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1. Introduction

You can access these notes, and other material, via my office machine:

http://econ109.econ.bbk.ac.uk/brad/Problems_in_Maths/

Some students might also be interested in the software packages Matlab and
Octave, mentioned in the lecture.

http://econ109.econ.bbk.ac.uk/brad/Methods/matlab_intro_notes.pdf

You can find out more about Numerical Analysis in my lecture notes:

http://econ109.econ.bbk.ac.uk/brad/teaching/Methods/nabook.pdf
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2. Historical Introduction

We begin roughly 400 years ago, at the beginning of the Seventeenth Century.
At that time, applied mathematics was expanding rapidly, from providing better
tables of trigonometric functions for European oceanic navies, to improved ways to
calculate interest on debts. This might sound mundane, but war and money have
always been closely linked to mathematical applications. Algebra was a Sixteenth
century invention, but almost nothing was known of calculus in 1600. Fortunately,
this was about to change!

To gain some idea of the needs of the time we need to understand the recent his-
tory of computation. My phone can compute 108 FLOPS (floating point operations
per second) and cost £100, but in 1990 a research workstation would be limited
to 106 FLOPS and cost £104. Going back to the 1970s, schoolchildren were still
taught how to use trigonometric and logarithmic tables, which would have looked
something like this (x is measured in degrees):

x cosx
0 1.0000
1 0.99985
2 0.99939
3 0.99863
4 0.99756
5 0.99619

Such four-figure tables required enormous work to produce in 1700, but what do
we do if we need to calculate cos 1.4? One simple way is linear interpolation using
the table: we let f(x) = cosx and define

(1) p(x) = f(1) + (f(2)− f(1)) (x− 1) ,

Using (1), we obtain
p(1.4) = 0.99966.

The true value is cos 1.4 = 0.9997014897811831 . . ., so this isn’t too bad: an error
of roughly 3.65× 10−5. Can we do better?

One idea is to use three values and fit a quadratic. Let a = 1, b = 2 and c = 0
and let’s write the quadratic in the form

(2) q(x) = p(x) +Q(x− a)(x− b),
where p(x) is given by (1). The idea here is to avoid further computation, since
we already know that p(a) = cos a and p(b) = cos b. Since the quadratic term
(x− a)(x− b) vanishes at a and b, the quadratic q(x) already satisfies q(a) = cos a
and q(b) = cos b. To reproduce the value at c, we solve

cos c = p(c) +Q(c− a)(c− b),
or

Q =
cos c− p(c)

(c− a)(c− b)
.

The new approximation is

q(1.4) = 0.9997014954967155

which is much closer to the true figure

cos 1.4 = 0.9997014897811831

since the error is now roughly 5.71× 10−9. Thus moving from linear interpolation
to quadratic interpolation has reduced our error by 104, which is rather good!
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3. Polynomial Interpolation

Let

z0, z1, . . . , zn

be any different complex numbers and let

f0, . . . , fn

be any complex numbers (they don’t need to be distinct). We want to construct a
polynomial p of degree n for which

p(zj) = fj , for 0 ≤ j ≤ n.

Such a polynomial is called an interpolating polynomial, and we say that p
interpolates the data

(z0, f0), (z1, f1), . . . , (zn, fn).

We shall let Pn denote the vector space of polynomials of degree at most n.

Example 3.1. How do we find the quadratic polynomial satisfying p(0) = α, p(1) =
β and p(4) = γ? We could just substitute p(x) = p0 +p1x+p2x

2 and solve the three
linear equations to obtain the coefficients. However, there is a simpler solution: we
write

p(z) = α
(z − 1)(z − 4)

(0− 1)(0− 4)
+ β

z(z − 4)

(1− 0)(1− 4)
+ γ

z(z − 1)

(4− 0)(4− 1)
.

The key point in Example 3.1 is that the polynomial

`0(z) =
(z − 1)(z − 4)

(0− 1)(0− 4)
=

1

4
(z − 1)(z − 4)

satisfies

`0(1) = `0(4) = 0 and `0(0) = 1.

Specifically, if we let z0 = 0, z1 = 1 and z2 = 4, then we have

`0(zk) =

{
1 if k = 0,

0 if k 6= 0.

Thus

`1(z) =
z(z − 4)

(1− 0)(1− 4)
= −1

3
z(z − 4) satisfies `1(zk) =

{
1 if k = 1,

0 if k 6= 1,

and

`2(z) =
z(z − 1)

(4− 0)(4− 1)
=

1

12
z(z − 1) satisfies `2(zk) =

{
1 if k = 2,

0 if k 6= 2.

Example 3.2. Suppose now that α = β = γ = 1 in Example 3.1. We have shown
that

1 = `0(z) + `1(z) + `2(z)

=
1

4
(z − 1)(z − 4) +

−1

3
z(z − 4) +

1

12
z(z − 1).

If we now divide both sides by z(z − 1)(z − 4), then we obtain

1

z(z − 1)(z − 4)
=

(1/4)

z
+

(−1/3)

z − 1
+

(1/12)

z − 4
.

We can now generalise the trick used in Example 3.1.



PROBLEMS IN MATHEMATICS: NEWTON AND POLYNOMIAL INTERPOLATION 5

Lemma 3.1. Let

`j(z) =
(z − z0)(z − z1) · · · (z − zj−1)(z − zj+1) · · · (z − zn)

(zj − z0)(zj − z1) · · · (zj − zj−1)(zj − zj+1) · · · (zj − zn)
,

or, more briefly,

(3) `j(z) =

n∏
k=0,k 6=j

z − zk
zj − zk

, for 0 ≤ j ≤ n.

Then `j ∈ Pn and

`j(zi) =

{
1 if i = j,

0 if i 6= j,

for 0 ≤ i, j,≤ n.

Proof. By construction, `j(zi) = 0 when i 6= j, because the product in (3) contains
the term (z − zi). However, `j(zj) = 1, because then every term in (3) occurs in
both numerator and denominator. �

These polynomials `0, `1, . . . , `n are useful because they allow us to write down
a very simple expression for the polynomial interpolant.

Proposition 3.2. The interpolating polynomial p ∈ Pn for the data {(zj , fj) : 0 ≤
j ≤ n} is given by

(4) p(z) =

n∑
j=0

fj`j(z), z ∈ C.

Proof. Equation 3 implies p(zk) =
∑n
j=0 fj`j(zk) = fk, 0 ≤ k ≤ n. �

Equation 4 is called the Lagrange form of the interpolating polynomial.
It’s extremely useful in theoretical work and there are new applications in modern
numerical approximation.

Uniqueness requires a simple lemma.

Lemma 3.3. Let p(z) = a0+a1z+a2z
2+· · ·+anzn, where z ∈ C and a0, a1, . . . , an ∈

C. Then p(z) has at most n distinct zeros in C unless a0 = a1 = · · · = an = 0.

Proof. The lemma is plainly true when n = 0 or n = 1. We then proceed by
induction. Thus let us assume that every polynomial of degree less than n has at
most n different zeros, unless every coefficient is zero. Given any polynomial p(z)
of degree n+ 1, either p has a root, say p(w) = 0, or p has no roots. If the latter
condition is valid, then there’s nothing further to demonstrate. If the former is
valid, then (z − w) is a factor of p(z). Thus we can write p(z) = q(z)(z − w), and
the roots of p are w and the roots of q. However, by induction hypothesis, q can
have at most n different roots. Thus p can have, in total, at most n + 1 different
roots. �

The last lemma is a very simple version of the great Fundamental Theorem of
Algebra: a polynomial of degree n with complex coefficients has exactly n complex
zeros if we count multiple zeros multiply. (Thus (z − 2)2 has two zeros.)

Proposition 3.4. There is exactly one interpolating polynomial p ∈ Pn when the
points z0, z1, . . . , zn are distinct.

Proof. Existence was shown in Proposition 3.2, so we address uniqueness. Thus
let p and q be interpolating polynomials of degree n. Their difference p − q is a
polynomial of degree n that vanishes at the n+ 1 different points z0, . . . , zn. Hence
p− q vanishes identically, using the last lemma. �
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The Lagrange form of the interpolating polynomial is useful when n is small and
in theoretical work. However, it is particularly inconvenient if we have constructed
pn−1 ∈ Pn−1 interpolating data {(zj , fj) : 0 ≤ j ≤ n − 1} and are then given a
new datum (zn, fn), because we almost have to start the calculation from scratch.
Fortunately a more compact form is available. The key idea is to let p ∈ Pn take
the form

(5) pn(z) = pn−1(z) + C(z − z0)(z − z1) · · · (z − zn−1), z ∈ C.

We see that pn(zj) = pn−1(zj) = fj , for 0 ≤ j ≤ n − 1, so we do not disturb our
previous interpolant at these points. Of course we choose C to satisfy the equation

(6) fn = pn−1(zn) + C

n−1∏
k=0

(zn − zk).

Obviously C depends on f and z0, z1, . . . , zn. A traditional notation is

(7) C = f [z0, z1, . . . , zn],

so that 5 becomes

(8) pn(z) = pn−1(z) + f [z0, z1, . . . , zn](z − z0)(z − z1) · · · (z − zn−1).

The number f [z0, . . . , zn] is called a divided difference, because of the method
used to calculate these numbers described below. Note that the coefficient of highest
degree for pn does not depend on the order in which we take the points. In other
words, if we replace z0, z1, . . . , zn by zπ0, zπ1, . . . , zπn, for any permutation π of the
numbers {0, 1, . . . , n}, then f [zπ0, . . . , zπn] = f [z0, . . . , zn]. Another way to see this
is the following explicit expression for f [z0, . . . , zn], which is sometimes useful in
theoretical work.

Proposition 3.5. We have

(9) f [z0, z1, . . . , zn] =

n∑
j=0

f(zj)∏n
k=0,k 6=j(zj − zk)

.

Further, f [z0, . . . , zn] = 0 when f is a polynomial of degree less than n.

Proof. We just equate the coefficients of zn in pn(z) =
∑n
j=0 f(zj)`j(z), using

Proposition 3.2. Moreover, if f(z) = z` and ` < n, then the coefficient of zn in pn
is zero. But this highest degree coefficient is f [z0, . . . , zn]. �

Recurring equation 8, and defining f [z0] = f(z0), yields the explicit expression

pn(z) = f [z0] + f [z0, z1](z − z0) + f [z0, z1, z2](z − z0)(z − z1) + · · ·
+f [z0, z1, . . . , zn](z − z0)(z − z1) · · · (z − zn−1),

and this is called the Newton form of the interpolating polynomial.
It’s important to understand that f [z0, . . . , z`] is the coefficient of highest degree

for the polynomial p` ∈ P` interpolating the data {(zk, fk) : 0 ≤ k ≤ `}.

Example 3.3. The Newton form of the quadratic polynomial satisfying p(0) =
f(0), p(1) = f(1) and p(4) = f(4) is

p(z) = f [0] + f [0, 1]z + f [0, 1, 4]z(z − 1).

You’ll see how to calculate the coefficients shortly.

The recursion used to calculate divided difference and justifying the suitability
of their name is derived in the following key theorem.
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Theorem 3.6. For any distinct complex numbers z0, z1, . . . , zn, zn+1 the divided
differences satisfy

(10) f [z0, . . . , zn+1] =
f [z0, . . . , zn]− f [z1, . . . , zn+1]

z0 − zn+1
.

Proof. We introduce two polynomials: (i) p ∈ Pn interpolates {(zk, fk) : 0 ≤ k ≤
n}, and (ii) q ∈ Pn interpolates {(zk, fk) : 1 ≤ k ≤ n+ 1}. Thus the coefficients of
highest degree for p and q are f [z0, . . . , zn] and f [z1, . . . , zn+1], respectively. The
key trick is now the observation that the polynomial r ∈ Pn+1 interpolating at all
n+ 1 points satisfies

(11) r(z) =
(z − zn+1)p(z)− (z − z0)q(z)

z0 − zn+1
,

because it is unique, by Proposition 3.4, and it is easily checked that the right
hand side of (11) interpolates at z0, . . . , zn+1: an exercise for the reader. Now the
coefficient of highest degree in r is f [z0, . . . , zn+1], so equating the coefficients of
highest degree in (11) yields (10). �

Proposition 5 is extremely important. It’s the basis of the algorithm for divided
differences and the Newton form of the interpolating polynomial. One way to
illustrate the divided difference table is as follows.

f(x2)

f(x1)

f(x0)

f [x1, x2]

f [x0, x1]

f [x1, x2, x3]
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Example 3.4. Let f(x) = x3 and let x0 = 0, x1 = 1 and x2 = 4. The divided
difference table is as follows.

64

1

0

64−1
4−1 = 21

1−0
1−0 = 1

21−1
4−0 = 5

Thus f [x0, x1] = 1, f [x0, x1, x2] = 5 and the Newton form of the quadratic
interpolating f(x) = x3 at 0, 1 and 4 is given by

p(x) = x+ 5x(x− 1).

In linear algebra terms we form the lower triangular matrix

x0 f(x0)
x1 f(x1) f [x0, x1]
x2 f(x2) f [x1, x2] f [x0, x1, x2]
...

...
...

...
. . .

xn−1 f(xn−1) f [xn−2, xn−1] f [xn−3, xn−2, xn−1] . . . f [x0, x1, . . . , xn−1]
xn f(xn) f [xn−1, xn] f [xn−2, xn−1, xn] . . . f [x1, x2, . . . , xn] f [x0, . . . , xn]


.

In practice, only the first two columns of this lower triangular matrix are stored.
The diagonal elements are those needed for the Newton form of the interpolating
polynomial, so it’s usual for the second column to be overwritten by subsequent
columns; that’s O(n) rather than O(n2) numbers to be stored. At completion, the
second column should contain the diagonal elements of the matrix, that is

[f(x0), f [x0, x1], f [x0, x1, x2], f [x0, x1, x2, x3], . . . , f [x0, x1, . . . , xn−1], f [x0, . . . , xn] ]T .

What about the error in polynomial interpolation?

Theorem 3.7. Let p ∈ Pn interpolate f at n distinct complex numbers z0, z1, . . . , zn.
Then the error e = f − p satisfies the equation

(12) e(w) = f [z0, z1, . . . , zn, w]

n∏
k=0

(w − zk), w ∈ C.

Proof. If we add a new interpolation point zn+1, then the Newton interpolating
polynomial q ∈ Pn+1 is given by

q(z) = p(z) + f [z0, z1, . . . , zn, zn+1]

n∏
k=0

(z − zk).
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Hence

f(zn+1) = p(zn+1) + f [z0, z1, . . . , zn, zn+1]

n∏
k=0

(z − zk).

Since zn+1 can be any point, we can write w = zn+1, which completes the proof. �

This result is of little use for error bounds unless we can bound f [z0, z1, . . . , zn, w]
from above in some way. Now the first mean value theorem implies the equation

f [x0, x1] =
f(x1)− f(x0)

x1 − x0
= f ′(α),

for some point α ∈ [x0, x1]. There is an important result for divided differences
generalising this remark that’s essentially a form of the mean value theorem you’ll
meet in real analysis. We shall use this relation to express the error in terms of the
maximum modulus of the (n+ 1)st derivative of f .

Theorem 3.8. Let f have continuous (n+ 1)st derivative and let x0 < x1 < · · · <
xn be real numbers. Then there is a point α ∈ [x0, xn] such that

(13) f [x0, x1, . . . , xn] =
fn(α)

n!
.

Proof. Let pn ∈ Pn interpolate f at x0, . . . , xn. Then the error function e = f − pn
has at least n + 1 zeros in [x0, xn]. Hence its derivative e′ has at least n zeros in
[x0, xn], and its second derivative e′′ has at least n − 1 zeros. Continuing in this
way, we deduce that e(n) has at last one zero, α say, in [x0, xn]. But then

0 = e(n)(α) = f (n)(α)− f [x0, . . . , xn]n!,

as required. �

Corollary 3.9. Let f have continuous (n + 1)st derivative and let x0, x1, . . . , xn
be different real numbers. If pn ∈ Pn is the interpolating polynomial, then the error
en = f − pn satisfies

(14) |en(x)| ≤
M
∏n
k=0 |x− xk|
(n+ 1)!

, x ∈ [a, b],

where M = max{|f (n+1)(t)| : a ≤ t ≤ b}.

Proof. This is immediate from the last two theorems. �

These examples might suggest that increasing the number of interpolation points
always decreases the error. This is not so, as you may see in exercises.

Example 3.5. Let f(x) = exp(x) and let a = −1/2, b = 1/2. If the interpola-
tion points are always contained within the interval [−1/2, 1/2], then the error of
interpolation satisfies

|en(x)| ≤ e

(n+ 1)!
, −1/2 ≤ x ≤ 1/2.

In other words, the error is tiny, what ever the choice of interpolation points. In
fact, this is true whenever the function being interpolated is complex differentiable
at every point of the complex plane. It is certainly not true for general functions
(see the essay topic on the Runge phenomenon for more information).

Equation (14) suggests the following problem: Find interpolation points (xk)n−1k=0

minimising

(15) max
−1≤x≤1

(
n−1∏
k=0

|x− xk|

)
,
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which occurs when we want to minimise upper bound (14) on the interval [−1, 1].
Equally spaced points are particularly bad. In fact, the minimum value of (15)
occurs when

n−1∏
k=0

(x− xk) = 21−n cos(n cos−1 x).

This was discovered by the great Russian mathematician Chebyshev and is called
a Chebyshev polynomial.
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4. Exercises

DEADLINE: 14:00 GMT on January 25, 2024. Please submit your
scanned PDF via Moodle.

A total mark out of 40 will be given. This problem sheet is worth 10% of
the marks for this module. Note: College regulations mean that, unless there are
mitigating circumstances, work submitted late (up to 14 days) will have the mark
capped at 40% (i.e. 16/40) and work submitted after 14 days late will score zero.
Full coursework regulations are given in your handbook.

(1) Let h > α > 0.
(a) Find the linear polynomial

p(x) = a0 + a1x

interpolating f at ±α, i.e. find the coefficients a0 and a1. Show that∫ h

−h
p(x) dx = h

(
f(−α) + f(α)

)
.

[Hint: The integral ∫ h

−h
xk dx

vanishes when k is an odd positive integer.]
(b) Now find the value of α for which∫ h

−h
f(x) dx = h

(
f(−α) + f(α)

)
when f is any cubic polynomial. What happens if f is a quartic
polynomial?
[Hint: Try f(x) = x2, f(x) = x3 and f(x) = x4 and use linearity: if
p interpolates f and q interpolates g at x0, x1, . . . , xn, then Ap + Bq
interpolates Af +Bg at the same points.]

(2) Let n be any positive integer and let ω = exp(2πi/n). You may use the
facts that the complex numbers 1, ω, ω2, . . . , ωn−1 form the vertices of a
regular polygon on the unit circle

{z ∈ C : |z| = 1}

in the complex plane and z = ωk satisfies zn = 1 for k = 0, 1, . . . , n − 1.
[The somewhat archaic jargon is to say that the ωk are the nth roots of
unity.]
(a) Show that

`0(z) =
1

n

(zn − 1

z − 1

)
is the unique polynomial of degree n− 1 for which

`0(ωk) =

{
1 if k = 0,

0 if k 6= 0.

[Hint: Use de l’Hôpital’s rule.]
(b) Prove that

`0(z) =

n−1∏
k=1

z − ωk

1− ωk
.
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(c) Prove that

`j(z) = `0(ω−jz), for j = 1, 2, . . . , n− 1,

satisfies

`j(ω
k) =

{
1 if k = j,

0 if k 6= j.

(d) Define

p(z) =

n−1∑
j=0

ω−j`j(z).

Prove that p(z) ≡ zn−1. [Hint: Show that both p(z) and q(z) = zn−1

interpolate f(z) = 1/z at 1, ω, ω2, . . . , ωn−1.]

(3) (a) Find the divided difference table for f(x) = x3 at the five points
0, 1, 2, 3, 4.

(b) Define the forward difference operator

∆f(x) = f(x+ 1)− f(x).

Show that

∆2f(x) = f(x+ 2)− 2f(x+ 1) + f(x).

(c) Define the shift operator

Ef(x) = f(x+ 1),

so that

∆f(x) =
(
E − 1

)
f(x).

Hence show that

∆3f(x) = (E − 1)
3
f(x) = f(x+ 3)− 3f(x+ 2) + 3f(x+ 1)− f(x).

(d) Use the divided difference recurrence relation and induction to prove
that

f [x, x+ 1, x+ 2, . . . , x+ n] =
∆nf(x)

n!
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5. Essay Questions

In addition to the exercises, you must choose two essay questions to complete
over the year, at most one per topic. Each essay is worth 30% towards the marks
for the module. More details, including essay deadlines and guidelines for writing
essays, are in the module information handout, which is available on Moodle. I can
provide copies of all the books referenced to any interested student.

5.1. Chebyshev Polynomials. Write an essay on Chebyshev polynomials and
Chebyshev approximation. You can find lots of interesting material in [5].

5.2. Advanced Properties of Divided Differences. Write an essay on more
advanced properties of divided differences and exponential Brownian motion. This
topic is only suitable for students who have attended my course Mathematical and
Numerical Methods at MSc level. You can find most of the material required in
Section 4 of my own paper “Functionals of Exponential Brownian Motion and
Divided Differences”, which is available on my server:

http://www.cato.tzo.com/brad/papers

5.3. The Runge Phenomenon. Write an essay on the Runge Phenomenon. You
should include the following key points below, which should provide a fairly detailed
basis for your essay.

The aim of this detailed introduction is to show that interpolating the function

(16) f(z) =
1

α− z
,

at equally spaced points can be spectacularly bad. In this question, f(z) will always
refer to the function defined in (16), and α ∈ C is a constant complex number.

Exercise 5.1. Using the divided difference recurrence relation, or otherwise, prove
that

(17) f [z0, z1, . . . , zm] =
1

(α− z0)(α− z1) · · · (α− zm)
,

where z0, z1, . . . , zm are different complex numbers.

This simple explicit formula enables us to analyse polynomial interpolants to
f(z).

Exercise 5.2. Let pn ∈ Pn interpolate f(z) at different points z0, z1, . . . , zn ∈ C.
Prove that

(18) f(z)− pn(z) =
1

α− z

n∏
k=0

(
z − zk
α− zk

)
.

If we choose equally spaced points, that is, zk = k/n, for k = 0, 1, . . . , n, and set
z ≡ x ∈ R, then (5.2) becomes

(19) f(x)− pn(x) =
1

α− x

n∏
k=0

(
x− k/n
α− k/n

)
.

Exercise 5.3. Show that
(20)

loge

[
|f(x)− pn(x)|1/n

]
+

1

n
loge |α−x| =

1

n

n∑
k=0

loge |x−k/n|−
1

n

n∑
k=0

loge |α−k/n|.



14 BRAD BAXTER

If we let n→∞ in (20), then we obtain

(21) lim
n→∞

loge

[
rn(x)1/n

]
= R(x) ≡

∫ 1

0

loge |x− t| dt−
∫ 1

0

loge |α− t| dt,

where rn(x) = |f(x)− pn(x)|.

Exercise 5.4. (1) Prove that, if R(x) > 0, then rn(x) ≥ exp(nR(x)/2) for all
sufficiently large n.

(2) Prove that, if R(x) < 0, then rn(x) ≤ exp(−nR(x)/2) for all sufficiently
large n

The import of the last exercise is that, if we interpolate f(z) = 1/(α − z) at
equally spaced points {0, 1/n, 2/n, . . . , (n − 1)/n, 1}, then the error f(x) − pn(x)
either increases exponentially or decreases exponentially, as n→∞.
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