n such that

n—+1
N 9

<t<

=l

and we put
X+t X,
(31) w2 A
VN
This is fine if ¢ > 1/N, since then n > 1. If 0 < ¢ < 1/N, we simply
put Wt(N) := 0, by definition.
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One can think of Wt(N) as describing the return of an asset at time ¢,
with trading taking place at equally spaced discrete times 1/N,2/N, - - -
and price changes being limited so that returns can only jump by
+1/ V'N. (The reason for thinking of returns rather than prices them-
selves is because Wt(N) can be negative). Alternatively, a physicist
might think of some small particle immersed in a 1-dimensional fluid,
and undergoing a position change of +1/v/N at times j/N, under the
influence of molecular collisions.

We can write down (31) a little more compactly if we use the greatest
integer part notation: if x > 0 is a positive real number, than its
greatest integer part [z] is, by definition, the largest positive integer
which is < z. Thus, [Nt] = nif n/N <t < (n+ 1)/N, and we can
write

1
(32) W = —= 3" X,
VN J<[tN]
putting the sum, by definition, equal to 0 if the set of j’s over which we
sum is empty (which is the case if ¢ < 1/N). One easily checks that, if
t € [n/N,(n+1)/N), then

n tN
EW. "y =0, Var (W) = N % ~ t,

the latter approximation being valid for big N. Also, for a strictly
positive ¢, if N is big, then n = [tN] is big, so that, by the CLT,
theorem 2.28, for any fixed t,

(53) W =B 2y x,

VIEN] 55

will be approximately distributed as t - Z, where Z ~ N(0,1) is a

standard normal rv. That is, Wt(N) will be approximately N (0, t)-

distributed, for large N. At ¢t = 0, we of course have WéN) = 0, which
is consistent with this. More generally, if ¢ > s, let us consider the
difference

[tNV]
(34) W — W = N2 ST X
[sN]+1

One easily checks that this has variance ([tN] — [sN])/N — t — s as
N — oo, so that, for big N, the CLT implies that
(35) W™ — w is approximately N (0,t — s)-distributed .

Furthermore, if we take a third time, u < s, then all the X;’s which
figure in the sum which defines W, have an index j < [uN] < [sN]+
1, and are therefore independent of the X;’s which occur in WtN —



MATHEMATICAL METHODS I MSC FINANCIAL ENGINEERING 27

WS(N), simply since, by hypothesis, different X’s are independent. We
therefore have the property:

(36) u<s<t=wN w™N - w™independent.

We now take the limit of N — oo. It seems reasonable to suppose
that there exist a family of limiting rvs Wy, ¢t > 0, such that P(W; <

x) = limy_e0 P(Wt(N) < x), or equivalently,

FWt(M (x) — Fw,(z), N — o0,

having the following properties:

[ ] (1) WO =0.

o (ii) if 0 < s < t, then W, — Wy ~ N(0,t — s).

e (iii) future changes are independent of past and present: if 0 <
u < s < t, then the rv’s W; — W, and W, are independent.

One might also argue that, since the sizes of the jumps in Wt(N) tend to 0
as N — oo, the limiting process (W});>o should somehow be continuous
in ¢: the idea is that for At ~ 1/N, AWM | ~ 1/v/N ~ VAt — 0 as
At — 0). We therefore expect that

e (iv) The paths t — W, are continuous.

Definition 3.1. (Brownian motion) A stochastic process (W;):>o which
has properties (i), (ii) and (iii), and which also satisfies (iv), in the
sense that, with probability 1, it has continuous sample paths, is called
a Brownian motion. $$

The phrase ‘having continuous sample paths with probability 1’ has a
precise technical sense which will be explained in detail in the second
half of these lectures, after we will have had a look at measure theoretic
probability.

There is a further property of Brownian motion which is plausible on
the grounds of our construction, namely that Brownian motion paths
t — Wi, although continuous, are unlikely to be differentiable: if we
consider Wt(N) on its natural scale of At = 1/N, then AWW) /At ~
1/\/E — 00 as At — 0. This non-differentiability of Brownian motion
paths can be shown to be a consequence of conditions (i) - (iv), and
Brownian motion paths provide examples of continuous functions which
are nowhere differentiable (do not have a tangent to their graphs at any
point).

Some historical remarks. Brownian motion was introduced by L.
Bachelier in his 1900 thesis on the mathematical modelling of the
Parisian bourse. Although he did not quite proceed in the way pre-
sented here, in his model the N~1/2X ; would present daily price changes.
He gave an interesting economical motivation for taking X; with E(X;) =
0: he argued that, since typically somebody who wanted to sell a stock
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could always find a buyer, and vice versa, there had to be about as many
people expecting a given stock to go up as there would be expecting
the stock’s price to go down. Hence the (mathematical) expectation
of the price change had to be 0. Also, his model assumed that future
price changes only depend on the past through the present, which is
formalized in condition (iii) above. Bachelier therefore already had
a clear idea of what later on became known as the Efficient Market
Hypothesis.

Unfortunately, Bachelier’s work was somewhat sadly ignored at the
time, and Brownian motion was independently rediscovered around
1905 by the physicists Einstein and Smoluchowski. In their work, Brow-
nian motion is used as a model for the movement of microscopically
small particles suspended in a (one-dimensional) fluid, under the influ-
ence of molecular collisions. Given that the particle is at position W, at
a time s, then, at a future time t > s, it will have changed position by
an amount x with a probability of (21 (t — s))~1/2e~#*/2(=5)  Tt’s mean
position change is 0, but its standard deviation, which is a measure
of it’s deviation from this mean, grows with t like v/t —s. This can
be interpreted by saying that we are most likely to find the particle
in an interval of size the order of \/t — s, centered at where it was at
time s, and this independently of what happened before s. Note that
the distance covered grows with the square root of the time elapsed,
instead of linearly with time. Such a motion is caled diffusion, whence
the name of diffusion processes for the kind of stochastic processes used
in Finance. In physics, a typical example of a diffusion phenomenon is
the flow of heat. $$

*Remark 3.2. There is a somewhat delicate mathematical point I
glossed over above: how do we know that there actually exist a limiting
family of random variables (W;):>o with the stated properties (i), (ii)
and (iii), let alone (iv)? Readers having a background in mathematics
know that limits do not always exist under all circumstances. To answer
this question we will need to be much more precise on what probabilities
and random variables are, mathematically speaking. For Brownian
motion, this was the step taken by N. Wiener in the 1920’s, who gave
the first mathematically rigorous construction of Brownian motion, and
in whose honor this process is also often called the Wiener process, and
denoted by W;. We will examine these matters more closely in the
second part of these lecturs. $$

3.2. Simple properties of Brownian motion. To get more of a
feeling for Brownian motion, we compute some moments. These com-
putations will turn out to be extremely useful in the next chapter, when
we introduce Ito calculus. Let us fix at > 0 and let h > 0 also. Then,
by (ii), the mean of the increment Wy, — W, clearly is 0:

(37) E(Wip — W) = 0.
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The mean is 0 since Wy, —0W; has the same probability to be positive
as to be negative. To get a better idea of the mean size of W, — W,
we compute the expectation of the absolute value of Wy, — Wi:

(38) E(|Wyn — W;|) = (constant)V/h.
In fact, the left hand side is

—a2/2h _ \/E/ —22/2
Tle — zle ,
/—oo | | V 27Th 00 | | V 27T

by the change of variables y = V'hz, and the constant can be evaluated
to be y/2/m: see exercise 2.29,

We next look at the square of the increment, (W, ., — W;)?. Using
(i1) and the fact that the variance of a rv X equals Var (X) = E(X?) —
(E(X))?, we find

E((Wen = Wi)?) = E((Wipn — W)?) = (B(Wign — Wi))*
Var (VVt—I—h — Wt)
(39) = h,

where we used (37). Hence the the mean of (W, —W;)? is h. We also
compute its variance, which is:

Var ((Wyen — W3)?)

E (Wien — Wi)*) — A2
2 dx
_ phe—a?/2h 4 g2
/]R V2mh
= 3% —2nr% =2n?
by an easy computation (or using exercises 2.29 and 2.30). Hence
(40) Var ((Wt+h — Wt)Q) = 22.

By formula (5), the expectation of any function g(W;) of Brownian
motion can be evaluated as:

(41) E(g(W)) = / g(z)e

—x2/2t dx
Vi ot

As a further example we compute:

]E(@Wt) —_ / exe—x2/2t dr
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3.3. Markov property and transition probabilities. Brownian
motion is a basic example of an important class of stochastic pro-
cesses called Markov processes. To explain the notion of a Markov
process, let us begin by looking at a general process, (X;);>0. To be
able to compute interesting quantities associated to such a process,

like for example the probability that for given times ty,--- i, Xy, lies
in given intervals [a;, b;], we have to know all joint probability distri-
butions of (Xi,,---, Xy, ), for arbitrary t;,--- ,ty > 0. Here we can,

without essential loss of generality, limit ourselves to ¢;’s such that
0 <t <ty <--- <ty We will assume that all these have prob-
ability densities, and we will systematically use the (mathematically
disputable but conceptually very convenient) notation

P(Xi =z, , Xy = 2n)

for the joint pdf of the random vector (X7, - -+, Xy) at a point (z1, -+ ,zx).
By the rules for conditional probabilities (cf. section 2.3) we have that,
for example:

P(Xy, = 29, Xy, = 1) = P(Xy, = 22| Xy, = 21)P(Xy, = x1).

Similarly,

(42) P(Xy, = x5, Xy, = 22, Xy, = 11)

=P(Xy, = 23| Xy, = 22, Xy, = 21)P(Xy, = 29, Xy, = 1)

=P(Xy, = 23| Xy, = 22, Xy, = 21)P(Xy, = 20| Xy, = 21)P(Xy, = 21),
etc. Now suppose that our process is such that, for any 0 < t; <ty <
-+« <ty we have that
(43) P(X:, =2n| Xty , = TN_1," T4, = T1)

=P(X:, = on| Xty , = TN-1).

Intuitively, this means that the process has no memory: the probability
that X;, = xx (or, more precisely, that it is in a small interval [z, 2+

dzy]) depends only on the last recorded value, Xy, , = xy_1, not on
earlier ones. Assuming (43), formula (42) then simplifies to:

P(Xi, = 3, Xy, = 12, Xy, = 71)
= P(X;, = 23| Xy, = 2)P(Xy, = 20| Xy, = 21)P(Xy, = 1),
and, more generally® |
(44) P(X;, = 2N, -+, Xy, = 11)
=TI, POXG, = 25|, = a5m) - P(Xy, = ).

Definition 3.3. A stochastic process which satisfies (43) for arbitrary
times 0 < t; < --- < ty is called a Markov process. If t < s, the
probability densities

(45) p(z, ty, s) = P(X; = y|X; = ),

8The symbol [] stands for product: H";Zlaj =aiaz---ag.
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are called the transition probability densities, or simply the transition
probabilities. We will take Xy = xg, the position at time t = 0, as
given.

$$
With this notation, (44) becomes:
N

(46)  P(Xpy =an, o, Xy =a1) = [ [ (@it 25,t5).

J=1

Remark 3.4. To remember the time-ordering of the variables in (45),
it is helpful to read the left hand side as "P((z,t) — (s,y))”, the
transition probability of going from z at ¢ to y at s, s > t. $$

Proposition 3.5. Brownian motion (W;)i>o is a Markov process.

Proof. Since W;,, — W, _, is independent of W;,,--- W, ., we have
that
Wt :'rN|WtN_1 =TN-1,""" 7Wt1 :xl)
Wt _WtN 1 :xN_‘rN—1|WtN,1 :xN—:l?'.. 7Wt1 :xl)
Wiy — Wiy, =any —xn-1) (by independence: cf. (27) )
Wiy = Wiy, =2y —xn-1|Wiy_, = xn-1) (independence again)
Wt = $N|WtN,1 = J,’N_l).
$%

Observe that this argument shows that the transition probabilities
of Brownian motion are given by:

PWy=yWy=2) = P(W,—W,=y—x)

_ b e
21(s —t)
(47) = poly—mx;s—t), s>t
where we have put
pol, 1) i= —ame 12,

V27t

also note that in fact pg(x,t) = P(0,0|z,t), the transition probability
for going from (0,0) — (z,t).

This gives us a first example of a very important connection between
stochastics processes and partial differential equations or PDEs. Read-
ers having a degree in physics or engineering will probably know that,
for a fixed (y,s), v(x,t) := po(y — z,s — t) as a function of (z,?), is a
solution of the backward heat equation:

ov  10%

o T2am

(48)
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Similarly, w(y, s) := po(y — x, s — t), as function of (y, s), satisfies the
heat equation:

(9) w_19v_y

(If this is new for you, you should check it at least once in your life: see
exercises.) The heat equation was introduced some 100 years before
Brownian motion, by J. B. Fourier, who sought to describe the flow of
heat in bodies. We will see in a later chapter that, under certain condi-
tions, the transition densities of Markov processes satisfy certain PDEs
which are called the backward and forward Kolmogorov equations, of
which (48) and (49) are particular examples.

The great thing about Markov processes is that the transition prob-
abilities fix all the joint probability densities of the process at arbitrary
times, as shown by (44) , (46). For example, for Brownian motion we
can now immediately write down that:

(50) IEI)(V[/tN = TN, WtN—l =TN-1,""" 7Wt1 = xl)

po(xn, tny — tn- 1)p0($N 1 — Tn_2,tn—1 — tn_2) - po(T1,t1)

*(%*%4)2/2('5;'*%—1)’

1;[\/ t—t] 1)B

where we’ set tg = x9p = 0 to make things agree for j = 0. Joint
probabilities for being in consecutive intervals then follow by simple
integration:

IP’(al < th <bp, - yay < Wiy <by) =
b1
/ e~ (@i—zj1)?/2(t;—t; 1) dzy -+ dry,
an o \/ t —tj_ 1

a formula which in some books is used to define Brownian motion
directly.

3.4. Brownian motion as a Gaussian process. We first recall the
definition of normal random vectors and multi-variate normal distribu-
tions. We will freely use matrix notation. Points x = (z1,--- ,zx) of
RY will be thought of as column vectors (z; x5 ---xy)!, the ‘t’ stand-
ing for transpose. Let Z = (Zy,---,Zy) be a vector of independent
normally distributed random variables Z; with mean 0 and variance
1: Z; ~ N(0,1). If p = (g1, ,pn) € R, and if H = (H;;);; is an
arbitrary N x N-matrix, then the new random vector X, defined by

(51) X = p+ HZ,
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is called a normal random vector. Its (component-wise computed) mean
is clearly

E(X;) = Mi+E<ZHmZJ‘>
= ﬂi+ZHijE(Zj)

= Uy,
since the expectation of Z; is 0. As vectors,
E(X) = p.

The variance-covariance matriz of a random-vector X is defined as the
symmetric matrix:

(52) V= (E(X = ) (X5 = 145) )1<ijen

where p; = E(X;), the mean of X;. If X = p + H Z, then its variance-
covariance matrix will be

(53) V = HH',

where the product on the right is the matrix product, and where the
‘t ” means again taking the transpose. Indeed,

E((Xi —w)(X; — p5)) = E((HZ); (HZ),)

N N
= > ) E(HyHjZpZ)

k=1 l=1

N
= Z Hi Hjy,
k=1

~ (EH)

ij
since, by independence,

1, if k=1

E(Zx21) = 0p = { 0, otherwise.

If H is invertible (that is, if its matrix inverse H! exists, which is the
case iff its determinant det (H) # 0), then one can compute that the
joint pdf of (X7, -+, Xy) equals

1 -1
54 — —((@=p), V- z—p))/2
( ) fX(x) (277)"/2(detV)1/26 )
where we've written fx instead of fx, .. x,, and where V was defined
by (53). The proof uses the change of variables formula for multi-
dimensional integrals and the Jacobian: cf. the appendix at the end
of this chapter, after the exercises. Conversely, if X has the pdf (54)
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(with V invertible), and if H is any matrix such that (53) holds, then
one can show that

Z:=H X - p)
has pdf which is simply a product of standard normal distributions:

1

—(E 42 /2
(271')"/2 ’

7~

e

The components of Z are therefore independent and identically N (0, 1)-
distributed, and it follows that X = p + HZ is Gaussian. Here we can
always take H = V'/2 (the matrix square root taken in spectral sense),
or H given by the so-called Cholesky decomposition of H, in which H
can be taken to be either upper or lower triangular.

Observe that the pdf of a normal random vector is completely de-
termined by its mean p and its variance-covariance matrix V. We say
in this case that

X~ N, V),

as an obvious clear generalization of the notation X ~ N(u,c?) for
single random variables.

It is pretty clear from (50) that, in case of a Brownian motion, each
vector (Wy,, -+, Wy, ) is normally distributed. Indeed, if we expand
the squares in the exponent, we see that the joint pdf has the form

(27)N/2 A exp(— Z Qi T;T;),

for suitable ¢, --- ,ty-dependent numbers a;; and A. The quadratic
form in the exponent can be written as (z, Az), with A = (a;;); ;, and
the fact that the integral over all of R has to be equal to 1 forces A
to be equal to the square root of the determinant of A, as one sees by
doing the change of variables # = A~'/2y in the integral (alternatively,
first do a rotation which brings A into diagonal form, and then re-scale
each coordinate by the square root of the corresponding eigenvalue).
This shows that (W;,,---,W;,) ~ N(0,A™"). One should not try to
read-off the variance-covariance matrix V.= A~! from (50), since it is
easier computed directly:

Vi]’ = E<Wti7 Wtj) = min(ti, t]’),
see the exercises.

Stochastic processes (X;);>o having the property that all finite di-
mensional pdfs fx, .. x,, are normally distributed with mean 0 are
called Gaussian processes. Such processes are completely determined
by specifying the variance-covariance matrices

(]E(Xti th))

1<ij<N*
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Thus Brownian motion is a Gaussian process. Another important ex-
ample of a Gaussian process is the so-called Ornstein-Uehlenbeck pro-
cess, which we will encounter later on.

We end this section by observing an important property of normally
distributed random vectors:

Proposition 3.6. If X ~ N(0,V) with V = (V,;);; diagonal: V;; =0
if i # j, then the components Xy,--- , Xy of X are all independent.

Proof. Indeed, the joint pdf becomes a simple product of the one-
dimensional pdfs of the components:

e~ %3 /2Vi;
H V21V
$$

This proposition can be used to give yet another characterization of
Brownian motion: see exercise 3.12.

3.5. Exercises to chapter 3.

Exercise 3.7. Let (W,;);>0 be a Brownian motion, and fix two times
t < u. Compute the following probability:

P (W, < 0,W, > 0).

Simplify your answer as much as possible, and consider the special case
of u = 2t.

Exercise 3.8. (a) Let £ € R be an auxiliary, non-random, variable
taking values in R. Show that

(55) E (e7$") = e!€°/2,

(b) The moments of E(W/*) can be computed using exercise 2.29. Give
another derivation of these moments, by developing both sides of (55)
in a power series in £, and comparing coefficients of like powers.  $$

Exercise 3.9. Show that
E (M) = 26772 (1- a(—¢vi)
= 2:5070(¢VE)

where we recall that ® is the cumulative normal distribution function:

r 2 dy
d(z) = e V2 L
( ) /—oo V 27T
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Exercise 3.10. Show that if (W};);>¢ is a Brownian motion, and if
a > 0 is a positive real number, then the new process (W;):>o defined
by:

~ 1
W, = %Wata

is also a Brownian motion. This is called the self-similarity property

of Brownian motion. $ %

Exercise 3.11. Show that if (W;);>¢ is a Brownian motion, then
Cov(Wy, W) = min(s, t).

(Hint: if, for example, s < t, write W; = W, + (W, — W;) and use
property (iii) of a Brownian motion). $$

Exercise 3.12. Conversely, let (B;):>o be a mean 0 Gaussian stochastic
process (with continuous sample paths), such that By = 0, and such
that Cov(By, Bs) = min(s,t), for all £,s > 0. Show that (B;):>o is a
Brownian motion. $$

Exercise 3.13. As an application of the previous exercise, show that

—~

if (W};)s>0 is a Brownian motion, then the new process (W );>o, defined
for t > 0 by

Wy = tWyy,
while W, := 0, is also a Brownian motion. $$

Exercise 3.14. Define the function pg = po(z,t) by

1
—e’xQ/zt, xeR,t>0.

pol(z,t) = Tont

Show that p, satisfies the heat equation on t > 0, that is:

b0 _ 100
ot 2 0x2

Deduce from this that, for fixed s and y, v(z,t) = po(y—x, s—t) (which
is exactly the transition probability density for Brownian motion) sat-
isfies the backward heat equation (48) on t < s. Also show that, as a
function of y and s, w(s, y) = po(y —z, s—t) satisfies the heat equation:
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3.6. * Appendix to Chapter 2: Proof of (54). We first quickly
review the change of variables formula for multiple integrals. Let f :
R™ — R be a differentiable function, H : R®™ — R" a one-to-one
map of R™ into itself, and let /' C R™ be some a domain in R™ over
which we want to integrate, for example an n-dimensional rectangle
[a1,b1] X -+ X [ay, by]. Suppose that H(z) has components:

H(x) = (Hi(x), -+ ,Hy(z)), = (21, -+ ,xp).
Then one defines the Jacobian of H by:

56

0 OH(x)/0xy OHy(x)/0xy --- OHy(x)/0x,
0H5(z)/0x1 OHs(x)/0xe --- OHa(x)/0x,

st | g [ 20 o - omeos | |
OH,(x)/0xy OH,(x)/0xy --- OH,(x)/0x,

and we have the following change of variables formula:

(57) / e dx—/f Ju(y) dy.

If n =1, and F = [a, b], this reduces to the well-known substitution

formula:
/ dx—/ FUH () [H ()] dy,
H(a)

obtained by substituting = = (y); this formula holds provided that
H'(y) #0 fora <y <b.

An important example is when H is a linear map of R", defined by
a matrix H:

H(l’) = Hx := (Z HljZL‘j, s ,ZHnJ‘.’L’j) .
j=1

j=1
In this case one easily sees that the matrix in (56) is simply H, and
that therefore:

As an application we show how to derive the pdf of normal random
vector:

Theorem 3.15. Let Z be an N(0, I)-random vector. If p € R™ and if
H s an wnvertible matriz, then the new random vector

(58) X = p+ HZ,
is N(u, V)-distributed, where
V = HH".

Conversely, each random vector X ~ N(u,V) can be written as (58),
with H satisfying HH' =V, and Z ~ N(0,1).
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Proof. Let F = [ay,b1] X -+ X [a,, b,] be an n-dimensional rectangle
(we could, using measure-theoretic terminology, allow F to be any Borel
subset of R™). Then, by the n-dimensional change of variables formula,
putting p + Hz = x,
P(XeF) = P(p+HzeF)

_ o202
B n/2

{z:p+HzeF} (27T)
_ / (H @) B @) 2 0T

P (2m)"/2det(H)

_ / o (e @) 2 dx
F (2m)n/2(det(V))1/2

since
V=HH = V= (H)H,
and det(V) = det(H)>.
Conversely, if X ~ N(uV), then similar computations show that if
V = HH', then
Z:=H* X—p)is N(0,1),
and clearly X = p + HZ. QED
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4. A Crash Course in Ito Calculus

In this chapter we introduce the basic rules of stochastic calculus,
also known as Ito calculus. We will do this using an intuitive approach
which is based on calculus-style differentials, postponing the mathe-
matically rigorous approach (founded on the Ito stochastic integral),
to a later chapter.

4.1. Stochastic differentials. Brownian motion is not differentiable
in the usual sense. As an indication of this, observe that, by (38),

_ |Wisn — Wi . const.
hm E _— = hm = 00,
h—0 h h—0 \/ﬁ

which makes it unlikely that the derivative with respect to time, defined
as is usual by

should exist. In fact, it can be shown that Brownian sample paths are
nowhere differentiable with probability 1. Still, we would like to be
able to talk about infinitesimally small increments of Brownian motion
over an infinitesimal time-interval, from [¢,¢ + dt]:

(59) th - Wt+dt - Wt.
Here dt is a calculus-style infinitesimal:
dt # 0, (dt)> = (dt)> =--- =0,

usually interpreted as a number so small that higher powers can be ne-
glected. There will be some important differences with ordinary calcu-
lus, though: first of all, dt will have to be a positive differential: dt > 0,
so that (59) is a differential into the future, which is unknown at time
t and on which we have, at best, probabilistic information. Further-
more, we will also encounter fractional powers of dt: dt'/?, dt, dt3/?, etc.

However, as in calculus, powers higher than 1 are still to be neglected:
dt3/? = dt®/? = 0, etc.

The key to the correct interpretation of dWW; is to remember condition
(ii) of definition 3.1 of a Brownian motion, and to interpret dW,; =
Wiras — Wy as a normal rv with mean 0 and (infinitesimally small)
variance dt:

(60) dW; ~ N(0,dt) (dt>0).
To get an idea of the size of dW;, we apply (38) with h = dt:
E(|dW,|) = const.V/dt.

This tells us that dW, is a differential of size v/dt which, for very small
dt, though small, is very much bigger that dt itself: v/dt >> dt.
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Next, we look at (dW;)?, which will be of size comparable to dt.
Indeed, by (39),
E ((dWy)?) = dt.
Furthermore, by (40), the variance of this rv is:
(61) Var((dW;)?) = (dt)*.

Now this is interesting: since we decided to neglect higher powers of
dt, (61) tells us that (dWW;)? is a rv with variance 0, so not at all a
rv anymore, but an ordinary (non-stochastic or deterministic) number
whose value necessarily has to be equal to its mean:

(62) (dW,)* = dt
What about dtdW;? By the above computations, it’s mean is:
E(dtdW;) = dtE(dW;) = 0,
and it’s variance is 0 also:
E(dt*dW?) = dt* = 0.
Hence, for the same reason as before, we have that
(63) dt dW, =0, dt*=0.
Finally, we already know that (dt)> = 0, and as an immediate conse-
quence of these relations, other combinations of powers of dW; and dt
will also count as 0: for example,
(dt)*dW, = 0, (dt)*dW, = 0,
and
dt (dW,)? = (dt)* =0, (dW,)* = dW, dt = 0,
etc.
Formula’s (62) and (63) are the basic rules for Ito’s stochastic dif-

ferential calculus, and they are often summarized in the form of Ito’s
multiplication table:

| dW, dt
(64) dw, [dt 0
dt 0 0

Example 4.1. To see how this works in practice, let us compute the
differential of the square of a Brownian motion, d(TW?):

dW2) = (Wipar)® = W?
= (W, 4 dW,)* — W2
= (W7 +2W dW; + (dW,)?) — W}
= 2W dW,; + (dW,)?
= 2W,dW,; + dt,

where in the last line we used Ito’s rules (64). $$
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4.2. Review of the Taylor expansion. We will want to generalize
the preceding example to more general functions of W; instead of just
the square. For this we need to review a few basic facts concerning
Taylor expansions of sufficiently differentiable functions. The simplest
case is that of a function of a single variable, f = f(x). Suppose f is
(k + 1)-times continuously differentiable, meaning that f has (k + 1)
derivatives, which are all continuous functions®. As usual, we denote
the successive derivatives of f by

f/(x) = f(l)(x) _ %f(x), f”(x) _ f(Q)(ZB) N d_

- da?

(),

and in general

FO@) = 2 f(w) = 219 @)

The Taylor expansion of f around a point x approximates the value
of f in a nearby point x 4+ h by a polynomial in h whose coefficients
depend in a simple way on f’s derivatives in x:

1 (k) (2
flet ) = £@) + F@h+ o @t o+ Dk ogap,

or, written more concisely,

oo (g
fla+my =3 L0 h 4oy

RO

with f(© := f. Here the symbol O(h*!) means that the error which we
make can be bounded by a constant times h**!, and is thus of smaller
order than all previous terms in the expansion of f(z+h), if h is small:
|h| << L.

We will in fact only need the Taylor expansion up to order k = 2,
which reads:

(65)  Flh) = f@)+ F@h+ o f @R + 0.

The Taylor formula generalizes to functions of several variable: f =
f(z1,-++ ,x,), defined on R™. We only state the case of the second
order expansion, which again is all which will be needed here, and

refer to any good multi-variable calculus book for the general case. If
h = (hy, -+ ,hy,), then

(66) flx+h) = fl@) + ) =—(z) +

Ly~ o

2 e 8$18$]

(x)hih; + O(|I*),

9This is not the minimal condition what follows, but suffices for all applications we’ll consider.



42 RAYMOND BRUMMELHUIS

where |h| = (h? + --- + h2)'/2 the Euclidean norm of h. The deriva-
tives here are the usual partial derivatives of functions of more than
one variable: for example, 0f/0z; means that one takes the derivative
w.r.t. z, considering xo, - - - , x, as constants, while 9% f /0x;0x, means
taking the derivative w.r.t. x5 of the function 0f/0z(xy,- -, x,), re-
garding xq,x3, - ,2,) as constants, etc. Under rather mild condi-
tions!® on f, mixed derivatives can be computed in arbitrary order:

0% f(z)/0x10x9 = 0 f (1) /Ox2021, etc.

4.3. Tto’s lemma. Let us now consider an arbitrary function of Brow-
nian motion:

fFW),
f = f(w) being a 3 times continuously differentiable function of w € R.
We would like to know by how much f(W;) will change along a given
Brownian motion path, when going one infinitesimal time-step into the
future, from t to t + dt. That is, we’d like to compute

df =df Wy) = fWisar) — f(W; ,1);
note that this will in general be a stochastic quantity. The idea is to
simply Taylor expand f around (W;): since Wy, 4 = W, +dW,, we have
that, by (65) with x = W, and h = dW,

fWirar) = f(Wi+dW,)

= W)+ J W)W, + 3 f W) AW + O ((dW)°)

— F(W) + (W)W, + % AL

by Ito’s rules (64). Subtracting f(W;), we find:
Ito’s lemma: simplest case If f = f(w) is thrice continuously dif-

ferentiable, then

(67) AV, = f/(W,) AW, + % F(W)dt.

Example 4.2. (Ezxample 4.1 revisited) Take f(w) = w?. Then f'(w) =
2w, and f"(w) = 2, so that, by (67),
d(W2) = 2W,dW,; + dt,
in agreement with what we found before. $ 3
Observe that (67) not only contains a dW, but als a dt, and to have
a smoothly running and easily applicable formalism, we have to go a
bit beyond (67), and consider functions of both Brownian motion and

time:

f(tht)7

10, g. continuous partial derivatives of the relevant order
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where f = f(w,t) is an ordinary (non-stochastic) function of 2 vari-
ables, w (for which we will substitute Brownian motion) and time t.
We follow the same strategy as before, but we now use the 2-variable
Taylor expansion, (66) with n = 2 and (z1,22) = (w,t). Using the
shorthand notation 5 5

- 9=,
ow ' ot
for the partial derivatives, we easily find that

fWigar ,t+dt) = fWy,t) + 0uf(Wy ,t)dWy + O, f (W, , t)dt +
+ %(agjf(wt ,t)thQ + 28152wf(Wt ,t)dtth
+ R 0)de) + O (@) + (@)?)™")

Now, Ito’s multiplication rules (64) imply that dtdW; = (dt)*> = 0,
while ((dW,)? + (dt)2)*” = (dt + (dt)?)** << (dt)*/? = 0, and we are
simply left with:

df = (&:f"’ %@if) dt + (0w f)dW3,

both sides to be evaluated in the same point (W, t). This is the famous
Ito lemma:

Theorem 4.3. (Ito’s lemma: functions of Brownian motion and time)
Let f = f(w,t) : R — R be a 3 times continuous differentiable function.
Then the infinitesimal change of f(Wy,t) along a Brownian motion path

s given by:

all derivatives of f to be evaluated in the point (Wy,t). $$

3_f+lﬁ> of

Remarks 4.4. (i) rather than just memorizing (68), it pays just to
remember how to derive it from the Ito rules (64).

(ii)* Formula (68) remains true under the weaker condition that f
has continuous partial derivatives of order 1 and 2. One can even allow
functions having singularities in their second, and even first derivatives,
provided one interprets all terms in the correct way. This is connected
with the concept of Tanaka’s local time, which we won’t go into; see
the more advanced literature, like the book by Revuz and Yor.  $ §$

Examples 4.5. (i) Applying (68) (or even (67)) to f = e, we find:

1
(69) d(e”™) = 50'260Wtdt + oe” Mt dW,.

Again note that this is different from the answer ordinary calculus leads
you to expect: d(e”™) = ce’dw if w is an ordinary (non-stochastic)
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variable. Additional factors involving 0?/2 are ubiquitous in Finance,
and usually point to Ito’s lemma having been applied somewhere.

(ii) As a slight variation on the previous example, consider

(72
(70) X, = e 2ttt
An easy computation using (68) now shows that:
(71) dXt = O'Xtth.

This is our first example of a stochastic differential equation or SDE,

and as such the stochastic analogue of the ordinary differential equation
(or ODE),

(72) dxy = oxdt,

which characterizes the exponential function. Indeed, the solution of
(72) with initial value 7o = 1 is the exponential function: e’*. In
analogy with this, (70) is sometimes called (especially in the more
mathematical literature), the Doléans-Dade exponential of W. $%

4.4. Tto processes. For any stochastic process (X;); one may consider
its infinitesimal change into the future:

dXt = Xt+dt — Xta dt > 0.

Definition 4.6. (Ito process, informal definition) (Xi)i>o is called an

Ito process if dX; is related to an underlying Brownian motion (W;);>o
by:

(73) dXt = atdt + btth,

where (a;);>0 and (by)¢>0 are two auxiliary stochastic processes having

the important property that a;, and b, only depend on the Brownian
motion through its past values W, s < t:

(74) at, by = Functions of (Wy)s<t,t) .
$9

*Remark 4.7. For reasons which will become clear later on, to guar-
antee existence of such a process X, it is extremely important that in
particular b; should not depend on any future values Wy, t' >t of W,.
To be more precise, we also need some kind of boundedness condition
of a;, b;: simply requiring them to be uniformly bounded,

|ag], b < C < o0,

with C' > 0 independent of ¢ for the range of times we’re interested in,
will certainly do. $$

Example 4.8. Brownian motion itself is an Ito process: simply take
a; = 0 and b, = 1. More generally, any X; = f(W;,t) is an Ito process
by Ito’s lemma 4.3. Indeed, by (68),

dXt = df(Wt, t) = atdt + btth,
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where of | 02
ay = 615 (Wt7 >+_W(Wt7t>7
and of
bt a (Wt7 )

Observe that these satisfy condition (74), being functions of ¢ and W;.
$$

A natural question now is whether functions of Ito-processes are
again Ito-processes. The following extension of lemma 4.3 show that
the answer is ‘yes’. Its proof doesn’t need any new ideas, but follows
the same pattern as before.

Theorem 4.9. (Ito’s lemma for functions of Ito processes) Let f =
f(z,t) be thrice continuously differentiable. Then:

af af 1a2f

- af af 1a2f2 of

where all deriwatives on the m'ght are to be evaluated in (Xy,t).

Remark 4.10. This is the form of Ito’s lemma which is used most in
applications.

Proof. Tto’s multiplication table(64), and dX; = a,dt + b,dW, easily
imply that dX;dt = (dt)? = 0, and the first line of (75) follows, as
before, from a second order Taylor expansion of f(z,t) around (X,t).
The second line follows from the first simply by substituting dX; =
a;dt + bydW,, and by observing that

(dX:)? = (adt + b,dW,)(aydt + b,dW,) = bidt,
again by Ito’s multiplication table. $%

4.5. Stochastic differential equations. Like in ordinary calculus,
having differentials, one can consider equations between differentials, or
differential equations. Equations involving the stochastic differentials
dW; are, unsurprisingly, known as stochastic differential equations or
SDE’s. These occur all the time in continuous time finance, and we
need to have some idea how to solve them, both analytically (where
possible) and numerically.

A typical (first order) SDE looks like:
(76) dX: = a(Xy, t)dt + b( Xy, t)dW,

where a = a(x,t) and b = b(z, t) are given functions, and we are looking
for a solution X of (76) subject to some, prescribed, initial condition:

(77) Xt:() = XO given;
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here Xy can be an ordinary real number, but also a rv.

In what sense do we wish to solve (76)?7 We would like to have a
solution X; (which in itself is going to be a rv) which can be expressed
in terms of the initial condition X, and of the given Brownian motion
(Ws)s>o up till time t: that is, we are looking for solutions

(78) X = Function (X,, Wi(s < 1)).

It is important that the solution at time ¢ is only allowed to depend on
past values (Wy)s<; of Brownian motion. In a financial context, where
the W, might represent something like a return, this makes sense: only
past returns will have been observed: the future ones are as yet un-
known, and we are only interested in solutions which can be computed
on the basis of our present knowledge. We look at two important ex-
amples of analytically solvable SDEs.

Example 4.11. (Geometric Brownian motion as a model for stock
prices) A simple model for stock-prices S; is obtained by assuming
that the return (Sipa — S¢)/S: over an infinitesimal period [t,¢ + dt]
is normally distributed, with mean and variance both proportional to
the time interval dt:

ds
?t ~ N(udt,o?dt), p, o? constant .

t

Now, since dW; ~ N(0,dt), it follows that udt + odW; ~ N(udt, odt)
also'! We therefore take as our model:

d

(79) Dt it + odw,
St

or

(80) dSt = ,uStdt + aStth.

This is a SDE for the stock price S;. Given an initial value Sy, it’s
solution is given by

(81) Sy = Speln=o"/AtraWe

this can be checked by applying Ito’s lemma (68) to compute the differ-
ential of the right hand side. The occurrence of the (—¢?/2)t-term in
the exponential on the right is explained by the 92 f /2-term in (68): see
also (69) above. The process S; is called geometric Brownian motion
with drift p and volatility o>.

H'We are using here that if Z ~ N(0,a?), then p+0Z ~ N(u,02 a?).
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Another way of computing the solution to (80) is by first observing
that Ito’s lemma 4.9 implies that
dS;  1(dS;)?
dlogS; = —/— —=
08 ot S, 2 52
o2
= (M— 7)dt+0‘th,

where we used (80) for the last line. This integrates to:

2

log S; = log Sp + (1 — %)t + oWy,

which gives (81) upon taking the exponential of both sides. $$

Example 4.12. (the Ornstein-Uehlenbeck or mean reverting process)
The Ornstein-Uehlenbeck SDE is given by

(82) dX; = a0 — X;)dt + odW,.

To solve this, put Y; = X; — 0. Then dY; = dX,; and so:
dY; = —aY; + adW,

To get rid of the —aY;, multiply Y; by e®; then

d(e™Y;) = e*dY; + aeY;
(83) = ogedW,,

by the previous equation. Formally integrating from 0 to ¢, we would

find that
t
ey, =Y, +/ oe™dW,
0

or, remembering what Y; stands for,
t
(84) X;=0(1—e )+ Xoe " + 0/ e a.
0

Note, that here the solution up till time ¢ depends on all W, for times
s < t. $$

Of course, (84) begs the question of what we precisely mean by the
integral which occurs in the left hand side, and more generally by an
integral of the type

(85) / ' fls)dw.

That is, what does it mean to integrate w.r.t. Brownian motion? This is
a point which we will have to address, before discussing the properties
of the solution (84).
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4.6. Stochastic Integrals. How can we give a sense to (85)7 Let us
again try to take our inspiration from ordinary calculus, which after all
is a model for what we are trying to do. If f = f(¢) and g = g(t) are
deterministic, non-random, functions on the real line, a first natural
idea is to interpret

(86) /O f(s)dg(s),

as being

(87) / £(5)g/(s)ds,

where ¢'(s) = dg(s)/ds is the derivative of g. Can this work for (85),
that is, can we write:
! dw.
*ds?
| s

For this, one would have to be able to differentiate Brownian motion W;
with respect to time ¢, and we already argued that this is not possible.
However, there is a way out if we recall the important, and extremely
useful, trick of integration by parts: assuming that f and g are both
continuously differentiable, we have that:

(58) / f(s)dg(s) = / F(5)g/(s)ds
F&)g(s)]h - / g(s)f'(s)ds
= (F(B)g(t) — F(0)g(0)) — / " g(s)df (s).

Now suppose that f is (continuously) differentiable, but g is not. Then
we can still give a sense to the left hand side of (86), by defining it to
be the right hand side of (88)! This works out all right, since the right
hand side is perfectly well-defined under these conditions on f and g.
In particular, we can now apply this definition to (85):

Definition 4.13. (Provisional definition of stochastic integral for de-
terministic integrands) If f = f(t) is a function of ¢ only, which is
continuously differentiable, we put

(89) /0 t F(s)dW, == f(t)W, — /0 W f'(s)ds.

Remember here that W, = 0. The right hand side of (89) is well-
defined, since s — Wj is continuous, and continuous functions can be
integrated.
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Does this settle (83)7 Not quite, for what we are using there is an
instance of the following general rule:

(90) a / F(s)dW, = F(£)dW,.

and to make things completely flawless we should check that (90) holds
with the integral being defined by (89). Fortunately, this is easy: if we
take the differential of the right hand side of (89), we find:

d(f(t)Wt— / st’(S)dS) — WF(E) + F(OAWs — W (1)

- f(t)th,

since df (t) = f'(t)dt. (Attention! We are very much using here that
f(t) is an ordinary, non-stochastic, function, and in particular that
df (t) does not contain a dW;: see exercise 4.26 below for what could
happen otherwise.)

We next compute the mean and variance of (89), these being inter-
esting quantities for any rv. Put

(91) 1t = | f(s)aw,.

(92) E(L) = E (f<t>wt _

= fOEW) — [ f(s)E(W)ds
= 0,

where we used the linearity of the expectation to interchange it with
the integral'? and the fact that the mean of W, W, is 0. Computing
the variance is somewhat more involved, but the end result is a very
simple and elegant formula:

Lemma 4.14. (First version of the Magical Formula of Stochastic
Integration) Let I; be defined by (91). Then:

(93) Var(l;) = E(1}) = /0 f(s)%ds.

We will leave the proof as an exercise with hints below, since later on
we will derive a much more general result, for stochastic integrals in
which the integrand f(s) is allowed to be a stochastic process also,
instead of just a deterministic function.

We can now finish our discussion of the solution of the Ornstein-
Uehlenbeck equation:

12think of an integral as being a limit of Riemann sums!
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Example 4.15. (Ornstein-Uehlenbeck process, continued) We recall
that, by (84),

t
X;=X; =01 —e™ ) + Xpe ™ + a/ = aw,
0

is the solution of dX; = a(X; — 0)dt + cdW,. We can read off the mean
and the variance of X; from (92) and (93). First of all,

(94) E(X;) =0(1 — e ) + Xoe ™.

Observe that E(X;) — 0, exponentially fast, as ¢ — oo, regardless of
the initial value X, we started with. The number 6 therefore represents
some kind of long-time equilibrium-value for the mean of X;, which is
independent of the initial value X, we started with. One uses the term
”mean-reversion to ” for this phenomenon. The parameter « indicates
the speed with which this mean-reversion takes place. If for example
(to fix ideas) we take Xy = 0, then for t = 1/a we will have a relative
error of:
EXi1/a) =01 _ 1 a679
10l €
Also note that if ¢ = 0, then the SDE is an ODE whose solution is
simply (94) and we are done.
We next compute the variance of X;:

(95) Var(X,) = (Xt E(X

-z 5 ((L—e7).

We therefore see that X, behaves, for big t, like a rv with mean ap-
proximately 6, fluctuating with a standard deviation of approximately
o/v2a. Again, the influence of the initial value X diminishes expo-
nentially fast.

As a final remark we note that one can show that each X; is actually
a normal (or Gaussian) random variable. This is in fact true for any
rv of the form

(96) = /0 ' f(s)aw

with a deterministic (that is, non-stochastic) f; see remark 4.16 be-
low. Our final conclusion on the solution of the Ornstein-Uehlenbeck
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equation is therefore that
2
X, ~N (9(1 — e ) + Xoe ™, 20—((1 - e_2at)) :
Q@

that is, each X; is normally distributed, with the indicated mean and
variance. For big t > 0 its pdf is approximately that of a N (6,02 /2a)-
distribution.

One can go a bit further, and prove that the Ornstein-Uehlenbeck
process is a Gaussian process, and compute the auto-covariances cov (X, X)
(which, the process being Gaussian, completely determine it).

*Remark 4.16. The normality of I; can be understood as follows:
think of I; as a limit of Riemann sums: for N € N, put

J
s; = —t,
TN
so that 0 = 59 < 51 < --- < sy =t, and |sj41 — s;/ = 0as N — o0

(properly speaking, the dependence of s; on N should show up in the
notations, but we won’t do this, to keep the formulas simple). Then:

/Otf(s)dWs = f(t)Wt—/Othf/(s)ds

—lim S W) f(sy)

N—oo 4 N
7=0
Now (Ws,, W, -+, Ws,_,) is a normally distributed random vector,
and (f'(so), -+, f(sy_1)) is an ordinary vector in RY. By general

results for random vectors,
Z f/<Sj)WSj 9
J

is normal (see the exercises at the end of this chapter), and it can be
shown that a limit of normal rvs is again normal.

To make this last point completely rigorous we have to specify what we
mean by saying that a sequence Xy, N =0,1,2,--- (in our case, the
different Riemann sums) converge to a limiting rv Y. There are many
different definitions possible, but it turns out that a convenient one is
to say that Xy — Y if

E((Xy —Y)?) =0, as N — oc.

This is called mean square convergence. Omne can show that mean
square convergence implies that the mean of Xy tends to the mean
of Y, and that the standard deviation of the difference X — Y tends
to 0. Moreover, one can show that limits in mean square of normal rvs
will ne normal again; this is most easily using the so-called character-
istic functions of the random variables involved.
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4.7. Multi-variable Ito calculus. We begin by defining multi-dimen-
sional Brownian motion. A standard Brownian motion in R™, or a
standard n-dimensional Brownian motion, is simply a vector of n in-
dependent Brownian motions

(97) Zt - (Zl,t7 Ty Zn,t>7

each Z;; being a 1-dimensional Brownian motion (we suddenly use the
letter Z instead of W since below we want to use the latter for a slightly
more general process).

The Ito-rules for stochastic differentials are extended as follows:

(98) dZ;y dZ;, = 60;;dt,

d;; being the Kronecker-delta. The reason is that, by independence,
dZ;dZ;; has expectation 0, while its variance is E ((dZ;;)*(dZ;,)?) =
E ((dZ;)*)E ((dZ;4)?) = dt - dt = 0.

A variant on this,which is often useful in Finance, is correlated Brow-
nian motion. Let p = (p;;)1<ij<n be a (constant) correlation matrix: p
positive, =1 < p; ; <1 and p; = 1:

I pi2 - pim

pa1 L o poy
(99) p=1 . . . |

Pnl Pn2 - 1
and let H = (hjj)1<ij<n be an n x n matrix such that HH' = p. If
Zy = (Zvt,- -+, Zny) is a standard Brownian motion, we define W, =
(Wl,t7 R} Wn,t) by
(100) W, = HZ,,

or, in terms of components,

(101) Wie =Y hijZy.
J

This new process has the following, easily verified, properties:
° WO =0

o It s < t, then W; — W, is multi-variate normal, with mean 0
and variance-covariance matrix (t — s) - p:

W, — W, ~ N(0, (t —s) - p).

o If 0 <u<s<t, then W, and W; — W, are independent.

(Indeed, the first property is obvious, and as regards the second one,
a linear combination jointly normal random vectors is again jointly
normal, and a computation similar to one we did in section 3.4 shows
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that

E( (Wi —Wi)Win = W,0)) = > hathjB ((Ziy — Zis)(Zie — Z15))
k=1

= Z hzkh]kE ((Zk:,t - Zk,S)Q)

k=1

= (t—s) (HH),..

ij
Finally, the third property is an immediate consequence of the similar
property of Z;. )

The process (W;);>o is called a correlated Brownian motion, with
(constant) correlation matrix p. Note that if p = Id , the identity ma-
trix, W, is simply a standard Brownian motion (that is, its components
are independent) since, for normal rvs, independence is equivalent with
0 correlation.

If (W,);>0 is a correlated Brownian motion, then

(102) AW, = Z hi;dZ 4,
J

and, consequently,

AWip Wiy = > Y hishwdZ,dZy,
J k

= (Z hijhkj> dt
J
since dZ;y dZ;; = 6.

One can imagine having p depend on t: p = p; above. More generally,
we could let H depend on ¢, without requiring that HH’ is a correlation
matrix, and add a t-dependent mean. This leads to the notion of multi-
variate [to-process:

Definition 4.17. (vector Ito process) (Xi)i>o is called a vector Ito pro-

cessit dXy = (d Xy, -+ .dX,;) is related to an underlying n-dimensional
standard Brownian motion (Z;)¢>o by:
(103) dXi,t = ai’tdt + hij,tde,h

where a;+ (1 <1i <n) and h;j; (1 <1i,7 < n are stochastic processes
only depend on the Brownian motion through past up to present values:

(104) a;t, bij; = Functions of ((Z,)s<:) and of t.
$$
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In matrix notation, (103) can be written more concisely as:

(105) dXt = atdt + thZt,
where
.t hn,t T hln,t
ay = 9 Ht =
Qn¢ hnl,t Tt hnn,t

With this terminology, a correlated Brownian motion is a special
case of a vector Ito process, with an a; which is 0, and a constant Hi;.

We next turn to Ito’s lemma for vector-valued processes. Let f =
f(z,t) be a function on R" x R, where now = = (z1,--- ,z,) € R"™

Theorem 4.18. (Ito’s lemma for vector processes) Let Xy = (X1, -+, Xnt)
be a vector Ito process defined by (103). Then

of of 1 2 f
(106)  df(X;,t) = Edw 2]: a—mjdxj,t + = %: axja;kdX 1 X,

which can also be written as

(107)
( +Z jt + Zhﬂ,thkmaf)dwrzz% dZ,y,.

Here,as before, all derivatives of f are to be evaluated in (Xy,t).

Proof. Despite the perhaps slightly formidable appearance of these
formulas, their proof does not need any new ideas. One just has to know
and apply the Taylor formula for an arbitrary number of variables: if
Y= (yla U >yn+1) € Rn+1 and h € Rn—i—l

fly+h) = +Z ]+ Z hhm—O(\h\)

apply this withy = (z,t) = (xl, Cee T, ) t)yand h = (d X4, -+ ,dX,., dt),
and use the easily verified rules:

dX;; dt = (dX;,)* =+ =0.

This already proves (106) (which is the easiest to remember of the two
formulas). Formula (107) then follows by substituting the expressions
for dX;; and observing that

dX, dXpy = (ajvtdt +) hjp,tdng <a,€,tdt +) hkq7tqu7t>
q

= Y hipihigidZy,dZy,

pq

= Z hjp,thkp,tdtv

p
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where we used (98). QED

Remark 4.19. Often, in financial models, one defines a process X, in
terms of a correlated Brownian motion W, instead of Z;, the standard
one. For example, the popular Heston stochastic volatility model is
usually written as:

dS; = pSidt + /i d Wi,

(108) dvt = 05(9 — O't)dt + ﬂ\/U_tdWQ’t,

where (W, , Wa,) are correlated Brownian motions with constant cor-
relation p:

E (dWLt dWQ,t) = pdt

If we would want to evaluate df (S;, 0, t) (as one wants to in option
pricing theory), we could first express (W5, W) in terms of a standard
2-dimensional Brownian motion (Z;4, Z¢) (cf. exercise 4.31 below)
and then apply formula (107) above, with X;; = S; and Xo; = oy.
However, in this situation it is much easier to start with the general
form (106), and derive other forms computing directly with the dW .
For example, we will now have

Xm,t dX27t = ﬁUtSt dWLtdWQ’t = pﬁvtStdt.

More generally, suppose our Ito process X; is given in terms of a cor-
related Brownian motion W; with correlation matrix p:

dXt = atdt + thWt.
Since now dW,, :dW,; = pp4, we now will find that df (X;,t) equals:

< - Z aj.t + Zprq Bjpthip.t o7 Ik) dt—ﬁ-ZZtht de, .

J.k pa

Note that only the term involving the second derivatives of f as changed.

Finally, vector SDE’s are simply vector Ito-processes for which the
coefficients a;; and hji, are functions of X, itself and possibly of ¢:

(109) dXt = G(Xt>dt + H(Xt, t)dZt7
or, written out in components:

Xm,t = al,t(Xta t)dt + Zj hlj(Xt; t)de,t

an,t = &n,t<Xt7 t)dt + Zj hnj (Xt? t)devt
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4.8. * Sneak preview of general stochastic integration. We end
this (long) chapter by giving some idea of the general stochastic inte-
gral as it will be developed later on in this course, together with some
motivation. The definition (89) has the drawback of only working for
differentiable f, and it would be nice to be able to integrate a much
larger class of f’s, say continuous ones. Moreover, for many interest-
ing financial applications we would like to replace the deterministic
function f(s) by a stochastic process, (Hs)s>0:

t
(110) / HydW,
0

and give a sense to integrals like

t t
/ W dW,, / eV dW,
0 0

(taking Hy = Wy and "= respectively) or, more generally, to integrals
of the form:

[ rovsaw,

for a reasonably large class of functions f. Note that this would
be completely hopeless with a definition like (89), due to the non-
differentiability of Brownian motion. The key idea is to forget about
(89), and return to a more primitive idea, the definition of integrals as
limits of Riemann sums. One tries to make sense of (or, to be more
precise, give a meaning to) the limit:

(111) H,dW, = lim ZHSJ - W)

Sj+1
Note that the right hand side, as a limit of sums of rvs, will in general
be a rv. The main mathematical problem is to show that the limit on
the right exists in some sense. The correct interpretation will turn out
to be that of mean square convergence (see remark 4.16* above) and
for that to work two points will turn out to be be essential:

o If u < s <t, then H, will have to be independent of W, — W,.
e The individual terms of the Riemann sum on the right are all
evaluated ”"from the past to the future”, in the sense that the
integrand, H,, is systematically evaluated in the left end point
of the (stochastic) interval [W,,, W

SJ+1}

Economically and financially, the two requirements make sense: sup-
pose that W; is the (future) price (per unit) of some asset or commodity,
and H; the number of units you (plan to) hold at time ¢; put otherwise,
(Hy)i>0 is a trading strategy, which will in general be stochastic, since
dependent on future, not yet realized, events. If you will trade only at
the discrete times sy = 0, s1,--- , sy, then the total gain you will have
made at ¢ is precisely described by one of the sums on the right hand
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side of (111): at time s;, you hold H,, which at time s;,; will have
given you a profit (or loss) of
H,, (W,

Sj+1 W'Sj) ’
assuming there are no transaction costs. As a function of this profit/loss,
you may then decide to change your holdings to H,, , etc. The condi-
tion of independence of H, on future price changes W; — W is natural,
since feasible trading strategies cannot depend on knowledge of not yet
realized future price changes (which are, after all, unknown at the time
of deciding your holding strategy).

If it is possible to trade continuously, and without transaction costs,
its natural to take the limit, and write the total net profit at time ¢ of

the trading strategy (H;)¢>o as a stochastic integral:

t
/ HydWws.
0

(This above financial motivation of the stochastic integral has a defect,
in the sense that W; has a non-zero probability of being negative, which
is somewhat unfortunate for a price. To be more realistic, we will need
to give a sense to integrals like

t
/ H,dS..
0

with (S;)i>0 given by a geometric Brownian motion. This, however,
turns out to be relatively easy, once we have understood integrals like
(110)), for example since we have an explicit formula for S; in terms of
W)

It will be shown that the notion of stochastic integral sketched here
ties in nicely with the stochastic differentials we introduced before, in
the sense that:

(112) d/tf(Ws,s)dWS — F(Wh, t)dW,
0

In fact, in the more rigorous mathematical treatment of the theory,
one first defines stochastic integrals, and only later on introduces the
stochastic differentials, via (112). We have reversed the logical order
of things, on the assumption that the reader will feel that stochastic
differentials are more intuitive to work with than stochastic integrals
(the reader might of course disagree).

4.9. Exercises to Chapter 4.

Exercise 4.20. Use Ito’s lemma to compute the stochastic differentials
of the following functions of Brownian motion (W};);>o:

Wi
a) et.

b) WF k> 0.
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d) arctan(t + W,).
w

@
9]

c) cos(Wy).

—h

Q

) .
) cos(e™*).

Exercise 4.21. Suppose that X; is a stochastic process whose differ-
ential is given by:

dXt = G(Wt, t)dt + O'(Wt, t)th,

for given functions a = a(w,t) and 0 = o(w,t). If f = f(z) is a twice
differentiable function, derive an expression for df (X;) in terms of dWW;
and dt, and use this to check your answers to parts e) and f) of the
previous exercise.

Exercise 4.22. Find the solution of the following SDEs, a and ¢ being
are arbitrary constants:

a) dXt = CLXtdt + Uth.
b) dX; = aX,dt + o X,dWi.
C) dXt = aXt(Q — log Xt)dt + UXtth.

Exercise 4.23. Find an integral expression for the solution of the
following SDE:

dX; = a0 — X;)dt + o Xy dW,.
(Hint: think part b) of the previous exercise, together with variation
of constants.)

Exercise 4.24. Let g = g(y) be a given function of y, and suppose
that y = f(w) is a solution of the ODE

dy = g(y)dw,
that is, f'(w) = g(f(w)). Show that X, = f(W,) then is a solution of
the SDE:

1
(Hint: Tto’s lemma.)

Exercise 4.25. Solve the following SDE, and discuss up to which time
the solution exists:

2
a) dX, = o\/X:dW; + %dt.
b) dX; = X2dW, + X?dt.

1
¢) dX, = cos® X; — 5 sin 2X; cos® X,dt.

d) dX; = X*aw, + gX%_ldt., k arbitrary.
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e) dX, = et dW, + %ezxtdt.
Hint. Use the previous exercise and your knowledge in solving ODE’s).
Exercise 4.26. Let X; and Y; be stochastic processes such that

dX; = a,dt + o, dWy,

and
dY; = btdt + ntthv

where a, by, oy, m; are given functions of ¢t and W, (this can be weak-
ened). Show that

(113) AX.Y;) = X,dY; +YidX, + dX.dY,
= XudY; + Yid X, + o(t)n(t)dt.

(Observe that, again, a rule from ordinary calculus, the product rule,
is augmented by an additional term, namely dX;dY;.)

Use this to show that if f = f(¢) is deterministic and differentiable,
then

d(fOW,) = f(t)dW, + f'(t)W,dt.

What does this become if f is a function of both time and Brownian
motion, f = f(W;,t)?

Hint for (113): d(X.Y}) = XeparYirar — XoYs = (Xy +d X)) (Y, + dY;) —
Xt}/;ﬁ; etc-) $$

Exercise 4.27. Use the method of variation of constants to find a
solution of the SDE:

dXt = OZXtdt + (’Y + O'Xt) th
Here o,y and o are constants.

*Exercise 4.28. This exercise provides a proof of (93).
a) Show, by expanding the left hand side, that

() B = J0E0R) -2 [ (05 EE W)

; / t / t f’(S)f’(:)E(WsWu) ds du.

b) Show that the first term on the right hand side equals ¢ f(t)?.

c) Using that, for any s,t, we have that E(W,W,) = min(s,t) (see
exercise 3.11), show that the second term on the right in (114) is equal
to:

2 / sf/(s)ds = 2 (1) — 2f (D) F (1),
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t
— [ ris
0
d) Verify the following set of identities for the last term in (114):

/ / min(s, u) f'(s) £ (u)duds
=2 [ ([Curera) as
_ /sf ds—2/f (/Sf(u)du>ds

= tF(t) = 2/() /'f

(Hint: For the final two equalities, just integrate by parts so many
times that all derivatives f’(s) have disappeared.)

where we have put

a primitive of f = f(t).

e) Combine parts a) to d) to prove (93).

Exercise 4.29. Let X; be the solution to the Ornstein-Uehlenbeck
equation and suppose that s < ¢t. Compute cov (X, X;)

Exercise 4.30. Prove the following standard result on normally dis-
tributed random vectors: if X = (Xy,---,Xy) ~ N(u,V) and if
v= (v, - ,vy) € RY and if (v,X) = v, X; + - + vy Xy, then

(v,X) € N ((v, ), (v, Vv)).
This fact was used in remark 4’16*.

Exercise 4.31. Let —1 < p < 1. a) Check that

(1) -0 v ) (o i)

b) Let Zy 4, Zs, be two independent Brownian motions. Explain why

(Wi, Way), defined by
Wl,t - Zl,t

Wor = pZip + /1 —p*Zoy’

is a correlated BM, with correlation matrix

(17)
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c) Conversely, if (Wy, Wa,) is as in b) with p # £1, show that Wy,
and Wy, defined by
— 1
Wy = ———= (Wayr — pWh4),
1—p?
are two independent Brownian motions. What happens if p = +17

Exercise 4.32. Check that if (I7})>0 is a correlated Brownian motion,
with positive definite (and therefore invertible!) correlation matrix p,
and if HH! = p, then Z, := H~'W, is a standard Brownian motion.



62 RAYMOND BRUMMELHUIS

5. STOCHASTIC PROCESSES AND PDE

There is a close connection between solving a SDE and solving bound-
ary value problems for a certain type of partial differential equations
(PDE) which are known as parabolic. Parabolic PDE’s are roughly
speaking those containing one time-derivative against two space deriva-
tives. The precise definition will not be important to us; suffice to say
that the majority of PDE’s in finance, for example the Black and Sc-
holes equation (cf. section 4.3 below), belong to this class.

Solutions to SDE are examples of an important class of stochas-
tic processes which are called Markov processes, which we introduced
in chapter 3. Under conditions on the coefficients a = a(z,t) and
o = o(z,t) which guarantee the existence and uniqueness of a solution
solutions of an SDE

dXt = CL(Xt, t)dt + O'(Xt, t)th,

will be Markov. This is a non-trivial theorem of stochastic calculus,
but intuitively speaking it is plausible: if we fix ¢ and X;, then the rv
Xi1qr only depends on the value of X; at time ¢: earlier values of X,
do not play a role.

An example of a non-Markov process would be one given by an equa-
tion like

dXt - (Xt + Xt/g)th,
for which, in order to determine X, 4, we need to know both X, and

Xt/2'

5.1. Chapman-Kolmogorov and Backwards Kolmogorov. Markov
processes are uniquely determined by their transition probabilities

P(X, =y| X, =x), s>t

but if we want to specify a Markov process we cannot choose these
transition probabilities in a completely arbitrary way. They have to
satisfy what are called the Chapman-Kolmogorov equations:

Theorem 5.1. (Chapman-Kolmogorov) Let (X)i>0 be a Markov pro-
cess, and let

(115) p(z,ty,s) =P(Xs =y| X, =1x), t<s,

be its transition probability densities. Then for any time u between t
and s, t <u < s, we will have that:

(116) p(z, 65y, 5) = / P, 8 2, W)p(z, w; y, 5)d-.
R
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Proof. We first observe that if t < u < s,
P(X, =9y, X, =x)

- /ED(XS = y:Xu = ZaXt = :p)dz
R
/IP’(XS = y| X, = 2)P(X, = z|X; = )P(X; = x)du,
R

where we used the Markov property for the last line. If we divide both
sides by P(X; = x), and recall the definition of a conditional probability
density and switch notations to (115) , we find (116). QED

The Chapman-Kolmogorov equations will now be used to prove an
important connection between SDE’s and PDE’s:

Theorem 5.2. Let (X;)i>0 be a solution of the SDE
(117) dXt = CL(Xt, t)dt + O-(Xta t)dVVt,

and let f = f(z) be a given function. Fiz a final time T > 0 and define
a new function V.=V (x,t) fort <T by:

(118) V(z,t) = E(f(X7)|X; = ).

Then V =V (z,t) solves the following boundary value problem:

AV olx,t)2 0%V v
(119) { ot =7 g Taletg, =0
V(z,T) = f(x).

The partial differential equation for V.=V (x,t) is called Kolmogorov’s
backward equation associated to the SDE (117).

Proof. We first observe that, by the definition of expectation,

(120) V@iﬁiéM%tyTﬁ@My

Next, if we use the Chapman-Kolmogorov integral equation (116) with
u =t + dt, we find that

Ve, t) = /R/Rp(x, tyz,t +dt)p(z, t + dt;y, T) f (y)dydz
= /p(x, tyz,t+dt)V(z,t + dt)dz
R

so that

(121) Viz,t) = E(V(Xppar, t + db)| X, = ).
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Next, by Ito’s lemma (V' can be sown to be twice continuously differ-
entiable),

ov 10°V
V(X)) = V(Xe) + 5—(X0, )X + 5o

oV X, 1) 0%V
= V(Xt) + <CL(Xt,t)a—x(Xt, t) + %w()ﬁ, t)) dt

X, t)(dX,)?

oV
+O'(Xt, t) 8

Xz

(Xy, t)dW,.
Taking conditional expectations, and observing that
E(U(Xt, t)th|Xt = CE) = 0'(.27, t)]E(th) = 0,

we find that

o(x,t)?0*V

ov
E(V(Xirar, t + dt)| Xy = ) = V(x,t)+a(x, t)%(l‘,t)"—

Substituting this in (121), we find that V = V (x, t) satisfies the stated
differential equation.
Finally, for the boundary condition at ¢t = T, it is obvious that

E(f(X7)| X7 =) = f(z). QED

For applications in Finance the following extension of theorem 5.2 is
often important.

Theorem 5.3. (Baby Feynman-Kac) Keeping the notations of the pre-
vious theorem, let p = p(t) be a deterministic function of time t, and

define
(122) V(e,t) = eI PONB(f(Xr)| X, = 2).
Then V (z,t) solves the PDE

vV o(x,t)?0*V ov
(123) N + Ty o2 + a(:)ﬁ,t)% =p(t)V,

with the same boundary condition as before: V(z,T) = f(x).
Proof. The proof is easy: simply observe that
V(a.t) = el 7OV (2, ) = B(f (X)X, = 2),
satisfies the PDE of theorem 5.2:
% . a(xét)Qf?zTZ N a(x7t)g_‘; o,
substitute V = Vexp(ftT p(s)ds), and observe that

v (a_v - (t)) el s

ot ot
QED
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There is a generalization of theorem 5.3 for when p is also allowed
to depend on x:
p=p (aj ) t)'
In this case the solution to the boundary value problem is given by the
famous Feynman-Kac formula:

Theorem 5.4. (Feynman-Kac) Let
(124) V(l’, t) =K <ef ftT(P(X)S,S)de(XT)‘Xt _ .fL') .

Then V =V (z,t) solves
oV o(x,t)? 0%V ov
5% T era(%t)%—P(%t)V,

and satisfies the same boundary condition as before, V(z,T) = f(x).

*Remark 5.5. This theorem cannot be proved anymore by a simple
trick such as that one used for theorem 5.3. Rather, one has to repeat
the proof of theorem 5.2. A problem which occurs is that, due to the
presence of the term ftT V (X, s)ds on the right in (124), we cannot ex-
press V(x,t) anymore by a simple integral involving a single transition
transition probability , as we could in equation (120): we now need to
take into account the transition probabilities at infinitely (even con-
tinuously) many intermediary times t < s < T . Trying to do this by
brute force this'?, leads to complicated and rather messy formulas. As
we will see later on, it is possible to give a rather slick proof along the
same lines as the one of 5.2, after we will have developed the machinery
of measure-theoretic probability.

5.2. Solving the Black and Scholes PDE with probability. You
may already be acquainted with the Black and Scholes equation, which
states that any option written on an underlying stock whose stock-price
follows a geometric Brownian motion d.S; = u.S;dt + 0S;dW; has a price
V = V/(S,t) which, before ezercise, satisfies the following PDE:

v 1, ,0%V oV _

E—}-ia Stwﬁ—TS% —TV,

Here V(S,t) should be read as ”the price of the option at time ¢ if
S; = S.”, and r is the (constant) interest rate. The Black and Scholes
equation will be explained in detail in the Pricing module of this MSc.
European options can only be exercised at a time of maturity, 7', and
their final pay-off provides a boundary condition at ¢ = T'. For example,
for a call:

(125)

Vean (S, T) = maX(S —F, 0),

13Basicadly7 by approximating the integral by Riemann sums, for which one only has to take
into account the large, but finite, number of times s; which we use to partition the interval, and
then take the limit over all Riemann sums. This was Feynmann’s original approach, except that
he did this for another equation, the Schrédinger equation from Quantum Mechanics
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and, for a general European pay-off of f(S7) at T
(126) V(S.T) = f(9),

f being specified by the derivative’s contract.

Now (125), (126) is precisely the type of problem we can apply our
Baby Feynman-Kac theorem, theorem 5.3, to: if we use s instead of ¢
as a time-variable instead of ¢ (since ¢ now is the, fixed, time at which
we wish to evaluate V' (S, 1)), and if (X;)s solves:

(127) dXs =rX.ds + o X, dWs,

then

(128) V(S,t) = e "TOE (f(X7)| X, = S).
Since

Xs _ Se(r—02/2)(s—t)+J(Ws—Wt)

solves (127) and is equal to S at s = ¢, we find that, writing 7 =T — ¢
for the time-to-maturity,

CTOV(S,1) = B (f(Selr AT 0sovrw)
_ /f(Se(r—a2/2)T+ow) 6—11)2/27- dw :
R

2T

since Wy — W, ~ N (0, 7). The integral can be evaluated for many pay-
offs. If we take f(S) = max(S — E,0), one finds the celebrated Black
and Scholes formula for the price of an European call: the necessary
calculations are the same as in (extra) exercise 2.32.

Note that the auxiliary process X; we introduced to solve the PDE
follows a geometric Brownian motion, just like the price process for
S, but with the difference that the expected return is r instead of u.
It is like the price of an (artificial) security which has a risk-less rate
of return, r, although there is a price risk present, in the form of the
Brownian motion term, assuming that o > 0 (if o = 0, there is no risk:
the price evolves deterministically, not stochastically). The only kind of
investor who would invest in such a security would be one who doesn’t
care about risk, in that he does not require an additional return p—r as
a reward for taking risk. Such (hypothetical) investors are called risk-
neutral, and (128) is called the discounted (due to the """ in front)
risk-neutral expectation of the final pay-off f(Sr). Pricing formulas
in Finance for derivative assets with European exercise often ave this
structure:

(Value at t ) = E discount factor) - (pay-off) |S; ) ,

risk-neutral ((
where the discount factor may in general be stochastic also, and is
therefore put inside the expectation-sign. The connection between a
PDE for a price, and such an expectations-type formula is always given
by a Feynmann-Kac theorem.
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The derivation of the Black and Scholes PDE shows why we are led
to a "risk-neutral process” X; instead of the "risk-rewarding one 7, S;:
the risk is hedged away, and the growth rate of the stock does not play
a role in the pricing of the derivative. It is also possible to derive (128)
directly, without passing via PDE’s, by what is called the martingale
pricing method. This will be explained in the Spring semester of the
Pricing module.

5.3. Exercises to chapter 5.

Exercise 5.6. Consider the boundary value problem for the backwards
heat equation:
ov. 10°V 0
ot 2022
V(1) < f(2)
where f(z), the boundary value for time ¢ = 1, is given, and where we
are looking for a function V' = V(z,t) defined for t <1 and x € R. Use
theorem 5.2 to show that a solution is given by the following formula:

dy
@0 = [ 1) o pn
One has to worry a bit about for which f’s the formula makes sense.
Can you think of an f for which it wouldn’t?

Exercise 5.7. Now consider the boundary problem for the heat equa-
tion with a drift term:
ov  10°V ov
o 202 “or
V(:L‘, 1) = f(l‘),
a being a constant. Derive an explicit integral formula for the solution
V = V/(xz,t), along the lines of the previous exercise.

0,

Exercise 5.8. A Furopean digital call is an option which, at maturity
T, will pay you 1 if the stock price Sy at T is bigger than the exercise
price E, and 0 otherwise. In terms of the Heaviside function H = H(z),

defined by
lifx >0,
H@%:{ 0if z <0,
the pay-off of such a digital call equals H(Sy — F). Suppose that the
price of the derivative satisfies the Black-Scholes equation before exer-
cise.

a) Derive an explicit formula for the price of a European digital call.

b) Derive a formula for the value of a European digital put, with pay-off
H(E — S7).

(Hint: derive a put-call parity relationship for digital calls and puts;
what do you notice about H(Sr — E)+ H(E — S7) 7 )
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Exercise 5.9. Derive the Black and Scholes formula for a European
call.

Exercise 5.10. Consider the following boundary value problem:

oV oV o2 0%V

Al B T A W T
{ ot +alf $)8x+261’2 0, fort <1,

i(ZL’,T):g(ZL‘),

where g = g(z) is some given function. What is the stochastic pro-
cess associated to this PDE by Kolmogorov’s theorem 5.27 Write the
solution to the boundary value problem as an expectation.
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6. MEASURE-THEORETIC PROBABILITY

In this chapter we will try to familiarize you with the language of
measure theoretic probability theory. A probability will be seen as a
map giving different weights, between 0 and 1, to possible future events
our "outcomes of statistical experiments”, the latter being seen as sets
of "potential future states of the world” compatible with the event (or
experimental outcome) in question. To formalize these notions we will
make heavy use of set-theoretical notation; cf. the additional handout.

In brief, to do probability, we will need a

sample space §2,

a o-algebra F,

a probability measure P, and

the idea of a rv as a real-valued function on 2 which is measur-
able with respect to F.

We will examine these concepts one by one, in separate subsections
of this chapter. We will abundantly use set-theoretic notation, which is
briefly reviewed in the final subsection to this chapter, for convenience
of the reader.

6.1. Sample spaces. The sample space (2 is a (usually very big) set,
which can be thought of as the set of all possible future states of the
world, or as the set of all possible outcomes of some statistical experi-
ment. Simple examples are:
e Tossing a coin once. Then Q = {H, T}, where " H ” stands for
"Heads” and "7 for " Tails”.
e Tossing a coin thrice. The sample space now consists of all
three-term sequences which we can form out of H and T

(129) o_ {HHH HHT HTH, HHT,
~ HTT,THT,TTH,HHH}.

Each of the elements of ) represents a possible outcome of this
coin-tossing experiment: three Heads in a row, two Heads in a
row and then one tail, a Head, a Tail and then a Head, etc.

e Tossing a coin infinitely many times: 2 will now consist of all
possible infinite sequences of Heads and Tails

(HTHHTHHTH ---),
etc. More formally:
Q= {(zr1x9w3---):xj=Horz; =T}

You may not realize this at first, but this is a huge set: if we
would let x; be 0 or 1 above, instead of H or T', then such a
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sequence (21, Tg, - -+ ) can be thought of as a real number between
0 and 1, written in base 2 (or in bits, of you like):

ZE12_1 + 1'22_2 + 1’32_3 —+ .- s

and there are therefore as many elements of {2 as there are real
numbers between 0 and 1.

Finally, two very important examples for finance:

e Observing the price of an asset S at discrete timest = 0,1,2,---.
In this case, €2 is the set of all infinite sequences

(80, 51,52, ), s; € Rsg, forall j .

where s; = price of P at t = j "in the state of the world w =
(50,581,582, ).
Mathematically speaking, such a sequence can be thought of as a

function from N to the set of positive reals, [0,00) (sometimes also
denoted by Rsy).

e Observing an asset price continuously, or in continuous time.
In this case we can take {2 to be the set of all all functions from
the positive reals to the positive reals:

Q={s:s5:[0,00) — [0,00)}.

The asset’s price at time ¢ is s(t) (the value of s at t), if we are
in the state of the world w = s € Q2. In other words, € is simply
the set of all possible price trajectories for our stock S.

In this example we often use smaller sets of functions, for example by
requiring that s : [0, 00) — [0, 00) is continuous. If we allow our prices
to jump, a convenient space is that of functions which are continuous
to the right with a left limit, or RCLL. Another acronym for such
functions in the mathematical literature is ”cadlag”, from ”continue a
droite, limites a gauge”.

6.2. The o-algebra of events. Typically we do not know which state
the world is in: referring to the above examples, we do not know in ad-
vance how future prices of a given stock will develop, or what the total
outcome of a repeated coin tossing element will be. We seek knowledge
by doing observations or, statisticians would like to say, by perform-
ing experiments, for example looking up today’s price of your favorite
stock in the FT. Such an observation will not, in general, completely
determine the state of the world we are inc, but only partially. E.g.,
you might consult your FT only every other day, and therefore remain
ignorant of what the stock’s price has been in between. FEwvents are
subsets F' C 2 which can be thought of as sets of all possible states of
the world (that is, points in sample space) which are compatible with
a given (hypothetical) experiment or observation. For example,
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e In the continuous time asset price example above, the event F'
might be:
F={s:]0,00) — [0,00) : s(tg) > 1},

the set of all possible price trajectories for which the price at
a given time t; will exceed 1. More complicated events easily
suggest themselves, for example

Sto — Sto—

F={s:[0,00) = [0,00) : "> 0.05},

Sto—h
the event that at to the stock’s return over [tg — h, to] will have
exceeded 5%.

e Another, more elementary, example is, in the second dice-throwing
example above, the event that the third throw will give a Head.
This is represented by the subset

F={HHH,HTH,THH,TTH},

of €.

Being subsets of €2, we can consider unions, intersections and com-
plements of events. This will lead to an "algebra of events”. More
specifically, if F' and G are events, then we can form:

(1) Their intersection,
FNG={weQ:we F andw € G}.

In the statistical context of making observations (doing a statistical
experiment) this is interpreted as:

e "N G: the event that both F' and G will occur.
(2) Their union,
FUG={weN:weForwe G},

interpreted as:
e ["UG: the event that either F' or G will happen.
It is important to realize that the "or” is not exclusive: it is allowed
that F' and G happen simultaneously.
(3) The complement of F in 2, Q\ F, defined by
O\ F={weQ:wé¢F},
where ¢ means: "not an element of”. The interpretation is that
e O\ F'is the event that the event F' will not occur.
To save time, we often write F° for the complement: F*°:=Q\ F.
We also single out two very special events, namely the entire set €2

itself, corresponding to ”something will always happen” (but you're not
at all interested in what), and the empty set (), the set with no elements,
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corresponding to ”something impossible will occur” (e.g. F'N(2\ F)).

As the next step, we will now consider collections of events Fsets
of events F which contain both () and Q and which are closed under
operations (1) to (3). We will in fact impose a stronger version of (2):

Definition 6.1. (o-algebra). A o-algebra on (2 is a set F of subsets of
(2 such that:

(i) Both § € F and Q € F.

(ii) If Fy, Fy, -+, F,, -+ € F, then their (countably infinite) union
is also in F:
U F, € F.

(iii) If F € F, then also F*=Q\ F € F.

Note that individual elements of F are themselves sets, namely subsets
of Q).

If F only satisfies (ii) for finite unions (but still satisfies (i) and (iii))
it is called an algebra instead of a o-algebral?.

The attentive reader will have noticed that we did not explicitly
require that intersections are in F, but this is in fact a consequence of
the other conditions (i) and (ii): for example, it is easily checked that

(FNG)*=FUG°,
and therefore
FNG=Q\ (F UG = (F UG,
is in F, if F' and G are. This extends to infinite intersections: see the

exercises.

There exist two somewhat special examples of o-algebras:
e The trivial o-algebra: Fy.., = {0,Q} .
e The o-algebra consisting of all possible subsets of €2, which
is also called the powerset of €); we will call it the discrete
o—algebra:

(130) Fdiscr = FdiSCT(Q)'
This latter o-algebra is in most cases the appropriate one if € consists

of a finite set, like in the finite coin-tossing experiments above, but is
in general much too big to be useful when € is infinite.

Before looking at some more involved (and more interesting) exam-
ples we have to explain a way of generating c-algebras. Suppose we

M The suffix 707 is often used in mathematics theory to indicate countably infinite unions or
sums



MATHEMATICAL METHODS I MSC FINANCIAL ENGINEERING 73

start off with some collection C of subsets of €2 which does not neces-
sarily satisfy either one of the conditions (i), (ii) and (iii) of definition
6.1.We now enlarge this initial set C by throwing in arbitrary (count-
able) unions of elements of C, complements of elements of C, and then
continue by adding arbitrary (countable) unions of complements of el-
ements of C, complements of countable unions of elements of C, and
so on, continuing until do not get ant new sets anymore to add. It is
intuitively clear that in this way we will end up with a o-algebra which
is called the o-algebra generated by C, and denoted by

(131) 7(C).

Armed with the concept of o-algebras generated by sets of subsets, we
can now give some more ambitious examples of the former.

“Remark 6.2. What we just have given amounts to a kind of ”bottom
up” description of ¢(C). It is a bit inconclusive in that ¢(C) appears as
the limiting result of a never-ending set of operations of taking unions
and complements. The usual mathematical definition is more "top
down”, and defines o(C) as the intersection of all o-algebras containing
C:
o(C) = N{F : F o-algebra, C C F}.

This corresponds to thinking of o(C) as being the smallest o-algebra
containing C. To make it work one has to check that the intersection of
a collection of g-algebras (here, that of all those containing C) is again
a o-algebra; we leave the verification of this fact to the reader. If this
is too abstract to your taste, you may prefer the informal description
above.

Example and Definition 6.3. An important example of this con-
struction is given by the o-algebra of Borel subsets of R. Here we
take for C just the set of all open intervals (a,b) of R. The o-algebra
generated by this C is called the Borel o-algebra of R:

B(R) =0 ({(a,b) : a < b}).
We can do something similar in R": here the basic building blocks we
start from open rectangles, which are simply products of open intervals:
R = (al,bl) X (ag,b2> X X (an,bn)
= {z= (21, ,2,) 1 a; < x; < b},
and we define B(R™) to be the og-algebra generated by the set of all
such rectangles.

Example 6.4. (o-algebra of the infinite coin-tossing experiment) Re-
call that

Q={w=(r120229--+):2;=H or T}.
In practice, we will only be able to observe a finite part of such an
experiment, and will only be able to decide whether a segment of an
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element w € € (which is an infinite sequence of Heads and Tails) coin-
cides with some pre-determined pattern of H’s and T’s. This suggest
to consider the following type of events: let y; - - -y, be some sequence
of Heads and Tails, y; =T or H, for each j, which we should think of
as given beforehand. The following subset of 2 will then correspond
to the event that, in a coin-tossing experiment, an infinite sequence of
tosses will start with y ys - - - yn:

(132)

Fy1---yN = {W = (3719172372"') €Nz =y, T2 =1, "+ , TN = Z/N}-

For example, Fyyr is the event that the tossing experiment will begin
with a "Head, Head, Tails”.

The natural o-algebra is the one generated by the events (132), with
arbitrary N € N and arbitrary y; € {H,T'}.

The following two examples concern financial applications:

Example 6.5. (Natural o-algebra for asset prices in discrete time) See
under (i) for the definition. Again, we will only be able to observe at
at most a finite set of times t; = nq,--- ,t; = ng, where nq,--- ,n; are
given natural numbers. At each of these times ¢}, a typical observation
will be whether the stocks price is in some given interval (or ”window”)
I;, e.g. I; = (aj,b;). Such an observation corresponds to the event

(133) thJj = {(50,51,2 , ) 18p € Il,Sn2 S IQ, T, 8y, € Ik}

={s=1(80,81,2, ") a1 < Sy, <by, -, a5 < Sp, <b}.
For example, we might consider the event that the price, 2 days from
now, is between 5 and 7, and that in 4 weeks it will risen above 12:

{52(817827”'):5S82§77828212}-

The natural o-algebra now is the one generated by all sets of the
form (133). One can check that this o-algebra consists precisely of all
sets of the form:

{(s180--+) :81 € B1,8s3 € By,-++ ,8, € By, -+ },
where By, By, - -+ is a sequence of Borel sets which ly in [0, 00).

Example 6.6. (Natural o-algebra for asset prices in continuous time)
In this case we had

Q= {s:[0,00) — [0, 00) function},

and again, the basic type of observation we can do is to see whether for
some finite set of times ¢, ---ty, the asset prices is or is not in certain
intervals I;. This corresponds to the event:

(134) Fupy,,) =15 :[0,00) — [0,00) : s(t;) € I},

and the natural o-algebra is the one generated by all of such events, for
all possible N and all possible times ¢; and intervals I; (1 < j << N).
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Again, one can show that this o-algebra consists precisely of all sets of
functions of the following form:

(135)  Fu,),.8,), = {5 :[0,00) — [0,00) : s(t;) € By, for all j € N},

(to,t1,- -+ ) being an, in principle infinite, sequence of times, and B; €
B(R) a sequence of Borel subsets of [0, 00).

*Side-remark 6.7. (can be ignored without loss of continuity) Note
that in these examples, the countable ”union axiom” (ii) naturally leads
to events which require observations at infinite set of times tg, ¢1,---. A
similar remark applies to the condition of o-additivity in the definition
of a probability, cf. definition 6.8 below. This is of course not realis-
tic, and should be considered a mathematical idealization, whose final
justification is to be found in the smooth and flexible mathematical
theory which results from in. Indeed, it is possible to develop a prob-
ability (or measure) theory based on algebras, and on finitely additive
measures, but this theory actually turns out to be more complicated.
Interestingly enough, these finitely additive measures (or ”charges”, as
they are sometimes called) do play a role in certain very recent work on
optimization problems in finance, where they, so to speak, enter again
through a back-door, basically since they play a role in the description
of the dual space of the set of bounded functions on a probability space.

6.3. Probability measures. We next introduce probabilities in all of
this. A probability P assigns to each event F' € F a number P(F') be-
tween 0 and 1, interpreted as the probability that F' will occur in an
experiment or observation, in such a way that certain obvious require-
ments are met.

Definition 6.8. Given a sample space €2, and a o-algebra of events F
on (2, a probability measure P on (€, F) is a function

P:F —[0,1],
such that the following two conditions are satisfied:

(a) P(Q2) = 1.

(b) (o-additivity) If Fy, F,---,Fj,--- is a, possibly infinite, se-
quence of events F; C F which are mutually exclusive, in the sense
that
then

P(U;Fy) =Y P(F)).

Interpretation: (a) just states that, with probability 1 , ”something
will occur”. As for (b), mutually exclusive events are those which
cannot be observed simultaneously (like a stock’s price t time ¢; being
both > 2 and < 1), and for those, the probability that one of these will
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happen is just the sum of the individual probabilities. As indicated,
condition (b) is called o-additivity of P.

If we drop condition (a), and allow that P takes on arbitrary positive
values, we obtain the definition of a measure.

Definition 6.9. A measure on F is a map
p: F — |0, 00,

which satisfies condition (b) of definition 6.8 (with P of course replaced
by .

One should think of a measure as being an abstraction, or generaliza-
tion, of the familiar concepts of length, surface area, or volume. Their
main point is given a measure, we can integrate functions, as we will
explain below.

Simple consequences of definition 6.8. Before turning to examples
we first look at some simple consequences of definition 6.8. First, as is
to be expected, the probability of F' € F not happening is 1 — P(F):

(136) It F € F, then P(Q\ F) = 1 — P(F).

For this it suffices to apply (b) of definition 6.8 to F; = F and Fy = Q\F
(which are of course mutually exclusive, by definition).
If we take in particular F' = Q in (136), we find that

(137) P(0) = 0,
since ) = Q\ Q.

Example 6.10. (Coin tossing again) If we toss a coin once, then Q =
{H,T}, and we can take F = {0, {H},{T},{H,T}}. We can define a
probability measure P by declaring:

P((H}) = P(T}) = 5.

(This would be a fair coin; how would you model a coin where the
probability of Heads is, for example, twice the probability of Tails?).

Observe that P({H,T}) = P(Q) = 1 = P({H}) + P({T}), so that
(b) of definition 6.8 is satisfied.

Now let us toss the same coin thrice, and use the €2 of (129), and the
o-algebra Fy;s.r consisting of all possible subsets of €. It is important
to realize that to define a probability measure P, it suffices to prescribe
the values of IP on each of the elements of 2 or, to be more precise, on
each event of the "single-element” events {HHH}, {HHT}, {HTH},
etc. For then, the value of P) on larger subsets of Q follows from
repeated use of condition (b) of definition 6.8; for example:

P({HHT,HTH HHHY}) =P ({HHT})+P({HTH})+P({HHH}),
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etc. Now for a single-element event like {HTH} (corresponding to
throwing first H then T and then H again) it is reasonable to put

1 11 1

P(HTHY) =5 5 5=+
and similarly for the others: P({HHH}) = P({HHT}) = 1/8, etc.
(Note that we're assuming here not only that the coin is fair, bur also
that subsequent tosses are independent of each other, that is, the result
of the first toss does not influence the second, etc.!) In this way one

constructs a probability-measure on Fg;ger.

The previous example is characteristic: in defining probability mea-
sures we often first define it on a smaller generating set of the o-
algebra!®, and then extends it to all of the o-algebra by repeated use
of the o-additivity, property (b) of definition 6.8. For less simple o-
algebras than the discrete one this is somewhat less easy to carry out,
but the following abstract result solves this extension problem in a very
general setting:

Theorem 6.11. (Carathéodory’s extension theorem) Let C be an alge-
bra of subsets of §2, that is, C is closed under finite unions and taking
complements. If
p:C — [0, 00],
15 a map satisfying the following version of o-additivity:
For all F1, Fy,--- € C, i U;F; € C, then p(U;Fy) = >, u(Fy) -

Then p can be extended to a o-additive map

p: F(C) — [0, 00],
that is, a map which satisfies condition (b) of definition 6.8.

The proof of this theorem is outside the scope of these lectures, and I
am only mentioning it because, in the examples below, we will define
probability measures by specifying their values only on specific events
which together, however, generate the whole g-algebra. Carathéodory’s
theorem can be used to provide a theoretical underpinning for this
procedure, of which you won’t need to know the details.

Example 6.12. (Lebesgue measure on R and R™ ) Let us take 2 = R,

and F = B(R), the Borel o-algebra. A moments thought shows that

B(R) is already generated by the set of al (left-) half open intervals:
{(a,b] : a,b € R or a,b = +o00 and a < b}.

(Note that we include infinite intervals like (—oo, b] and (a,00). ) To
make this into an algebra we define C as the set of all finite unions:

F:(al,bl]U~~U(an,bn]:—oo§a1<blga2<62§~~§bn};

15it is instructive exercise to convince yourself that Faiser () is generated by {{w} : w € Q}
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that is, we simply add all possible finite unions of disjoint intervals. If
we define p on C by:
p(F) :=length of FF = Z(bj — a;),
j=1
for an F' as above, then one can show, using Carathéodory’s theorem,
that p extends to a measure on B(R), which is called the Lebesgue
measure. One usually simply writes dz instead of p.

For unions of intervals their Lebesgue measure is just their total
length, in ordinary sense, but we can now also talk about the length of
any Borel subset of R (which can be much more bizarre than a simple
interval). This measure is not a probability measure , since the measure
of 2 = R is not even finite! One can get a probability measure om R
by taking a positive function f = f(z) > 0 of total intgral 1 on R (that
is, by taking a probability density!) and defining,

P((a,b]) = / f(x)d,

extended to finite unions of disjoint intervals (a;, b;] by taking the sum
of the respective integrals. This extends again to a measure on B(R),
which now is a probability measure, since:

P(R) = /OO f(x)dx = 1.

Another way to get a probability measure out of Lebesgue measure is
by restricting € to be the interval [0, 1], since this has length 1.

The construction of Lebesgue measure carries over to n-dimensional
Euclidian space, R™: we now take as basic building blocks for our o-
algebra unions of a finite number of disjoint n-dimensional cubes:

Q={zeR":a; <z <by, -+ ,a, <zp < by},
and define p on such a cube as simple being its (n-dimensional) volume:

Q)= (b1 —ar) -+ (bp — an).

The resulting measure on B(R") is called, unsurprisingly, n-dimensional
Lebesgue measure, and denoted by dx = dxy - - - dx,,.

Example 6.13. As a more singular example of a probability measure
we again take Q@ = R and F = B(R). We fix a point 27 € R, and define
a measure 0, by:

1if To € B,
0 otherwise

6.0(B) = {

This is called the Dirac delta-measure in xy, and models a situation
where we are sure that the "state of the world” is xg.
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As a generalization, we can take a sequence of points z; € R, and a
sequence of positive numbers p; > 0, and define

P(B)= >  p;
jix;€B
If 372, pj = 1, this defines a probability measure on 2 = R, 7 = B(R).
A concrete example is given by:

. N
Ty =1, pj:ﬁe )

and for example P((a,b] is then simple the probability that a Poisson
random variable will have its value in (a, b].

Definition 6.14. A triple (€2, F,P) with F a o-algebra of subsets of
2 and P a probability measure on €2 will be called a probability space.

6.4. Random variables. A real random variable can be thought of as
an object which can take on different values in different (future) states
w of the world, so we can simply look upon it as being a function

X:O0—-R

or define it as such. However, it cannot be any function; we would like
to be able to consider events like: 7 X will take on a value between a
and b7, or a < X < b, and talk about its probability:

Pla < X < b).
The set of "possible future states of the world” in which X lies between
a and b is given by:
{weQ:a< X(w) < b}
This is simply the inverse image of (a,b < under X, and often denoted
by: X~ ((a,b <). More generally, for any set G C R, we put'®
X HG)={weQ: X(w)ea}

To be able to assign probability to them, these sets should lie in F,
and we therefore arrive at the following important definition:

Definition 6.15. Let (€2, F,P) be a probability space. A real random
variable is a function X : 2 — R such that:

(138) X"Y(a,b)) € F, for all a,b € R.

Functions which satisfy (138) are also called measurable w.r.t. F, or
F-measurable. We note in passing that one can show that if X is
measurable, then in fact the inverse image X ~'(B) of any Borel subset
of R will be in F. In particular, we can take B = (a, b], where a = —oc0
is allowed: see exercise 6.22.

16ps a perhaps totally superfluous remark, we emphasize that this should not be confused

with the notation X ! for the inverse function of X, which may or may not exist, and which
anyhow, in the present situation, only makes sense if 2 = R!
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The following definition now makes the connection between the present
formalism and the informal approach to probability of the first chap-
ters:

Definition 6.16. If X is a random variable on a probability space
(Q, F,P), then its cumulative distribution function is the function F :

R — [0, 1] defined by:
(139) Fx(z) = P(X7((~00,a]))
= PHwe: X(w)<z}).

Indeed, the right hand side of (139) is simply the probability of the
event that X < z, written down in our new formalism.

Vector-valued random variables are defined similarly:

Definition 6.17. A vector-valued random wvariable on a probability
space (Q,F,P) is a function X — R™, for some given n, such that,
for all ay,by,--- ,an, by,

X ((ar,by) x -+ X (an,by))
(={w:a; < Xj(w) < by, ,an, < Xp(w) < by})
cF,
where the X; are the components of X = (Xj, -+, X,,).
Again, one can show that if X is a vector random variable, then

X~YB) € F, for each Borel set B € B(R"). The cumulative distribution-
function of X is now defined as

(140) Fx(z) =P({w: Xi(w) <21, -+, Xp(w) < x,}),
if v = (21,---,2,) € R™

6.5. Brownian motion revisited. We illustrate the formalism intro-
duced above by re-examining Brownian motion from our new measure-
theoretic point of view.

1. The sample space. We take as our Qg,ownian the set of all real-
valued functions on the positive half-line:

QBrownian = {w . [Oa OO) - R}a

2. The o-algebra. We define Fg,ownian as the o-algebra generated
by all sets of the form:

(141) F = F(tjaajybj)lgjgN =
{w:1]0,00) = R:w(t) € (ar,b1),, -+ ,wy € (an,bn)z},

where N runsover N, 0 < #; <1y < --- <ty and a; and b; are arbitrary
elements of R. This g-algebra has a similar explicit description as the
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one in example 6.6, where now we only have to restrict the Borel-sets
in (135) to subsets of the positive reals: B; C [0, 00).

3. The random variables. Brownian motion will now be defined as
the collection of random variables W, , t > 0, defined as:

(142) Wi(w) = w(t) if w € QBrownian 1S the function w : [0, 00) — R.

4. The probability measure. Finally, for the definition of our
Brownian probability measure Pg,ownian We take our inspiration from
(50), and put for F' defined by (141):

b1 by
(143) IP)Brownian(F) = / da:l o / de

al an
po(zn,tn —tn—1)po(TN—1 — TN_2,tnN—1 — tN—2) - Do(x1,t1),

where, as before,

2
ea:/Q

po(z) = Nzl

The motivation for this complicated looking definition of Pg,ownian 1S
that, if W, is defined by (142), then F' given by (141) is precisely the
event that

th € ((ll,bl] and VVtz S (ag,bg]and s anthN c (CLN,bN],

whose probability should be given by integrating the joint probability
density (50).

Carathéodory’s theorem now allows us to extend Ppg,ownian to the
whole of our g-algebra Fg,ownian-

One can now easily convince oneself that the Brownian motion (W,),
defined on Qgrownian, F Brownian, P Brownian Satisfies the defining proper-
ties (i), (ii) and (iii) of Brownian motion.

Formula’s like (143) admittedly look rather unappetizing, but we will
in fact very seldom work directly on the probability space (g ownian,
FBrownians PBrownian) (Or any other probability space, for that mat-
ter) when using Brownian motion in practical applications. The new
measure-theoretic view of probability should be looked upon as a conve-
nient theoretic framework. One of its main conceptual advantages is the
separation of the set of events F and of the probability P : F — [0, 1]
given to those events. Indeed, one easily imagines two investors look-
ing at the same set of events involving a stock’s price, but assigning
different probabilities to them. Changing probabilities will play an im-
portant role in Pricing II, where we will see that derivative securities
are priced as the (discounted) expectation of their pay-offs, not under
the "real-world” probability, but under a risk-neutral one.
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*Remark 6.18. (To be ignored unless you know a bit of Analysis)
What about property (iv), continuity? This turns out to be consid-
erably more subtle. We would like to show that the event of being a
continuous path has probability 1. In mathematical language, if

Fep ={w:[0,00) = R: w continuous at all its points},

(" CP” standing for ” Continuous Pats”) then Pg,.ounian(Fop) = 1. How-
ever, a first problem is that the event Fxp is not even in our o-algebra
FBrownian! See the (non-mandatory) exercises at the end of this chap-
ter for an explication: the point is that continuity at all ¢ > 0 imposes
an uncountable set of conditions. The way out is to first show that
the event Fyeg of being uniformly continuous on Q¢ N [0,T], each
T > 0, is in the o-algebra, and has total probability 1 with respect to
PBrownian (the latter is not at all easy to show!). We then re-define our
Brownian motion by:
Wi(w)= lim W,.(w), if w € Fyeog,

r—t

0<reQ
(the limit exists because of uniform continuity) while we simply put
Wt*(w) = O, if w g_ﬁ FUCQ-

All sample paths t — W/ (w) will now be continuous. Moreover, W
will have the same properties (i), (ii) and (iii) as W, and is therefore
or sought-for Brownian motion wit continuous sample paths. At this
point we simply write again W; for W;. One can show that, for each
fixed t > 0, Wy(w) = W (w), with probability 1. All this theory
is explained in detail in the more mathematically oriented books on
probability theory, like for example:

P. Billingsly, Probability and Mesure, Wiley-Interscience Publication,
John Wiley & Sons, 3-th ed., 1995,

N. V. Krylov, Introduction to the Theory of Random Processes, Gradu-
ate Studies in Mathematics, Volume 43, American Matematical Society,
2002.

L. C. G. Rogers and D. Williams, Diffusions, Markov Processes and
Martingales, Wiley Series in Probability and Math. statistics, 2-nd
ed., 1994

6.6. o-algebras generated by random variables. If X : Q — R is
a random variable, we let:

(144) o(X) = ( smallest o-algebra containing all ) ’

sets X7 1((a,b)), a,b € R

the sigma-algebra generated by X. The idea is, that ox contains all
possible information about which state of the world we are in which
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can be obtained from observation of the random variable X. One can
show that:

(145) o(X) = X (B[R))
= {XYB):BeF}.

We will need to go beyond one rv, and consider the o-algebra gen-
erated by an entire families of random variables. The most important
example of such a family is that stochastic process, (X);t > 0. We
then let:

(146) o(X,:s<t)= ( smallest o-algebra containing all sets ) ’

X Y((a,b)), for s <t and a,b € R

interpreted as the information about the state of the world, contained
in the process X up till, and including, time t.

Example 6.19. (Brownian motion again) We take up the example of
Brownian motion again, realized on the probability space

(QBrownians F Brownians P Brownian) introduced in the previous subsection.
If we fix a time ¢, then one easily guesses that o(W;) is the o-algebra
consisting of all sets of the form

o(Wy) ={w:[0,00) = R:w(t) € B},

where B ranges over the Borel subsets of R. This can be sown formally
using (145) and the definition of W, on Qpg,ownian-

More generally, o(Ws,s < t) can, in this realization of Brownian
motion, be given a more concrete description as the collection of all
sets F' of the form

F={s:[0,00) = [0,00) :s(t;) € B, j=1,2,---},

where s; < s < --- <t is a sequence of times smaller or equal to t,
and where B, is a Borel subset of R.

As already noted, such explicit descriptions are useful for illustrative
purposes only, to give an idea of what the general definition means
in a particular case. In practice, it is much easier to work with some
abstract realization of Brownian motion (W;):> on some unspecified
probability space (€2, F,P). The o-algebra generated by Brownian mo-
tion up till time ¢ will often be denoted by F;, or FV, if we want to
stress Brownian motion:

(147) Fo=FV=0(W,:s<t).

These o-algebras will play an extremely important role in the construc-
tion of stochastic integrals: basically, we will be able to integrate

T
[ maw,
0
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with stochastic integrands Hy, that is, the H; are rv H; :  — R, but
only those such that, for each t,

H,:Q— R,

is F}V -measurable. In fact, there is a slight subtlety with the definition
of F;, in that we agree to also include all events of probability 0, that is,
events which are never expected to produce themselves with Brownian
motion.

6.7. Events of probability 0 or null-events. We say that F' € F is
a null-event or null-set with respect to P if

P(F) = 0.

This does not mean that F'is impossible, but simply that it practically
will not occur.

It is not important here that P is normalized (P(2) = 1), and we
can define in the same way a null-set with respect to a measure.

Examples 6.20. (i) If we take Q = [0, 1], with the Borel o-algebra
(the one generated by the intervals), and with Lebesgue-measure, then
single-element sets {x¢} are null-events: indeed, {z¢} = [z, o] and
P([xo, z0]) = o — 2o = 0. More generally, an infinite but discrete set
{zo, 1,29, -} is a null event: by the o-additivity of P,

P({x0>xlvw2’ T }> = ZP({I‘]}) =0.

We remark in passing that null-events in [0, 1] can be a lot bigger than
just a discrete sequence.

(ii) In the context of the Brownian motion example 77, of t5 > 0 and
o € R,

{W € QBrownian : Wto = :EO} = (Wto = :BO)
is a null-event (exercise!). More generally, (W,, € Fp) is a null-event
for Pg,ownian if Fo C R is a null-set for Lebesgue measure.

One often extends the concept of null-event to arbitrary subsets of
Q, by saying that a subset A C 2 is a null-event or null-set, if there
exists an F' € [F such that:

AC F and P(F) =0.

The slightly subtle point here is that, a priori, A itself need not be
an element of F, so that we cannot directly speak of P(A). One then
usually enlarges F by throwing in all the null-sets defined in this way,
and completing to a og-algebra. In the classical context of the Borel
o-algebra, one obtains in this way a new o-algebra which is called the
o-algebra of Lebesgue-measurable sets.

By convention, we do something similar with the 7}V, by adding all
null-sets.
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6.8. Appendix to chapter 6: brief review of set-theoretic nota-
tions. We need to work with sets of various mathematical objects, like
sets of real numbers, sets of vectors in R™, but also more complicated
ones, like sets of subsets of real numbers (o-algebras!), or the sets of
functions from the positive reals to the reals.

Elements of a set. The members of a set are called its elements, and
we use

x € A,

for 7z belongs to A”, or "x is an element of A”.
Subsets. If A and B are sets, then
A C B,

means that every element of A is an element of B, and we say that A
1s a subset of B.

Functions and inverse images. The notation
f:A—B

means that f is a function from a set A to a set B, that is, an operation
which maps each element of A to a single element of B. An important
notion for us will be that of the inverse image,

10,
of a subset C C B of B:
fHC)={a€c A: f(a) € O},

the set of all elements of a which are mapped , by f, to an element of

C.

Inverse functions. The notation for inverse image should not be
confounded with that for an inverse function, f~': if f : A — B is
one-to-one and onto'’, that is, if for all a;,as € A,
o fla1) = flaz) = a1 = ay
(f one-to-one or injective
e Each element b € B is of the form f(a), for some a € A
(f onto, or surjective ),

then we can define the inverse map f~!: B — A by:

f7Hb) =a s fla) =0
We won’t very much use inverse functions, but inverse images will occur
a lot in what we will do.

Operations on sets: Given two sets A and B, we can form their
intersection, their union, and their difference. These are defines as
follows:

17such functions are often called bijective in the mathematics literature
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Intersection: AN B = {z:2 € Aand x € B}, the set of all elements
which are both in A and in B.

Union: AUB = {z € A or x € B}, the set of all elements which are
in both A and B.

Difference: A\ B = {z € A: x ¢ B}, the set of elements of A which
are not in B. Note that this will in general be different from B\ Al

Notations for some standard subsets of R (the set of all real
numbers):

(a,b) ={x € R:a <z <b} (open interval),

[a,b) ={z € R:a <z <b} (closed interval)
(a,b) ={x € R:a <z <b} (half-open interval to the left ),
[a,b) ={z € R:a <z <b} (half-open interval to the right)
We also put:
(a,00) ={r € R:z > a},
and
la,00) ={zr € R:2z > a};
(—00,b) and (—o0, b] are defined similarly. For example,
(—o0,b) ={x € R: 2 < b},
ete.
6.9. *Exercises for chapter 6. The following exercises are somewhat
more theoretical than you may be used to, or indeed than what is in
general required for Financial Engineering practice. They have only
been included to illustrate certain ways of reasoning with o-algebras,

and to justify some of the claims made in the text, and they do not
constitute examinable material.

Exercise 6.21. (a) Show that if Fy, Fy,--- | F,,,--- is a finite or infinite
collection of subsets of €2, then
Un (Q\ F,) =Q\ (N F) .

(b) Use a) to show that if F is a o-algebra and F, Fy.--- € F, then
also N, F,, € F.

Exercise 6.22. a) Let a < b. Show that [a,b], (a,b] and [a,b) are all
in B(R).

Hint: show that, for example, (a,b] = Ny—01,...(a,b+ %), and similarly
for the others.)

b) Show that (—oo,a) and (b, c0) are in B(R).

¢) Show that if X is a real random variable on (€2, F,P), then X ~!((a,b]) €
F.
(Hint: verify first that, very generally, X '(N,B,) = N, X *(B,).)
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Exercise 6.23. Show that if X is a random-variable on X, then
X~YB) € F, for all B € B(R), by completing the following steps:

a) Let G = {G CR: X Y(G) € F}. Show that G is a o-algebra on R.
b) Explain why (a,b) € G, for all a,b € R.

c) Use a), b) and the definition of B(R), to conclude that B(R) C G.
From this conclude the desired property of X with respect to the Borel
sets.

Exercise 6.24. Prove the affirmation in example 6.5 that the o-algebra
generated by the sets (133) is precisely the set:
(148) FB = {Bl X BQ Xoewel Bj S B(RZO}
(The subscript "B ” stands for ”Borel”).
(Hint: To prove such a result, it suffices to prove that:

o Fp is itself already a o-algebra ,

e Any o-algebra which contains the sets (133) will necessarily con-

tain :FB.
For the latter point, first convince yourself that any o-algebra which
contains the sets (133) must contain all events of the form
Fip, = {(s0,81,82,--+) 1 s; € Bj}
:RZOX"'XBJ'X"'XRZOX""

that is, the set of points w = (sg, s1, S2, - - - ) in sample space whose j-th
coordinate is in the set B € B(Rx).

Exercise 6.25. Similarly, in the context of example 6.6, prove the
affirmation in example 6.6, that the o-algebra generated by the sets
(134) is precisely of the set of all events of the form (135) .

Exercise 6.26. Prove (145 by showing that:
a) X 1(B(R) is already a o-algebra in its own right.

b) By an argument similar to the one used in exercise 6.23, show that
any sub-c-algebra F; of F containing all X ~!((a,b)) has to contain all
of X~Y(B(R)). (It suffices in fact to replace F by Fj in that exercise.)

c¢) Using the formal definition of o(X) as the common intersection of
all sub-sigma algebras F; containing all X ~(a,b), conclude.

Exercise 6.27. On a mathematical difficulty with being continuous
with probability 1.

(This exercise supposes you are familiar with basic concepts form Math-
ematical Analysis, and should simply be skipped if you're not).
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We take the sample-space 2 = Qpgrownian and the c-algebra F =
FBrownian- Points of 0 are thus functions w : [0,00) — R, and events
are certain sets of such functions.

Recall that a function w : [0,00) — R is called continuous in the
point tq if, for all & > 0 there exists a ¢ > 0 such that, for all t € [0, c0) :

It —to] < 6 = |w(t) — w(to)| < e.

We can, without loss of generality, limit ourselves to € and § of the
form 1/n, 1/m, n,m € N. Continuity at t, can therefore be expressed

as:
For all n there exists an m such that |t —to| < 1/m

= |s(t) — s(ty)| < 1/n.
(a) Show that the event "w € Q) continuous in ¢ = 1”7 corresponds to
the following subset of (2:
MneN Umen Niz0, [t—to]<1/miw € Q : |w(t) —w(l)] < 1/n}.
Explain why this set (probably) does not belong to F. Can you actually
prove this? (see also part (b) below).

(b) We can give a similar description of the o-algebra F as for the one
of example 6.6 (see previous exercise). In particular, any event F' € F
is of the form:

F:{U} € Q’U)(tl) c Bl,’lU(tQ) S BQa"'}v

for a countable set of times ¢; and Borel sets B; € B(R), and whether
a w is in F or not is completely determined by what happens with w
at this discrete set of times ¢;, j = 1,2,---. Use this observation to
argue that the set:

{w:][0,00) — R : w continuous at all t >0 },

is not in F.

The conclusion of (a) and (b) is that events like "being continuous
at a point or at all points” are not observable in the o-algebra F. So
how come we can talk about Brownian motion being continuous with
probability 17 The key is by first looking at Brownian motion restricted
to rational positive times:

Qi ={r=p/q:p,qeN}.
(c) Show that the set:
Fo:={w:[0,00) = R: w|Q+ is continuous in all positive rationals}
is an element of F, by showing that it equals:
mrEQ+ MneN Umen r\'7“’EQ+7|1”—7“/|<1/m {w €: |UJ(T’) - w(rl>| < 1/71}
More generally, show that the event Fyoq from remark 6.18 is in F.
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7. EXPECTATIONS AND INTEGRALS.

If X :Q — R is arandom variable in the newly defined sense, we
would like to know how to compute its expectation. The strategy is to
first define the expectation for a set of rvs having a particular simple
form, and then to try extend to a general rv by approximation. We
will often use the very convenient concept of the indicator function of
a subset F' C (). This is the function I : 2 — R defined by:

lifweF,
Ir(w) = { 0 otherwise

7.1. Defining expectations. A random variable X : () — R is called

simple if there exist finitely many mutually exclusive sets Fy,--- , F} €
F and finitely many real numbers ¢y, - - - , ¢ such that:
k

(149) X(w) =Y ¢lpw).

j=1
As a random variable, X takes on the value ¢; in case of the event FJ;

since the events are mutually exclusive, there is no ambiguity. We now
define the integral of such a simple function by:

k
(150) /QX(w)dIP(w) = cP(Fy).

j=

Observe thta

/Q X(@)dul) = Y ab(R)

k
= Z ¢; - (Probability that X = ¢;),
j=1

so that the integral of X is the same as the expectation of X:

/Q X (w)dP(w) = E(X).

So expectations can be regarded as integrals over sample space, with
respect to the probability measure: this is conceptually a very powerful
point of view, the more so since integrals can also be defined with
respect to measures p which are not probability measures.

We observe in passing that X = [ is a special example of a simple
function, and that expectation, integral and probability all coincide for
such X:

E(Iy) = /Q Ip(w)dP(w) = P(F).
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We still have to go beyond integration of simple functions. The
idea is to do this by approzimation: if X : 2 — R is an arbitrary
F-measurable positive function, then one can find increasing sequences
of simple functions Y,, (n = 1,2,3,---) such that, for any w € Q,

Yo(w) <Y,i(w), n=1,2---;
(151)
Y, (w) — Y(w) as n — oo,
and one puts
(152) /YdIP’: lim [ Y,(w)dP(w),
Q

n—oo 0

where the limit in the right hand side exists (though it might be +00),
and can be shown to be independent of the choice of approximating
sequence f, (this is not triviall). One can also show that in the case
of Q =10,1], and a continuous function X = f :[0,1] - R, and P =
dz, then one obtains the familiar Riemann-integral from elementary

calculus: )
| s
0

which can be computed by finding a primitive, etc.
For X’s which are not positive, one writes X (w) = X (w) — X_(w)of
its positive and negative parts'®,

X (w) = max(X(w),0), X_(w)=max(—X(w),0),
and puts:
E(X) = /Xd]P’:/X+dp—/Xd]P>
E(X,) - E(X )

provided both of the terms on the right are finite (to circumvent prob-
lems with expressions like oo — 0o, which we can’t give a meaning to).

We define the integral of the rv X over smaller sets F' € F, by simply
multiplying the integrand by the indicator function of F'; that is, we
put:

(153) /X-]IFdIP = /X-]IFdIP
F Q

- / X (w) - Tr(w) dP(w).
Q
We can also write (153) as

18if x [0,1] — R, then X and —X_ are simple the part of the graph of X above and below
the z-axis, respectively
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the expectation of X restricted to the event F.

The following fact is useful to know, and intuitively obvious:

(154) F a null-event = / X dP=0.
F

7.2. *Connection with the older definition. In the remainder of
this section we will explain why this new definition of expectation
amounts to the same thing as the previous one involving distribution
functions, which we gave in chapter 1. This subsection may be skipped,
and the result simply admitted.

It suffices to treat the case of positive rvs X: the general case can be
handled by writing X as X, — X_| as we did above. Pick an n € N, to
be thought of as a very big number (it will tend to oo in te end), and
divide the real line R in small intervals of size 27™:

( Jj J+1
on’  Qn

|, jez={--,-2,-1,0,1,2,---}.

Put ‘
J
Xn(u)) = Z Q—n]lx—l((j277L’(j+1)27nD.

j
(Make a drawing with the graph of X when for example Q = [0, 1]!)
Then one can check (exercise, or see the literature) that
o X, (w) < Xp(w);
o X, (w) — X(w), asn — oo.

It follows that:
E(X) = lim [ X,(w)dP(w)

n—oo 0
. J J J+1
— L [ — <
(155) Jl—»nc}o; 2_nIP’ ({w 5 < X(w) < 5 })
Now
(156)

{w:;fn<X(w)§j2;nl}:{w:X(w)§‘%}\{wiézjfn}7

and if we apply the general rule that, for any Fj, F» € F such that
F, C Iy,

P(Fy\ F2) = P(F1) — P(F3),
and recall the definition of the distribution function, (139), we see that
the probability of (156) is simply

j+1 j
F —Fx | =
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and that therefore (155) implies that:

L J Jj+1 J
om0 =t 3 (5 (N) < ()
which in chapter 1 we denoted by:

/Rx dFx(x);

see formulas (11), (12) with g(z) = x.. We can do the case of an arbi-
trary (positive and increasing) g = g(x) in a similar way, by observing
that g(X) is the limit of the following sequence of simple functions:

J
J

and repeating the argument. More general g then are handled by writ-
ing them as difference of increasing functions (as an exercise you might
like to think about why this is always possible if ¢ is (continuously)
differentiable).

These expressions remain of course rather theoretical, and they will
only become more concrete if we suppose for example that F'x is dif-
ferentiable, F = fx, in which case dFxy = fxdz. Observe, however,
that if we would be doing some kind of non-parametric statistics, and
our only knowledge of X would be in the form a histogram, then we
would basically know the Fx(j/2") for some fixed n, and formulas like
(157) and its generalization for g(X), (11) are used (without the limit)
to compute approximate values of the respective means. This remark
could apply for example to the pricing of over the counter options when
one has done a non-parametrical regression of the relevant risk-neutral
distribution on the basis of the prices of liquidly traded vanilla options.

The above generalizes to multi-variate distribution functions, and the
results agree with what we did in chapter 1; we won’t go into details.
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8. Hilbert Spaces

It is useful, both for stochastic calculus, as for Finance in general, to
know the basics of the theory of Hilbert spaces. Indeed, the set of ran-
dom variables of finite variance on a given probability space (2, F,P)
is a prime example of a Hilbert space. In Analysis, this space is known
as the space of square integrable functions, L?(Q, F,P). Hilbert space
terminology permeates all of modern mathematics, from the theory of
differential equations (where it originated) to probability theory, sta-
tistics and mathematical finance.

8.1. pre-Hilbert and Hilbert spaces. A Hilbert space is basically
an infinite-dimensional generalization of the familiar Euclidean spaces
R™ (we will only be concerned with what are called real Hilbert spaces).
We give a slightly informal and descriptive, rather than a formal defi-
nition, for which we refer to the mathematical literature.

Definition 8.1. A pre-Hilbert space H is a real vector space, provided
with an inner product, which is a map from H x H to R, sending pairs
of elements z,y to a number (z,y)y € R, such that for z,y,z € H and
A€ER,
(z+y, 2)H=(z, 2)n+(y, 2)mr, (A2, y)i = Az, y)n(\ (z,9)r = (y,2)m,
and

(x,2) >0, (z,2) =0 2 =0.

That H is a vector space means that we can add elements x,y of H
to x +y € H, and multiply them by real numbers \: A-x € H, in
such a way that all the usual rules of algebra are satisfied. We usually
simply write te inner product as (x,y) instead of (z,y)y, when there
is no confusion possible.

Examples 8.2. Examples of pre-Hilbert spaces are:
(i) R", with inner product (z,y) = >_7_| 7.
(ii) The space of square integrable random functions:
(158) L*(Q,F,P)
={X:Q—R: X F —measurable, [, X (w)*dP(w) < oo},

which is the same as the vector space of random variables X such that
E(X?) < co. The inner product is:

(159) (X,Y)2 = /Q X (W)Y (w)dP(w),

which can be written in a more simple, and also more probabilistic,
way as:

(160) (X,Y)2 = E(XY).
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This space will be extremely important in the sequel and, for us, will
be the example of a Hilbert space.

Given a Hilbert space, we define the length or norm of an element x
by:
(161) |2/l ==/ (2, 2)n,

again often leaving off the subscript H. Clearly, ||\ - z|| = |A| ||z, if
A € R: multiplying x by the scalar A means multiplying its length by
the absolute value |\|. If H = R", then simply,

lz]] = /2t + - + a7,

the Euclidean length of x. In the case of L*(Q, F,P), the norm is:

(162) 11X ]|z = </Q X2d]P>> "

This is often called the L?-norm.
Another important concept is that of orthogonality: we say that
x,y € are orthogonal, notation: = L y, if (z,y) = 0:

(163) rlys (z,y)=0.

An important general fact about inner products is the so-called
Cauchy-Schwarz inequality:

(164) |,y < {l=]] - [yl
Another important general fact is the triangle inequality:

[l +yll < fll] + [yl

To go from pre-Hilbert spaces to Hilbert spaces we have to explain
the concept of completeness, which has to do with converging sequences
in H. We say that a sequence xg, x1, T9, - - - of elements of H converges
to an element x € H if the norm of the difference goes to 0:

||z —z,|| = 0, asn — oo .
We denote this by
T, — xin H .

If (x,), is such a converging sequence, then the inter-distances ||x,, —
Z|| Will go to 0 as both m and n go to 0 simultaneously:

(165) |z — Zm|| — 0 as n,m — 0.

Such sequences are called Cauchy-sequences, and what we just stated
amounts to saying that converging sequences are Cauchy sequences.

1gRussian mathematicians often add the name of Buniatowski who indeed seems to have been
the first to discover it, presumably (as for the other two) in the context of R™
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However, the converse of this statement need not be true, in general.
Hilbert spaces are now precisely those pre-Hilbert spaces for which the
converse does old:

Definition 8.3. A Hilbert space is a pre-Hilbert space for which every
Cauchy-sequence has a limit.

This is called the completeness property of Hilbert spaces: it allows us
to define elements of H by constructing Cauchy-sequences. A case in
point will be the Ito integral. Two examples might help to clarify this:

Examples 8.4. (i) Not every Cauchy-sequence in Q converges in Q:
take for example a sequence of rational numbers converging to /2.
This will be a Cauchy sequence, but its limit, v/2, falls outside of Q.

(ii)* Slightly more ambitiously, consider the space
V={f:[0,1] = R : f continuous},

with the L2-inner product:

(f,9) :/0 f(x)g(x)dz.

This is a pre-Hilbert space, but not a Hilbert-space: consider a sequence
of functions f,, n > 1, which is:

1. 0on [0,5 — ],

2. Linear on |
right end-point,

3. 1on[§+11].
Then (f,), converges in the L?-norm to the function which is 0 on
0,2), and 1 on [3,1] (it doesn’t matter in fact what value we give it
in the point %) It is therefore a Caucy sequence of elements in V', but
the limit falls "outside of V7.

N =
SI=

,% + %], while 0 in the left end-point and 1 in te

A pre-Hilbert space can have "holes”. There exists a general math-
ematical construction called completion, which amounts to "filling in
all the holes” corresponding to non-converging Cauchy-sequences. Ap-
plied to the vector space V of the previous example, this would lead
us to the space L*([0,1],B([0,1]),dz). More generally, we have the
following important theorem:

Theorem 8.5. The space L*(Q, F,P) is complete, and therefore a
Hilbert space.

We won’t give the proof, which can be found in any text on mea-
sure theory. In practice, it is more important to be familiar with its
statement, and to know and how and when to apply it.
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8.2. The projection theorem. We now consider the following situ-
ation. Let H be a Hilbert space, and let V' C H be a subspace of H,
that is, a subset V' of H such that sums of elements are again in H,
as are all products of elements of V' by real numbers. Such a subspace
is called closed is limits of converging sequences of elements of V' are
again in V', that is, if z, € V| x, — = in H implies that = € V' (ob-
serve that, a priori, we only know that x is in the larger space, H). An
example of a subspace which is not close is the space V' in example 8.4
(ii), regarded as a subspace of L.

Theorem 8.6. (projection theorem) Let V' be a closed subspace of the
Hilbert space H. Then there exists, for each h € H, a unique element
v € V' having smallest distance to h:

(166) 1= ol = min 11— wl]|.

The element v € V 1s called the projection of x onto V', and is charac-
terized by the property that h — v is perpendicular to V', or

(167) (h—v,w) =0 for allw € V.

We again skip the proof, as we will be more concerned with applying
this theorem. For the finite dimensional Euclidean spaces R™ its state-
ment should be relatively intuitive: make a drawing in R with V a
plane, or a line). In infinite dimensions, some care is needed: example
8.4(ii) will again show that theorem 8.6 is false if V' is not closed: see
the exercises.

Given a closed subspace V' C H, we define the orthogonal projection
Py, :H —V by

(168) Pyh = v if (166) (or equivalently, (167) ) holds.

Note that if we let V+ :={w € H : (w,v) =0 for all v € V }, then Py
maps V+ onto 0. Further basic properties of P = Py are:
e (a) Py is a projection, meaning that P2 = Py.
e (b) Py is orthogonal, meaning that (h — Pyh,v) = 0, for all
velV.

We note in passing that an equivalent way of stating (b) can be shown
to be: for all h,g € H: (Pyh,g) = (h, Pvg).

8.3. Application: Conditional expectations of finite variance
rvs. The following is an important application of this construction.

Let (Q,F,P) be a o-algebra, and let G C Q be some smaller o-
algebra, e.g. G = o(X), the o-algebra of information which can be
gleaned from observing the random variable X. One can show that in
this case the space

V =L*Q,G,P)
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of square-integrable G-measurable rvs is a closed subspace of L*(Q, F,P).
Note that for a rv X to be in V, X~!((a,b)) has to be in G instead
of F, which is a more stringent condition. The conditional expectation
with respect to G can now be defined as being the orthogonal projection

That is, if X is a rv with finite variance, then its conditional expectation
® := E(X|G) is characterized by the two following conditions:

e ® is G-measurable, and square-integrable: E(®?) < oo.

e For all square integrable and G-measurable rvs Y € L?(Q, G, P):

(170) E(®Y) = E(XY),
since this is the same (in a different notation) as:
(X —®,Y)=0, forall Y € V = L2(Q, G, P),

which characterized the orthogonal projection, according to the pro-
jection theorem.

One way to think about E(X|G) is that it represents the best pre-
diction of the random variable X, given that we only dispose of the
information G. Indeed, remembering the equivalence of (166) and (167)
in theorem 8.6, we may restate (170) as a variance-minimizing property
(after substraction of the mean from X):

(171) Var (X —E(X|G))= min Var(X -Y).

Y G-meas.
E(Y?) < oo

We will return to conditional expectations in more detail (and from
different points of view) later on.

8.4. Exercises to chapter 8.

Exercise 8.7. Let H = L?(Q, F,P). Show, using the Cauchy-Schwarz-
Buniatowski inequality (164), that if X € H, then E(|X|) < co. Hence
the mean E(X) of X exists (is finite). Conclude that H is the same as
the space of rvs on (€2, F,P) having finite mean and variance.

Exercise 8.8. Show by an example that theorem 8.6 is false if V' is
not closed.

(Hint: Example 8.4(ii), with H the space of L*-integrable functions on
[0,1] and h € H the function which is 0 on [0,1/2), and 1 on [1/2,1].)

Exercise 8.9. Assuming the existence of a distance minimizing v,
prove the equivalence of (166) and (167).

Exercise 8.10. Show that if X > 0 with probability 1, then the same
holds for its conditional expectation E(X|G).

(Hint: a G-measurable rv ® is > 0 with probability 1 iff E(®Is) > 0
forallGegG.)
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9. THE ITO STOCHASTIC INTEGRAL

We will now return to the issue of defining a stochastic integral,

(172) /0 ' fedWe,

where W; is a Brownian motion. We now want to allow f; to be sto-
chastic also, and not just a deterministic function of time ¢, as in the
discussion in chapter 3, and part of the problem is which stochastic f;
we can allow.

9.1. Brownian motion revisited. With our new view of probability,
Brownian motion will now consist of a family of random variables

WtIQHR

defined on some fixed probability space (2, F,P) (for example, the one
which we introduced in section 6.5, although other probability spaces
are possible), and satisfying the usual axioms for Brownian motion:

d W0:07
o Wy — W, ~ N(0,t—s) for s <t,
o W,, W, — W, are independent if u < s < t.

The main advantage of this new view point is that we can now talk
about the sample paths of Brownian motion, which are the functions:

(173) t — Wiw) : Rsog — R, w e fixed.

Note that there is a sample path for each w € Q.

We can now also be more precise on the continuity of Brownian
motion. In fact, we can (and will) suppose that (2, F,P) and W, are
such that with probability 1, the sample paths of W; are continuous
functions of t. More precisely, there exists a null-set or null-event
N C Q, P(N) =0, such that:

(174) forallw € Q\ N, t — Wy(w) is continuous everywhere.

It turns out that it is always possible to achieve this, by re-defining W;
suitably: cf. remark 6.18.

Theorem 9.1. Brownian motion is almost surely nowhere differen-
tiable. More precisely, there exists a null-event N € F such that, for
allw ¢ N, the function t — Wi(w) is nowwhere differentiable (i.e., its
graph does not have a tangent at any point).

The proof consists again of some pretty technical mathematics; see
for example Billingsly.
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9.2. Filtrations of o-algebras. Before starting the construction of
the Ito-integral, we have to introduce an important new concept, that
of a (continuous) filtration of o-algebras. This is a family of o-algebras
F;, one for each t > 0, which is increasing, in the sense that:

(175) s<t=F,CF.

If we think of a o-algebra as codifying information which can be ob-
tained from making observations/doing statistical experiments, then
we're simply dealing with an information set which grows with time.
The following is a standard example:

Example 9.2. Let (W;):>o be a Brownian motion, as above. Define
FV as being the collection of all null-sets in F, and F/V as the o-
algebra generated by F3" together with all W, for s < ¢:

(176) FV=oc({W,:s<t}UFY).

Loosely speaking, F}V contains all possible information which can be
obtained from observing Brownian motion up till, and including, time ¢
(the null-sets counting as containing no information at all). The filtra-
tion (F}V);>0 is called the Brownian filtration (on the given probability-
space (§2, F,P), to be precise).

Informally, F}V-measurable functions can be thought of as functions
of some, or all, of the W,,’s with u < t: random variables Y of the form

Y :g(WU17 7Wuk)7

g a (for example) continuous function and u; < ¢, are F}V-measurable,
and every F}V-measurable Y can be shown to be a (point-wise) limit
of a sequence of such special Y’s. Now recall that, if u < s < ¢, then
W, and W; — W, are independent. Functions of such W, will also be
independent of W; — Wy, and, in view of the above, we obtain the
following important property:

Ifu < s <t, then every F)V -measurable

(177) function Y is independent of Wy — Wi

9.3. Defining the Ito integral. We now place ourselves in the fol-
lowing situation: besides our Brownian motion (W});>0, we dispose of
some filtration (F;);>o such that:

(178) Each W, is F;-measurable ,
and such that the analogue of (177) holds:

If u < s < t, then every F,-measurable

(179) function Y is independent of W; — Wi

One can always take for F; the Brownian filtration F/V, but larger
filtrations are also allowed, provided (179) is satisfied. This liberty of
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choice is often convenient. For example, we might have two independent
Brownian motions (W;); and (Z;);. Then if

Fi=0Ws Z,:s,r <t),

is the natural filtration generated by the two Brownian motions to-
gether, then F; satisfies both (178) and (179), and is strictly bigger
than £}V, the filtration generated by W; only.

The second ingredient for a stochastic integral is a stochastic process
H = (H})i>0, Hy : Q — R, which will serve as the integrand in our sto-
chastic integral (172), and which has to satisfy the following important
condition:

(180) H, is F;-measurable, for each ¢ > 0 .

We will say in this case that the process H; is adapted to the filtration
Fi (t>0), and also that it is non-anticipating™.
For such H = (H,); we will now give a sense to the integral

(181)  Ip(H) = Ip(H)(w) = /O H(w)dWi(w), w € O,

even though t — W;(w) is, with probability 1, now where differentiable.
Note that I7(H) will be a function on €, that is, a random variable.

We will construct the integral in two stages: first for a suitable class
of simple adapted processes H;, and then for more general H;, by a
process of approximation approximation and passing to the limit?!. It
is for this last step that the formalism of Hilbert spaces will prove to
be very convenient.

9.4. Tto’s integral for simple adapted processes. To define a sim-
ple process (H;);>o we first need a finite partition

(182) to=0<t1 < - ty_1=tny=T

of the interval [0, T7]: the points ¢; divide the interval (0, 7] up in (typ-
ically small) subintervals (t;_1,%;]. As a concrete example you could
think of

T
t]’:W, 0§]§N,

where N is thought of as a big number. We next choose, for each ¢;,
an JF;;_,-measurable random variable K; and call (H;);>o simple if it
is of the form:

(183) Ht(w) = Z Kj(w) H(tjfhtj](t)’

20¢he origin of this term lies in the fact that when F; = ]-',YV, then such an H¢ only depends
on past to present values Wy, s < t, not on future values
2Lt s perhaps good to realize that any integral is always the result of some limit process,

beginning with the basic integrals you were taught about in Calculus!
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where we will put Hy = K7, by convention (its value in 0 won’t matter
much, in the present context). In other words:

K1<W)7 if 0= to <t <t

Kg(u)), if <t < to,
mw={

Ko(w), if ty_y <t <t,=T.

One can visualize such an H; as a step-function on [0, 7], whose levels
are given by the random numbers K; = K,;(w). Observe that H, is
adapted, since, for t;_; <t <, say,

H; = Kj is F;, -measurable, and therefore F;-measurable ,

for 7, , C Fi. We next define the Ito integral of such a simple function
as:

T
(184) I(H) = / H,dWw,

0

N—1

= Z Hy, (w) (W, (w) — Wy, (w))

Observe that this is a function of w, and therefore a random vari-
able on  (although we usually suppress the variable w when writing

fOT HdW,); this is why this is called a stochastic integral.
The integral (184) has the following important properties:

Lemma 9.3. If (H;)i>0 s a simple adapted process, and if

T
]T = IT(H) = / thVVt,
0

then:
(a) It has mean 0:
(185) E(I;) = 0.
(b) Ir has variance
T
(186) E(I7) = / E(H,)?dt.
0

Proof of lemma 9.3: The proof of (a) is easy:
E(Ir(H) = > E(H, (W,,, — W)

J
- ZE(Htj)E<Wtj+1 - Wtj)
J

(since Hy, and Wy, ,, — W,, are independent)
= 0,
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since Brownian motion has mean 0.

The proof of (b) is a bit more involved:

2
[% = (Z Htj (Wtj+1 - Wtj))
J
= Z Z (Htj (Wtj+1 - Wtj)) (Htk(Wtk+1 - Wtk))
J k
= ZHE] (Wth - Wtj)2 +

J
Z Z (Hfj (VthH - Wtj)Htk(Wtk+1 - Wtk)) :
J#k
We have to compute the expectation of this expression.

Now, by independence of the (F;-measurable) rv Hy, and (W,
Wtj)?

1

E (Hfj (Wtj+1 - Wt]’)2) = E (HtQJ> E ((Wtj+1 - Wtj)Q)
= E(K}) - (tj1 —t;).
As for the terms with j # k, if for example j < k, then 7+ 1 < k, and
Htj (Wt - Wtj)Htk7

41
will be F;, measurable, and therefore independent of W;, . — W, .
Hence,

E (Htj (Wtj+1 - Wtj)Htk (Wtk+1 - Wtk))
E (Htj (Wtj+1 - Wtj)Htk) E (Wtk+1 - Wtk)
= 0.
It follows that

E(1}) = Y E(KD(tn—t)°

T
- / E(H?)dt,
0
since the function ¢ — E(H}?) is an ordinary step-function (with values
in R ), which is equal to E(K?) on (t;_1,1;]. QED
Remark 9.4. If we write out (186) in full, we get the statement:

/Q(/OTHt(W)th(W>)2dIP’(w):/OT/QHE(W)dP<w)dt'

This is certainly not an obvious identity: when going from left to right
we have to move the square under the second integral sign, to get it
on fi(w), and this is false in general. To be able to do this, we needed
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that H; is adapted, and we also used the basic properties of Brown-
ian motion, in particular independence of the future and the past-up-
to-present. A closer analysis shows that the martingale property of
Brownian motion, which amounts to the statement that

]E(Wt|Fs)) = WS7

is in fact all that is needed, and that one can generalize the stochastic
integral by replacing (W;); by any square integrable martingale. We
will precisely define and discuss martingales in a later chapter.

The identity (186) is fundamental for extending the Ito-integral to
more general f;’s than just the simple ones.

9.5. The Ito-integral in full generality. The Ito-integral will now
be extended from simple step-functions to more general ones by a limit
argument. The basic idea is simply to approximate a general adapted
integrand H = (H;); by a sequence of simple adapted integrands, H, =
(Hn,t)ti

(187) H,(w) — Hi(w), n— o0,
and to put:
T
(188) Ir(H) = lim Ip(H,) = lim H, (w)dWi(w),
n—oo n—oo 0

hoping that this limit exists. Now the whole mathematical subtlety
of the Ito integral lies in the way in which we have to interpret these
two limits (187) and (188). Note that these are not simple limits of
numbers, with which you should be familiar from elementary calcu-
lus, but limits of functions, namely functions on the sample space, €.
The subject of limits in function spaces has been the object of intense
mathematical research during the first half of the 20-th century, and has
given rise to the field of Functional Analysis, and there exist several no-
tions of convergence of sequences of functions. The Ito-integral is best
understood in the context of Hilbert spaces; indeed, (186) can be un-
derstood as asserting that the Ito-integral on simple adapted functions
is a length-preserving map, or isometry, between to suitably defined
spaces of square integrable functions (L2-spaces). We will therefore
slightly change viewpoint and re-interpret everything in terms of func-
tions on Q and [0, 00) x €, respectively. First observe that we can look
upon a process (H;);<r as simply being a function

H:[0,T] x Q— R,

sending
H: (t,w) — Hy(w).
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We'll therefore also write Hy(w) as H(t,w). We now introduce the space
of functions:

(189) HE: = [0, 7] x © — R adapted,

/ /Hthd]P W)t < oo},

(where we’ll tacitly assume that H is measurable with respect to the
product o-algebra B([0,7]) x F, in order to be able to give sense to
the double integral; ignore this point if it confuses you).

If we introduce the inner product

(H, K)y = /0 /Q H(t, w) K (t, w)dtdP(w),

then H% can be sown to be a Hilbert space®.

"infinite dimensional Euclidian length” is given by

= [ [ morare,

which we can also write as:

T
1H|12, = / E(H,)%dt.

H2 is the L2-space of adapted processes. Recall form chapter 8 that
there is also the (simpler) Hilbert space of random variables:

The corresponding

[2(Q) = {X : Q> R:E(X2) = / X (w)2dPw) < oo},
Q
with ”Euclidian length”
X1 = | X(w)dp(w) = E(X),
Q

We note in passing that using a more precise notation, L*(€) should
be designated as L?(Q, F,P), since it depends on both the o-algebra
and on the measure. A similar remark applies to H2%, but we will keep
to the simplified notations, so as not to make the following totally
unreadable. It is clear from the previous that both H% and L?*(2)
are spaces of the same nature, namely functions whose square can be
integrated, or are square integrable, with respect to a suitable measure.

One now can show the following important fact concerning H:

Lemma 9.5. Simple adapted processes (regarded as functions on [0, T|x
Q are what is called dense in H%: for each H € H% there exists a se-
quence of simple functions H,, such that

|H — Hyullxy — 0, asn — oo.

224 1p fact, HZ is a closed subspace of the L2-space L2([0,T] x €, B([0,T]) x F, dtdP)
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Equivalently, interpreting everything as processes, if H = (H)o<t<r
is a stochastic process which is adapted to the filtration F;,t < T, then
we can always find a sequence H,, = (H,t)o<t<r of simple adapted
processes, such that

T
(190) = Halbe= [ E((H - Hu)de o
0

The lemma is non-trivial, and requires a proof, for which we refer
to the literature (cf. for example the book by Oksendael). Below we’ll
indicate how to construct such an approximating sequence if H has
continuous paths.

We now show how to use these properties to define the Ito integral
Ir(H) = fOT H;dW, of an arbitrary process H = (H;)i>0 in Hz.

Step 1. By the lemma, there exists a sequence of simple adapted pro-
cesses, H,, = (H,):, such that

||H — Hyllw — 0.

By the triangle inequality:
[Hn — Hun|lw < |[Hn — Hl|w + [|H = Hpl[r — 0,
as n, m — oo simultaneously.

Step 2. Being a simple adapted process, the Ito integral of H,, is already
defined. We put

Y, = In(H / H, dW,.

Then I, — I,, = I7(H, — H,,), and (186) implies that:
1Yo = Yallzg = E((Ya—Yn)?))

T
ZE/E«mem%ﬁ
0
(191) = ||Hy — Hullz, — 0,
as n, m — oo simultaneously. Hence:

(Y,), is a Caucy-sequence in L?(2) !

Step 3. L?(2), being a Hilbert space is complete, meaning that every
Cauchy-sequence converges. There therefore exists an element X €
L*(92) such that

|X - Yn”%?(m — 0,
that is,
E((X — Ir(H,))*) — 0,
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and we define the stochastic integral of our original process H simply
as being this limit:

n—oo

T
Ir(H) :/ H,dW, := X = lim Ir(H,).
0

Step 4. We finally have to show that this is a good definition, in the
sense that the Ir(H) := X we found does not depend on the approx-
imating sequence (H,), of simple adapted processes (in general, there
is more than one such sequence). But this is relatively easy: if (H,)»
is another such sequence, then

[[Hy — Hallr — 0,
and therefore, using (186),
(U (Hp) = Ir(H)|| = [[Hn = Hyll2 — 0,
also. Hence, necessarily

lim Ir(H,) = lim I,(H,).

n—oo n—oo

This completes the construction of the Ito-integral.

It can be sown that Ir() inherits the properties (185), (186) estab-
lished the simple Ito integrals: the approximating I7(g,) have these
properties, and they persist in the limit (we won’t give a formal proof).
We record this formally as

Theorem 9.6. Let H = (H,)o<i<7 € H%, and let

T
IT(H) - / thWt,
0

its Ito-integral, which we just defined. Then

(192) E(Ir(H) =0,
and
(193) E(I7(H)?) = /T E(H?)dt.

More generally, if K = (K3); is also in 2, then
T

(194) B Ir(H) Ir(K)) = | E(HK)
0

The only point which perhaps needs comment is (194). This can
either be established along the same lines as (193), by first verifying
it for simple functions, and then passing to the limit (for which you’ll
need to use Cauchy’s inequality, if you want to prove it rigorously).
Alternatively, it can be derived from (193) by using a small trick called
polarization: see the exercises at the end of this chapter.
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9.6. Ito’s integral for integrands with continuous sample paths.
The above procedure is admittedly a bit abstract. However, if the
integrand H; has continuous sample paths ¢t — H;(w), and is bounded
(which accounts for the vast majority of stochastic integrals used in
Finance), we can give a less abstract and more concrete description of
Ir(H), which corresponds closely to the usual picture of integration
in ordinary Calculus. The point is, that for such H, we can choose a
very simple type of approximating sequence of simple functions. For
convenience, we will sometimes write

H(t,w) for Hy(w).

We then put:
n—1 jT

(195) Hyy(w)=> H (;M) L /m,Gi+11/ml (1).
=0

These are clearly simple adapted functions, since H, is adapted. If the
sample paths of H; are continuous then, for eachw € Qand 0 <t < T :

H,(w) — Hy(w) n — oo.

Under the additional condition that H is bounded, meaning that there
exists a constant C' > 0 such that

|Hy(w)| <O, forallwe Q,0<t<T,

one shows® that H, tends to H in the space H2: ||H — H,||y — 0
Next, if we compute the Ito-integral of H,, ;, then we obtain Ir(H,, ;) =
Sn(H,T), where:

n—

196)  Su(HLT)w)i= Y H (0 ) (Wormnl) = Winy (o).

=

Observe that this is just like a Riemann sum, with the integrand H;
always evaluated in the left endpoint of the interval [jT/N, (j+1)T/N].
We then have:

Theorem 9.7. If H; is adapted and bounded, then
Ir(H) = lim S,(H,T)

n—1 .
: JT
w0 = i S (250) (W) - W),
7=0
i the sense that
(198) E ((Ir(H) — So(H,T))*) — 0, asn — oo .

23, g. by applying Lebesgue’s dominated convergence theorem
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The convergence in (198) is called (for obvious reasons) convergence
in mean square sense.

Observe that (197) immediately suggests how to compute numeri-
cally different realizations of I7(H), given sample paths of H; and of
W;. Like for ordinary numerical integration, this simple algorithm can
be improved: see the book by Kloeden and Platen.

9.7. Ito processes. Let H = (H;);>¢ be an adapted processes, which
is in H? for each time ¢t > 0:

t
/ E(H?)ds < oo, all t >0
0

for each t. For such H the Ito-integrals

[ oo,

are well-defined and, as a function of the upper limit of integration ¢,
defines a new process. Slightly more general, we can add an integral of

the type
t
/ A(w)ds,
0

which are unproblematic if, for example, the process A; has continuous
paths: this is just an ordinary integral with respect to ds. Put

t t
(199) X, = Xo+ / Auds + / H,dW,,
0 0

where X is a constant; X, is called an [to-process and symbolically
written as:

(200) dX, = Aydt + H,dW,.

Remark on notation: To stress the fact that our integrands Hy in
integrals like f(f H,dW, are allowed to be stochastic, we systematically
designated them by capital letters in this chapter. However, in the end
it becomes a bit tiresome to always use capital letters for random vari-
ables, and we will often revert also lower case letters hy, a; for stochastic
processes, especially when they occur as integrands of Ito processes, in
accordance with general notational practice in Stochastics and Finance.
Ito processes are tus written as

dXt = tht + htth,

etc., and it should be clear from the context whether a; and h; are
stochastic or not.
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In a rigorous mathematical development of the Ito-calculus, stochas-
tic differentials like (200) are just a symbolic short-hand for the corre-
sponding stochastic integral (199), and are not in themselves considered
bona fide mathematical objects. However, the basic intuition obtained
from manipulating stochastic differentials according to the Ito-rules we
gave in chapter 3 is correct, and the results established using these
rules can be rigorously proved after translating them into integrals. As
an example we take another look at Ito’s lemma.

9.8. * Ito’s lemma revisited. For simplicity we will limit ourselves to
the simplest and most basic form of Ito’s lemma, formula (67): if f =
f(w) is 3-times continuously differentiable, with bounded derivatives,
then:

(201) A (W) = W)W, + o (Wt

In integral form, this becomes:

(202)  f(Wy) — f(0) = — f(Wo)
= /f S )dW, +/ — "W,

*Proof. We sketch a proof based on the construction of the Ito in-
tegral in the previous sections. The idea is to cut things up in small
intervals again, and write:

n—1

FOV) = FWo) =D F (Wapm) = F (Wjegm)

=1

where both sides of the equation are of course functions of w, which
we suppress for legibility. One then uses the Taylor expansion of f to
analyze each of the terms in the sum on the right, as follows:

fF(Wiinem) = F Wiya) = f " (Witn) (Wisyim — Witn)

+ —f " (Witsn) (Wisnyem — Wien)
+ Remalnder R; .

2

Since we assume that f is three times differentiable, with continuous
and bounded derivatives, it follows from one of the standard Calculus
formulas for Taylor with remainder, that the remainder term can be
estimated by:

(203) |R;(w)| < CIWiiayem — Wil

where C' is some sufficiently big constant which dominates the third
derivative of f. Taking the sum over all j from 0 to n — 1, proving
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(202) then amounts to showing that the following limits hold, in mean
square sense:

n—1 t
(204) f/ (th/n) (W(j+1)t/n - VVjt/n) - / f,(Ws)dW5>
j=0 ‘
n—1 9 t
(205) P Witgn) Wigvem = Wigm)™ — / FH(We)ds,
=0 0
and
n—1
(206) > R; — 0.
=0

To simplify the notations, we put

gt
The first limit, (204), follows from theorem 9.7. To get some insight

into the second, observe that the expectation of the left and side of
(205),

n—1 n—1
E (Z " (Wtj) (Wtj+1 o Wt]‘)2> - Z . (Wtj) (41 — 1))
j=0 Jj=0
= J,— "(Wy)ds,
| rrwas

the last line by the definition of the ordinary (Riemann-) integral from
Calculus. This is encouraging, but not yet enough, since we have to
prove that the expectation of the square of the difference of the left
hand side with the right hand side goes to 0. This is of course the
same as saying that its square-root goes to 0, which is the L2-norm.
But since || X ||z = /E(X?) satisfies the triangle inequality, it suffices
to show that

n—1

(207) ||Zf” (Wtj) (Wtj-H _Wtj)2_Jn||L2 —)07

J=0
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for then
n—1

1> (W) (W, —Wtj)Q—/ F"(Wy)ds|| 2
j=0 0

n—1

< | Zfﬂ (Vvta) (VthJrl o Wt]‘)Q — Jnllr

=0
t
T / £ W) dsl .
0
— 0

the first term on the right by (207), and the second by the definition
of the ordinary integral*.
So we are left with establishing (207). Expanding

(5 7m0 0 )0

(Zj f//(Wtj)(Wtj+1 - Vth)2 - (tj-‘rl - tj))2 =
Zj Zk f”(Wtj>fH(Wtk) ((Wtj+1 - Wtj)2 - (tj+l - tj))
’ ((Wtk+1 - Wtk)2 - (tk-i-l - tk)) :

We now take the expectation of all this, and examine the diagonal
(j = k) and off-diagonal (j # k) separately. The last ones are easy
since, if for example 7 < k, then by independence of future and past-
to-present, their expectation equals

E( e )E((Wtk+1 - Wtk)Q - (tk-l-l - tk:)) = 07

since Wy, ., — W;, has variance tg11 — .
As regards the diagonal terms , we (again) expand:

(W = W) = (i1 — 1)) =

(Wi = W)t =2t — 1) (Wi, — Wi )* + (L — 45)*

Inserting this, and using again the independence of future increments,
together with

7 //— 3t?
E(Wi,. Wtj)4> = 3(tj+1 — tj)g n2’
and
E((W — W, t
( ti+1 tj)Z) =t —t; = n’

2446 be slightly more precise, by ordinary Calculus, for each w, Jn(w) — ]Ot I (Ws(w))ds,
for any w € Q, and since everything is bounded, one can use Lebesgue’s dominated convergence
theorem to conclude that the L?-norm of the difference also tends to 0
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we finally find that

| E (Z FrW )2 (Wyy = Way)? = (tjn — tj))Q) |

n—1
2t2
— ‘ // Wt ’
j=1
- N
n n

as n — 0o, where we used that we can bound E(f”(W;,)?) , uniformly
for all j since, by hypothesis, the second derivative of f is bounded.
This proves

Finally, similar arguments can be used to prove (206). This is in fact
slightly easier, since by Cauchy-Schwarz and the bound (203),

(£n) ) = = (sw)

n—1
< Cn) E(W,,, - W,)"
j=1
3 1
= (Cn)- () n~ = 0,

where ¢g is the 6-t moment of the standard normal. This proves (206),
and thereby the Ito formula in integral form (202) . QED

By using Taylors formula with integral remainder, one can weaken
the hypothesis on f to twice continuously differentiable. One can also
do away with the hypothesis that f” be bounded; we refer to the liter-
ature for this.

More general forms of Ito’s lemma, like for dF'(t, W;), can be proved
along the same lines (one now also has to expand to first order with
respect to the t-variable).

9.9. Exercises.

Exercise 9.8. a) For any Hilbert space H, prove the polarization iden-
tity:

(e +wlls = Nl = lyll) .

N =

(x7y)H—
x,y € H.

b) Suppose we now have two Hilbert spaces H; and Hs, and a map
A: Hy — Hjsuch that 1) A(x +y) = A(x) + A(y) and 2) A(X-z) =
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A - A(x). Here z,y € H and A € R. Such maps are called linear.
Suppose, moreover, that for all x € H,

1A@)I[7, = ][,

Show, using part a), that then
(A(z), A(y)), = (&, y)m,

for all x,y € H;. In words, if a map between Hilbert spaces respects
norms, then it respects inner products.

c) Show that in theorem 9.6, (193) implies (194) .

10. CONDITIONAL EXPECTATIONS AND MARTINGALES
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10.1. Conditional expectations. To start, we take another look at
conditional probabilities. You might want to first consult section 2.3,
to refresh your memory: there we introduced conditional probability
densities, for couples of random variables (X,Y) which posses a joint
density. We will generalize this in two directions: first, we want to
get away from the hypothesis that the random variables have densities,
this sometimes being too restrictive in practice. Second, we will want
to condition not only with respect to some other random variable, but
with respect to a given information set, in the form of a sub-g-algebra
G of F), if we're working in the context of a given probability space
(Q, F,P).

As a preliminary remark, it is good to realize that practically all
quantities we're interested in, in Probability and Finance, can be ex-
pressed as an expectation. Even the probability of an event F' € F can
be interpreted as the expectation of the indicator function Ir of that
event, since:

(208) P(F) = /Q Ip(w)dP(w) = E(Lp).

We will study conditional expectations, in stead of just conditional
probabilities.

Motivating Example: (You may skip this if you wish, an go directly
to 10.1.) As a warm-up, we return to the conditional pdf’s of section
2.3, and try to arrive at a formulation in terms of expectations instead
of densities. So let X and Y be two rvs defined on a probability space
(Q, F,P), and having a joint density fxy(z,y), and put:

_ fX,Y(%y)
fr(y) ’

assuming more-over that the denominator is non-zero. Let g : R — R
be a "reasonable” function®, and let us compute the expectation of
Xg(Y):

E(Xg(Y)) = //R Rxg(y)Fx,y(fE,y)dfcdy

/R ( R %{2’)@@) 9(y) fv (y)dy

= /R (/R tP(X =z|Y = y)dw> fy (y)dy.

Now we will give this expression a new twist: introduce a new function
¢ :R — R by:

P(X =z|Y =vy)

oly) = / E(X = 2]Y = y)da,

25Borel measurable, say
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and a new random variable ® : 2 — €2 by:

(W) = (Y (w)).

Then, clearly, by the previous computation,
E(@g(Y)) = E(p(Y)g(Y))
= [ cwatn) sy
— E(Xg(Y)).

You may well wonder what the purpose is of this computation, and ask
what we have gained by writing E(X¢g(Y)) as E(®g(Y)). What we have
gained is, that ®, being equal to a function ¢(Y') of Y, contains the
same information as Y, while X, in general, does not. Let us formalize
this later point by introducing

a(Y),

the o-algebra generated by Y, cf. formula (144) in section 6.5. It is a
theorem that ¢(Y') is (Y ')-measurable, since functions of Y are oy-
measurable, if the function in question is reasonably "nice” (e.g. Borel
measurable itself), and our function ¢ above is sufficiently nice. Hence:

(209) ® is o(Y)-measurable.

Furthermore, since ¢ is independent of the function g = g(y), we clearly
have that:

E(®g(Y)) = E(Xg(Y)).
One traditionally formulates this last point a little differently. One
can proof?® that any o(Y)-measurable function can be written as some
function g(Y) of Y. Applying this to the indicator function I of an
arbitrary G € o(Y'), we find that:

(210) E(®lg) = E(XIg), for any G € o(Y) .

This last equation can also be written as:

(211) /G B(w)dP(w) — / X (w)dP(w).

The new random variable @ is clearly determined a.e. by (209) and
(210). It is called the conditional expectation of X with respect to
o(Y), and is denoted by

¢ = E(X|o(Y)),
and often also, more sloppily, by
E(X|Y).

We observe the following two important points:

26¢his is actually a theorem of J. Doob
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e E(X|o(Y)) is a random variable, that is, a function (on ), and
not a number: this may take some getting used to.

e The point about ® = E(X|o(Y)) is not only that it satisfies
(210), (211), but that it does that in conjunction with being
o(Y)-measurable, (209). Indeed, (210) by itself is already satis-
fied by X itself, and this condition on its own is rather empty.

We now give the general definition of conditional expectation with
respect to a sub o algebra of F:

Definition and Theorem 10.1. Given a random variable X on (2, F,P)
and a (smaller) o-algebra G C F, there exists another random variable
® : Q2 — R satisfying:

(i) ® is G-measurable: events of the form
{w:a<®(w)<b} (a,beR)

are already in G instead of just in F.

(1t) For all G € G : E(XIg) = E(®Lg).

This new rv ® is essentially uniquely determined in the sense that an-
other rv @' satisfying (i) and (ii) will only differ from ® on a null-set.
We will simple ignore such differences, and treat ® as being unique.
We will write:

(212) ¢ =E(X|9),
and call this the conditional expectation of X with respect to G.

The proof of this theorem uses a deep result from abstract measure
theory called the Radon - Nikodym theorem, which is outside the scope
of these lectures, and we will just assume the existence of such a ® =
E(X|G)*". We stress, as before, that E(X|G) is a random variable and
not a number, and that it is the combination of (i) and (ii) which makes
it interesting, and which causes it to be (essentially) unique.

Rephrasing the above definition, we see that E(X|G) is uniquely
determined by the following two properties:

(213) E(X|G) F — measurable,
and
(214) E(XTg) =E(E(X|G)-1Ig), alGeg .

Another way of stating these last equations is:
(215 | X)) = [ BX|0)@)aPe)
a el

27 *there is an alternative way to define E(X|G) for rvs X for which E(X?) < oo, using Hilbert
space theory: one uses the inner product (X,Y) = E(XY), and defines E(X|G) as the orthogonal
projection onto the subspace of G—measurable rvs; see also proposition 10.3 below
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for all G € G. Whichever of these two formulations you prefer is largely
a matter of taste.

It follows from (214) with G = Q (which is an element of G since
it is an element of any o-algebra) that X and E(X|G) have the same
mean:

(216) E(E(X]G)) =E(X).
We next list some other properties of conditional expectations which

are important for computations, especially (iii) and (iv) below.

Proposition 10.2. (i) Taking conditional expectations is linear:
E(X; 4+ X5|G) = E(X1]G) + E(X3|G)

and, if A € R,

E(AX|g) = AE(X1[G).
(i1) The trivial conditional expectation: if G = Fyup = {0,Q}, the
trivial stgma-algebra, then we simply have that

E(X|Firiv) = E(X),
the ordinary expectation.
(i1i) If Y is G-measurable, then
E(Y|9) =Y;

more generally, for any X,

E(XY|G) = YE(X|G).

(iv) The tower property: if H C G C F is a ascending chain of o-
algebras, and if X is a (F-measurable) random variable, then:

E(X[H) = E(E(X|G)[H).

*Proof. The proof basically consists in verifying that the right hand
side of the equations satisfies the defining properties of the conditional
expectation on the left. For example, for the tower property, this goes
as follows:

e E(E(X|G)|H), being the conditional expectation of the rv E(X|G)
with respect to ‘H is, by definition, H-measurable, and therefore
satisfies defining property (213).

e Next, if H € H, then since H C G, we also have that H € G,
and therefore, by definition,

(217) E(XIy) =E(E(X|G)ly).
Putting momentarily Z = E(X|G), we have, once more by defi-
nition, but now of conditional expectation with respect to H:

E(Z1y) = E(E(Z|H) - In).
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Substituting what Z is, we see that E(E|G|H) satisfies property
(214) of E(X|H).
The verification of the other properties is similar. $$
The next proposition gives a different interpretation of the condi-
tional expectation: it shows that if we try to ”predict” the rv X (which
is F-measurable) by random variables Y which ”only contain informa-
tion relative to the smaller o-algebra G” (are only G-measurable), then
E(X|G) is that one among the Y’s such that the variance of X —Y is
smallest:

Proposition 10.3. (The variance minimizing property)
Var (X —E(X|G)) = min Var(X — Z),

7 G—measurable

where X and Z are supposed to have finite variance. This is in fact
equivalent to the following property, which one may call the orthogo-
nality property:
E (X - E(X|9)|g) = 0.

We will skip the proof, although it is not that difficult: its main idea
is the same as the proof of simpler result you may be familiar with,
namely that the least-squares method in statistics gives the variance-
minimizing prediction of a line through a set of points in the plane.

We next turn to the relation between conditional expectation and
independence.Recall. from chapter 2, that if X and Y are independent,
then: P(X = z|Y = y) = P(X = z) and, consequently,

EX])Y =y) = /RxIP’(X =zlY = y)dx

= /xIP’(X:x)d:c
= EX),

assuming everything in sight has a density, of course. We now want to
generalize this to conditional expectations with respect to o-algebras.

First, we say that a rv X is independent of the o-algebra G if, for all
functions g : R — R (which are Borel measurable, say):

(218) E(g(X)le) = E(g(X))E(le) (= E(9(X))P(G)).
Equivalent ways of stating this are:

(219) E(g(X)Z) =E(g(X))E(Z), for all G-measurable Z ,
or

(220) P(ANG) =P(APG), foral G € G, A € Fx .
Note that the latter equation is the same as:

E(lalg) = E(I4)E(lg).
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With this notion in place, we can now state the following result:

Proposition 10.4. If X is independent of the o-algebra G, then its
conditional expectation is simply the ordinary expectation (and thus a
number):

E(X|G) = E(X).

Proof. We just have to check that E(X) (or, more precisely, the
function on € which is constantly equal to E(X)) satisfies the defining
properties (i) and (ii) of definition 10.1. But this is easy: constant
functions are JFy.,,-measurable, so certainly G-measurable, since any
o-algebra always contains the trivial one. Next, if G € G, then since
X is independent of I,

E(XIs) = E(X)B(G) == E (E(X) - o),

for E(X) is just a constant which can be pulled in front of the expec-
tation sign, in the last equality.
This shows that E(X) satisfies conditions (i) and (ii) of 10.1, which

completes the proof. $$

10.2. Martingales. Intuitively, one should look at conditional expec-
tation E(X|G) as the "optimal prediction of X, given the information
G”. This leads quite naturally to the idea of a martingale. Suppose we
have an increasing family of o-algebras F; C F,t > 0:

JTSCft, s <t,

and that for each ¢ > 0 we have a random variable X; which is F;-
measurable; in the language of the previous chapter, (X;)¢>o is a process
which is adapted to the filtration (Fi)i>0. We say that (X;)i>o is a
martingale with respect to (Fy)io if, for all s < t,

(221) E(X:|Fs) = X,

almost everywhere as functions on 2 (with respect to the given prob-
ability). The idea is that X is a random-variable such that the best
prediction of any of its future values, given today’s information, is to-
day’s value; one may think of the weather, or of IBM’s stock-price.

More precisely, (X;)i>o is called a continuous-time martingale; a
discrete-time martingale is simply one in which the index ¢ runs over a
discrete set (like N={0,1,2,---}).

Remark 10.5. It is quite important to realize that in the definition
of a martingale, the filtration F; plays as big a role as the rvs X;: it is
quite easily possible that X; ceases to be a martingale of we change the
filtration (like, replacing it by a bigger one), simply because conditional
expectation depends on the o-algebra with respect to which we condition.
In much of the economics literature one simply writes

(222) E.(X) for E(X|F),



120 RAYMOND BRUMMELHUIS

specifying F; vaguely as ”all information available at time ¢). Although
we will sometimes also indulge in (222) (mainly since it saves time and
typing-effort) it is actually very bad notation, if one does not clearly
specify the context (that is, the F; one uses). One can easily imagine
situations in Finance in which the information set makes a difference,
e.g. when there is insider training.

A basic example of a martingale is Brownian motion: we will check
this carefully in the next example.

Example 10.6. Let (I/}):> be a Brownian motion on our given prob-
ability space (2, F,P). If s <t then, since W; — W is independent of
FW (which, we recall, is the o-algebra generated by all W,’s for u < s),
we have that:

E(B|FY) = E(W,+ (W, - W)|F")
= E(W,|FY) +EW, - W|FY) (by prop. 10.2) )
= W,+EW; —W;) (by prop. 10.2 (ii) and prop. ??, resp.)
= W, (since W; — W, has mean 0 ).

Hence (W;)>0 is a martingale with respect to the filtration F}".

The processes introduced in this exercise are called Lévy-processes.
Brownian motion is of course an example of such a process, but there
are many others, including manu which are much more irregular than
Brownian motion, having for example everywhere discontinuous sample
paths.

10.3. Martingales and Ito-integrals. There are two important re-
sults here.

Theorem 10.7. Let (F;)i>0 be a filtration satisfying conditions (178)
and (179) in subsection 8.3, and let f = (fi)i>0 be an adapted process
as in theorem 9.7 (*®, so that the Ito-integrals

t
I - / £V,
0

are all well-defined. Then (I;)i>0) is a martingale with respect to the
gwen filtration F;)i>o.

The idea of the proof is rather straightforward: one first checks the
theorem in case the process of the f;’s is simple, for which the result
is practically true by definition, and one then derives it in general by
taking limits. As usual with these matters, we skip the details, and
refer to the literature.

In some sense, every martingale is an Ito-integral, provided it is a
martingale with respect to a Brownian filtration. The precise formula-
tion is as follows:

28or7 more generally, let f € H? for all t > 0; cf. (189)
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Theorem 10.8. Let (X;)i>0 be a martingale with respect to a Brow-
nian filtration (F}")>0 (for a given Brownian motion (W;);>o on our
probability space), such that the second moments E(X?) stay bounded
on each bounded time-interval [0,T]. Then X; can be wrilten as an
Ito-integral: there exists an adapted process (fi)i>o0 such that with prob-
ability 1 on €,

Xi(w) = Xy +/O fs(w)dWs(w),

The proof of this theorem is considerably more complicated; it is also
non-constructive, in the sense that it does not provide an explicit de-
scription of f;, but only shows that there exists one (based, in the final
analysis,on an argument by contradiction). Nevertheless, it plays an
important role in the martingale approach to Asset Pricing, as will be
explained in Pricing II.

10.4. Exercises to Chapters 9 and 10.

Exercise 10.9. Which of the following stochastic integrals make sense?

(2) 1
/ (WE + 2Wt/2 + 1>th
0

(b)

1
/ WordWs.
0
(c) .
/ Wy dW.
1
(d)
1
/ Wl/tth
0
(e)
1 1
/ Wgtdt+/ Wt/Qth.
0 0

1
1
dW,.
/0 NI A

|
dW,,
/oWﬁ '

! 1
/0 e

(2)

for a < 1/2.

()
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Exercise 10.10. Argue, that the following repeated stochastic integral
is well-defined: , .,
[ ([ ).
0 0
Evaluate this integral.
Exercise 10.11. Show that
t 1 1
/ W2dW, = ~W} —/ Wds.
0 3 0
For the next two exercises you might need the following result from

Probability Theory:

Theorem: IfY, is a sequence of Gaussian rv, and if Y,, — Y in the
sense that B (Y,, — Y)?) — 0, then the limit Y is also Gaussian.

This can in fact be proved using characteristic functions.

Exercise 10.12. This question studies the integral

t
Xt = / Wsds.
0

(a) Argue that X; is a Gaussian random variable.
(b) Compute it’s mean and variance.

Exercise 10.13. Let ¢ = ¢(¢) be a function of ¢ only, which is for
example continuous (or, as a weaker condition, for which f(f g(s)%ds
stays finite, for all ¢). Define I; by:

t
It:/ g(s)dWs.
0

(a) Show that I; is a Gaussian variable of mean 0, and variance:

o= [ atsras.

Now suppose that g(s) # 0 a.e., so that the function ¢ — o(t)? is
strictly increasing, and therefore invertible.
We now define a new process, W,,, by:

W, =X, if u= f(t).
(b) Prove that Wu)uzo is a (new) Brownian motion.
Significance of this exercise: Clearly,
X = W,

and we say that X; is obtained from the Brownian motion Wt by a
time-change t — f(t). This can be generalized to stochastic, adapted,
integrands g; = ¢(t,w), and to solutions of SDE’s.



MATHEMATICAL METHODS I MSC FINANCIAL ENGINEERING 123

Exercise 10.14. Take Q) = R, F = B(R), and P a probability-measure
defined by a probability-density f, via:

P(F) = /Ff(x)dx, F € R qa Borel set.

In particular,

P ((a,b]) = / f(x)d.

(a) Let G be the o-algebra generated by all subintervals (n,n + 1],
n € N (draw these on the line!). Check that G is exactly the collection
of all unions of such intervals.

(b) Proof that X : 2 = R — R is G-measurable precisely when X is
constant on each of the intervals (n,n + 1] (basically because these are
the smallest elements of G).

(c) Now let X : R — R be an arbitrary random variable, that is, an
arbitrary B(R)-measurable function. Show that X|G) is given by:

1 e
B(XI)) = gy | O € (rn+ 1]

that is, E(X|G) is, on (n,n + 1], constantly equal to the average (with
respect to the given probability-measure) of X on (n,n + 1].

Exercise 10.15. Suppose that (X;);>0 is a stochastic process such
that:
e X; has mean 0: E(X;) =0,
e X, has what is called independent increments, meaning that if
u < s <t, then X; — X is independent of X,.

Let FX be the filtration generated by the process X;:
FX=F (X, ((a,b) :u<ta,beR).

(Compare the definition of a Brownian filtration.) Show that X;,¢ > 0
is a martingale with respect to F;X.
(Hint: copy the argument of the example 10.6.)

Exercise 10.16. Consider an Ito-process:
dXt = atdt + O'tth.

(a) Show that X; will not be a martingale (w.r.t. the natural Brow-
nian filtration), unless a; = 0, for all .

(b) Define the new process M, by:

t 1 t
M; = exp (—/ hydW, — 5/ hfdt) :
0 0

Show that M; is a martingale.
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(Hint: write M, as My = exp(Y};) for a suitable process Y;, and compute
dM; using Ito’s lemma; show that dM; = —h, M, dW;, and use a result
from the course).

(c) Show that if we choose h; = a; /oy, then X, M, is also a martingale,
by proving that:

d(XtMt) = (O't — htXt)MthVt

So we can change Ito-processes which aren’t martingales into ones
which are! This is intimately connected with Girsanov’s theorem and
risk-neutral pricing, as we will see in Pricing II. The next exercise gives
the flavor:

Exercise 10.17. Let
dSt = ,uStdt + O'Stth.

be a geometric Brownian motion representing for example an asset
price.
(a) Let Z, = e "S,, the discounted price process. Determine an SDE

for Zt.
(b) Find a martingale process M, such that Z; M, is also a martingale.
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11. FEYNMAN-KAC REVISITED

We will now prove the general case of the Feynman-Kac formula,
for a partial differential equation whose 0-th order term may be non-
constant. The general type of partial differential equation one encoun-
ters in derivative pricing has the following form:
ov N o(z,t)? 0%V +alz t)av
ot 2 Ox? " Ox
We wish to solve this equation for ¢ < T, with a (final) boundary
condition :

(224) V(z,T) = F(x),

(223) —c(z,t)V = 0.

where F'(z) is a given function.

Example 11.1. The Black and Scholes valuation equation, where, as
usual, we let ”S” designate the independent variable, instead of 72" (S
represents the risky asset’s value on which the option is written) :

oV orS?2 0%V 1%

+rS=— —rV =0.

(225) T T

We see that:
e a(S,t) =rS, r a constant,
e 0(S,t) =08, 0 a constant,
e ¢(S,t) = r, constant,
and that V(S,T) = F(5) is the final pay-off:
o F(S) =max(S — X,0) for a European call with strike X.
o [(S) = max(X — 5,0) for a European put with strike X.

Example 11.2. The bond-pricing equation for a maturity 7-bond in
the Vasicek model for the short interest rate is of the form:

oP  o*0?P oP

— +———+all—-r)——-rP=0.

ot * 2 0r? + o ) or

Here P = P(r,t) is a function of time ¢ and of the short rate r (which
now is the wvariable, and not a constant as in the previous example),
and we are looking for a solution for time ¢ < T satisfying, at t = T,
the boundary condition

(226)

P(r,T) =1,
the promised pay-off of the bond at maturity. We see that now (re-
placing "z” by "r 7):
(l(’l”, t) = Oé(@ - T)7
o(r,t) = o, a constant,
c(r,t) = r, which is now a function, and
F(r)y=1.
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The Feynman-Kac formula enables one to write the solution of (223)
as an expectation :

Theorem 11.3. (Feynman-Kac): Let V = V(x,t) satisfy (223) and
(224). Then :

(227) V(X t)=E (exp (— /t ! (X, u) du) F(XT)]ﬁW) :

where Xy is a solution of the Stochastic Differential Equation :

(228) dX, = a(Xy, t)dt + o(X,, t)dW,, t > 0.
Proof. Let (X,), satisfy (228). We compute
4,V (X, ).
By Ito’s lemma, this equals:
o) ov 1 82 N

Using (228) and Ito’s multlphcatlon rules :
(dW,)? = du, dW,du = (du)* =0,
we easily find that :

5 AV o(Xy,u)?2 0%V 1% .
duV(Xu, u) = (% + %@ + a(Xu, u)%) du—l—a(Xu, u)qu,

all derivatives of V' evaluated in (Xu, w). Since, by hypothesis, V' sat-
isfies the PDE (223), this equals :

A,V ( Xy, u) = e(Xu, )V (X, w)du + o( Xy, w)dW,.

To get rid of the first term on the right hand side, we consider the
auxiliary function :

w(Xp,t) 1= V(X t)e= o elFuadu,
Then A
dw (X, t) = (dtV(Xt, 1) — ¢ Xt,t)) o (R
= frdW,
where )
Ji= O'(Xt, )6 Jo el(Xu, u)du
Integrating from ¢ to T, we find that :

w(Xp, T) —w(Xy, t) / fudW,,.

We will now take conditional expectations with respect to the natural
Brownian filtration. To simplify the notations, we will simply write

Ei(X) for B(X|FY),



MATHEMATICAL METHODS I MSC FINANCIAL ENGINEERING 127

although this is somewhat bad notation. Now the key observation is,
that the right hand side has conditional expectation E; equal to 0:

Et (L/;T fuqu> -
ffEt (fudW,) =
[ B (B, (f.dW,) =0

since E, (f,dW,) = f E.(dW,) =0 : f, is known at time u, and can
therefore be pulled outside the expectation, and dW, ~ N(0,du) has
mean 0 an is independent of F'V. Observe that we are simply repeating
the proof given on slide VII that Ito-integrals are martingales.

The conclusion therefore is, that

(229) E, <w(XT, T)) — w(X,,1).

This is basically the Feynman-Kac formula, except that we have to
translate things back from w to V. Remembering the definition of w,
we see that, from (229,

V(XT ) fo e(Xuyu)du _ F( ) fO (Rusu)du
and (229) translates into :
V(Xt, ) fo Xu u) — Et <F<XT)€_ foT c(O%,u)du) '

Y

Moving the exponential on the left hand side to the right hand side,
and then under the conditional expectation E, (which is allowed, since
it is known at t), we find formula (223), as required. $$

There is an alternative form of the Feynman-Kac formula, which is
convenient for computations, since it does away with the conditional
expectation in (223):

Corollary 11.4. With the notations of theorem 11.3, we have that

V(z,t)=FE (exp (— /t ' (X u) du) F(fqz)) ,

where X;" is the solution to the SDE initial value problem:

dX?* = a(X,, u)du + o(X*,u)dW,, u >t
X =z

The upper index x in Xff is there to remind you that the solution
depends on the initial value x at t.



