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You can download these slides and the lecture videos from my
office server

http://econl109.econ.bbk.ac.uk/brad/analysis/

Recommended book: Lara Alcock (2014), “How to Think about
Analysis”, Oxford University Press.
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Example (A once pathological function)

Consider the following function

1 if R
Rl

In any interval (a, b),
sup{f(x):a<x<b}=1 and inf{f(x):a<x<b}=0.
What would the graph of f(x) look like? What, if anything, is

/01 f(x)dx?

Such functions were disturbing in the earlier days of analysis, hence
the term “pathological”. Continuity is one way to avoid them.
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A continuous function has no “jumps”.

@ We say f : [a, b] — R is continuous at ¢ € (a, b) if, given any
€ > 0, there exists § > 0 such that [x — ¢| < § implies
|f(x) — f(c)| <e.

@ We say that f is continuous at a if, given any € > 0, there
exists 0 > 0 such that x € (a,a+ 0) implies |f(x) — f(a)| < e.

© We say that f is continuous at b if, given any € > 0, there
exists 0 > 0 such that x € (b— ¢, b) implies |f(x) — f(b)| < e.

Sequence definition of continuity: If x, — ¢, then f(x,) — f(c).

Brad Baxter Birkbeck College, University of London Real Analysis 4: Continuity



Example (x2 is continuous)

f(x) = x? is continuous on R, i.e. continuous at every point
c € R. To see this, first note that

f(c+ h) — f(c) = (c+ h)? — c® = 2ch + h*,

and we want to prove that this is small for sufficiently small |h|. If
we choose any R € (0, 1), then |h| < R implies

[f(c+h) — f(c)| = |2ch+ h?| < 2|c|R+ R* < (2]c| + 1) R,

since R?> < R for R € (0,1). Thus, given any € > 0, if we pick
d < €/(2|c|+ 1), then |h| < § implies that

[f(c+h) —f(c)] < (2lc| +1)6 <e.
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Example (x" is continuous)

We could mimic the proof of continuity of x> to prove that
f(x) = x" is continuous. The crucial point is that, for |h| < 1,

flc+h) =) <D (Z) |h|K|c|mk
k=1

n n o
<1y ()1el
k=1

Exercise: Complete the proof.
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Example (A discontinuous function)
Let

1 if R
e ={y e

Then in every open interval (a, b) we have
sup{f(x):a<x<b}=1 and inf{f(x):a<x<b}=0.

Hence f is nowhere continuous.
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Theorem (Sums of continous functions are continuous.)

If fi and f, are continuous functions on [a, b], then so is
g=h+h.

Proof
We have

g(x) — g(c)| = [(A(x) — fi(c)) + (f2(x) — f2(c))]
< [A(x) = file) + [fa(x) = f(c)]-

Now choose any € > 0. By continuity of fi and f, we know that
there exists 0, > 0 such that |x — ¢| < dx implies
|f(x) — fi(c)| < €/2. Hence, if |[x — c| < § := min{d1, 02}, then

lg(x) — g(c)] = [(f(x) — fi(c)) + (fa(x) — f(c))|
< |A(x) = A(c)| + [2(x) — fa(c)]
<6+§

N |
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Theorem (Products of continous functions are continuous.)

If fi and f, are continuous functions on [a, b], then so is
g(x) = A(x)fa(x), for x € [a, b].

Proof.

Given any € > 0, there exists 0, > 0 such that |x — c| < dx implies
|f(x) — fk(c)| < €. Hence if § = min{d1,02}, then [x —c| < §
implies |fi(x) — fi(c)| < € and |fi(x)| < |fk(c)| + € for |x — c| < .
Therefore

1A (x)f2(x) — fu(c)fa(c)]

= () f(x) = h(c)a(x) + A(c)ha(x) — fi(c)h(c)]
< [A()f(x) = A(e)L(x)] + [f(c)a(x) — A(c)h(c)]
= [R()[fi(x) = Ale)| + ()l [f(x) = A(x)]
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Lemma

Let f: [a, b] — R be continuous and suppose that f(c) > 0 for
some point a < ¢ < b. Then exists an open (c —d,c+ 0) C [a, b]
such that f(x) > f(c)/2 for |x — c| < 9.

Proof.

Let € = f(c)/2. By continuity, there exists an an open interval
(c — &, c+6) in which

[f(x) —f(c)| <e= 7‘(2(:)

In other words,

f(c) f(c)
—T < f(X)—f(C)< T,

which implies that & < f(x) < 3f(c), for x € (c = 6,c +6). [
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Optional extra proof of Bolzano—Weierstrass
Recall that a real sequence (a,) is just a function f: N — R, i.e.

ap = f(n).
Definition

We shall call m € N a peak number if a,, > a, for all k > m.

Theorem (Bolzano—\Weierstrass with a different proof)

Any bounded sequence (a,,) of real numbers contains a monotonic,
and therefore convergent, subsequence.
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Optional extra proof of Bolzano—Weierstrass

Bolzano—Weierstrass via hidden monotonic sequences.

Either: there are infinitely many peak numbers

p(1) < p(2) < p(3) <---, then ay) > ap(k1), i-e

ap(1) dp(2)s - - - is @ bounded decreasing subsequence.

Or: there are only finitely many peak numbers. Let M be the

greatest peak number. For every n > M, n is not a peak number,
so there must exist a least g(n) > n with ag(,) > an.

Define q(1) = M+ 1 and g(k + 1) = g(q(k)). Then
q(k) < q(k +1) and ag(x) < ag(k+1) for all k, so (aq(x)) is a
bounded increasing subsequence.

Finally, a bounded monotonic subsequence is convergent. O
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Lemma (Continuous functions are locally bounded)

Let f: [a, b] — R be a continuous function and choose any point
c € (a, b) for which f(c) # 0. Then exists an open interval
(c —d,c+9) C |a, b] such that

[F()l < 2[f(e)l,

for |x — c| < 0.

Proof.

By continuity, there exists an open interval (¢ — 6§, c + ) in which
[f(x) = f(e)] < |f(e)l.
In other words,
—If(e)l < f(x) = f(c) < [f(c)l,

which implies |f(x)| < 2|f(c)|. O
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Theorem

Let f: [a, b] — R be any unbounded function. Then f is not
continuous everywhere in [a, b|, i.e. there exists a point at which f
is discontinuous.

Proof.

Without loss of generality, f is not bounded above. Thus there
exists a sequence (x,) for which f(x,) > n. By
Bolzano—Weierstrass, there is a convergent subsequence (x,,k), with
limit ¢ € [a, b]. Thus, given any 6 > 0, there exists N € N for
which |xp, — c| < §, for nx > N, and f(xp,) > |f(c)|. Hence, using

the Triangle Inequality |[A — B| > ‘]A\ — ]B\‘

[F(n) = ()] 2 [|FCxn)] = FQ)I] > mic = (<))

Thus f is not continuous at c. ]

Hence a continuous function on [a, b] is bounded.
Exercise: Is the theorem true in (a, b)?
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Theorem (Intermediate Value Theorem 1)

If f : [a, b] — R is continuous and f(a) < f(b), then, for every
y € (f(a), f(b)), there exists at least one point c € (a, b) for which
flc)=y.

Proof.
Let

S={x¢€lab]:f(x) <y}

Then a € S, so it's non-empty and contained in the bounded
interval [a, b]. Hence ¢ =sup S exists. If f(c) > y, then there
exists 0 > 0 such that f(x) > y for |x — ¢| < 0. However, if this is
so, then ¢ — ¢ is an upper bound for S, contradicting the definition
of c. Similarly, if f(c) < y, then there exists 6 > 0 such that

f(x) <y for |[x — ¢| < 4, again contradicting the definition of c.
The only remaining possibility is f(y) = c. Ol

Exercise: What happens if f(a) > f(b)? Hint: Consider —f.
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Theorem

(IVT2) If f : [a, b] — R is continuous and f(a) > 0 > f(b), then
there exists at least one point ¢ € (a, b) for which f(c) = 0.

CONSTRUCTIVE PROOF:

Let ag = a, bp = b and let L = by — ag. Thus f(ap) > 0 > f(bp)
and our interval [ag, bg] has length L.

Either f(%bo) =0, in which case STOP

or f(232) £ 0.

If £(2550) > 0, then let a1 = (ao + bo)/2, b1 = by,

else let a; = ag, b1 = (ao + bo)/2.

We now have a new interval [a1, b1] of length L/2 for which
f(a1) > 0 > f(b1). We can then repeat the construction, each
time obtaining an interval [ax, by] of length L/2k for which
f(ak) >0 > f(bk)
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Specifically, at the k-th stage of our algorithm, for kK > 1, we
repeat this procedure:

Either f(2%2%) =0, in which case STOP
or f(2Fb) £ 0.
If £(2F) > 0, then let aky1 = (ak + bk)/2, bri1 = by,

else let agy1 = ag, bk+1 = (ak + bk)/2.
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To conclude, we have generated two sequences ag, a1, ... and
by, b1, ... with the following properties:

© {ak} is an increasing sequence,

@ {bk} is a decreasing sequence,

© each ay is bounded above by by, by, .. .,

@ each by is bounded below by ajg, as, ..., and

@ by —ax = L/2%.
Since bounded monotonic sequences are convergent, we deduce
the existence of a = limy_,oo 3k and 8 = limy_, bi. Further
a<p, f(a) >0>f(B) and [«, B] C [ak, bk], for every integer k
(Why?). Hence 8 — a < L/2*, for every k, which implies a = f3.
We then conclude that f(«) > 0 and f(«) <0, since « is the limit

of the {ax} and the {bx}, which implies that f(a) = 0. Thus
¢ = « is our desired root. [
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Example

A continuous function can have arbitrarily many roots in a closed
interval: consider a =0, b =, f(x) = cos nx, where n is an odd
positive integer.

Exercise

Give an example of a continuous function with infinitely many
roots in (0, 1]. Hint: First find an example of a continuous
function with infinitely many roots in [1, 00).
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The next result will again use a bisection argument. | shall use the
notation

supf =sup{f(x):x € I},
I

and
ir}ff =inf{f(x): x €I},

for any interval /.

Key point: At least one of sup(, (,4p)/2] f and supy(a4.p)/2,p) f must
be equal to supy, 4 f.

The proof that inf; f is attained is essentially identical.
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Theorem

Iff : [a, b] = R is a continuous function, then f attains its bounds.

CONSTRUCTIVE PROOF:
We begin the bisection argument as before:

If S“p[ao,(ao+bo)/2] f = sup[ao?bo] f, or if
sup f= sup f,
[a0,(a0+b0)/2] [(a0+b0)/2,b0]
then let a3 = ag, by = (a0 + bo)/2,
else let a; = (ao + bo)/2, b1 = byg.
We now have a new interval [a1, b1] of length L/2 for which
SUp[ahbl] f = sup[ao,bol f.
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As in the bisection proof of the Intermediate Value Theorem, we
now repeat the construction, each time obtaining an interval
[ak, bk] of length L/2K on which SUP[a,,be] I = SUP[ag,b0] -
To conclude, we have generated two sequences ag, a1, ... and
bg, b1, ... with the following properties:

© {ak} is an increasing sequence,

@ {by} is a decreasing sequence,

© each ay is bounded above by by, by, .

@ each by is bounded below by aj, as, ..., and
(5] bk — dix = L/2k.
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Since bounded monotonic sequences are convergent, we deduce
the existence of a = limy_,oo ax and 8 = limy_,o bi. Further
a<p, f(a) >0>f(B) and [«, B] C [ak, bk], for every integer k
(Why?). Hence 8 — a < L/2*, for every k, which implies a = f3.
Thus supp,, b, f = suppp fr bk — ak = L/2% and « € [ay, by], for
all k. However, f is continuous at .. Hence, given any € > 0,
there exists 0 > 0 such that |x — a| < ¢ implies |f(x) — f(a)| < e.
Finally, [ak, bx] C [a — 0, + 4], for all sufficiently large k, which
implies that f(a) = supp,p f. [
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Example (Non-uniformly continuous function)
Consider the function f(x) =1/x for 0 < x < 1. Then
1 1 y—x
x y oxy

If 0 <r<1andweletx=r,y=2r, then
1

£z
X y 2r

which tends to infinity as r — O.
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Definition (Uniform continuity)

Let f: E — R, where E C R. We say that f is uniformly
continuous on E iff, for any € > 0, there exists § > 0 for which

Ix —y| <o implies |f(x)—f(y)| <e
for all x,y € E.

In symbols (V = “for all”, 3 = ‘there exists"), uniform continuity
requires

VeI >0Vx,y € E: [x—y|<d = |f(x)—f(y)| <e
Compare this with continuity:
Yx€EVeId>0Vy € E: [x—y|<d = |f(x) —f(y)| <e

Key difference: § only depends on € for uniform continuity, while
it's a function of both € and x for continuity.
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If f: [a, b] = R is not uniformly continuous, then it's
discontinuous at some point in [a, b]

Proof.

If f were NOT uniformly continuous, then

de>0Vd>03x,y€lab]:|x—y|l<d AND |f(x)—f(y)| > e

In other words, there exists € > 0 and two sequences (x,) and (y,)
in [a, b] for which

1
F(%0) = F(yn)| > € AND [, = yi| < -

By Bolzano—Weierstrass, these sequences have convergent
subsequences (xp, ) and (yn,) with a common limit ¢ € [a, b]
(Why?). Hence f is not continuous at c, since

0 < e <[f(xa) = Flyn)| < |f(xn,) = F(c)] +[F(c) = F(yn,)l-
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