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You can download these slides and the lecture videos from my
office server

http://econ109.econ.bbk.ac.uk/brad/analysis/

Recommended book: Lara Alcock (2014), “How to Think about
Analysis”, Oxford University Press.
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Example (A once pathological function)

Consider the following function

f (x) =

{
1 if x ∈ R \Q
0 x ∈ Q.

In any interval (a, b),

sup{f (x) : a < x < b} = 1 and inf{f (x) : a < x < b} = 0.

What would the graph of f (x) look like? What, if anything, is∫ 1

0
f (x) dx?

Such functions were disturbing in the earlier days of analysis, hence
the term “pathological”. Continuity is one way to avoid them.
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A continuous function has no “jumps”.

Definition

1 We say f : [a, b]→ R is continuous at c ∈ (a, b) if, given any
ε > 0, there exists δ > 0 such that |x − c | < δ implies
|f (x)− f (c)| < ε.

2 We say that f is continuous at a if, given any ε > 0, there
exists δ > 0 such that x ∈ (a, a + δ) implies |f (x)− f (a)| < ε.

3 We say that f is continuous at b if, given any ε > 0, there
exists δ > 0 such that x ∈ (b− δ, b) implies |f (x)− f (b)| < ε.

Sequence definition of continuity: If xn → c , then f (xn)→ f (c).
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Example (x2 is continuous)

f (x) = x2 is continuous on R, i.e. continuous at every point
c ∈ R. To see this, first note that

f (c + h)− f (c) = (c + h)2 − c2 = 2ch + h2,

and we want to prove that this is small for sufficiently small |h|. If
we choose any R ∈ (0, 1), then |h| ≤ R implies

|f (c + h)− f (c)| =
∣∣2ch + h2

∣∣ ≤ 2|c |R + R2 ≤ (2|c|+ 1)R,

since R2 < R for R ∈ (0, 1). Thus, given any ε > 0, if we pick
δ < ε/ (2|c |+ 1), then |h| < δ implies that

|f (c + h)− f (c)| ≤ (2|c|+ 1) δ < ε.
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Example (xn is continuous)

We could mimic the proof of continuity of x2 to prove that
f (x) = xn is continuous. The crucial point is that, for |h| < 1,

|f (c + h)− f (c)| ≤
n∑

k=1

(
n

k

)
|h|k |c |n−k

≤ |h|
n∑

k=1

(
n

k

)
|c |n−k .

Exercise: Complete the proof.
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Example (A discontinuous function)

Let

f (x) =

{
1 if x ∈ R \Q
0 x ∈ Q.

Then in every open interval (a, b) we have

sup{f (x) : a < x < b} = 1 and inf{f (x) : a < x < b} = 0.

Hence f is nowhere continuous.
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Theorem (Sums of continous functions are continuous.)

If f1 and f2 are continuous functions on [a, b], then so is
g = f1 + f2.

Proof.

We have

|g(x)− g(c)| = |(f1(x)− f1(c)) + (f2(x)− f2(c))|
≤ |f1(x)− f1(c)|+ |f2(x)− f2(c)| .

Now choose any ε > 0. By continuity of f1 and f2, we know that
there exists δk > 0 such that |x − c | < δk implies
|fk(x)− fk(c)| < ε/2. Hence, if |x − c| < δ := min{δ1, δ2}, then

|g(x)− g(c)| = |(f1(x)− f1(c)) + (f2(x)− f2(c))|
≤ |f1(x)− f1(c)|+ |f2(x)− f2(c)|

<
ε

2
+
ε

2
= ε.
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Theorem (Products of continous functions are continuous.)

If f1 and f2 are continuous functions on [a, b], then so is
g(x) = f1(x)f2(x), for x ∈ [a, b].

Proof.

Given any ε > 0, there exists δk > 0 such that |x − c | < δk implies
|fk(x)− fk(c)| < ε. Hence if δ = min{δ1, δ2}, then |x − c | < δ
implies |fk(x)− fk(c)| < ε and |fk(x)| < |fk(c)|+ ε for |x − c | < δ.
Therefore

|f1(x)f2(x)− f1(c)f2(c)|
= |f1(x)f2(x)− f1(c)f2(x) + f1(c)f2(x)− f1(c)f2(c)|
≤ |f1(x)f2(x)− f1(c)f2(x)|+ |f1(c)f2(x)− f1(c)f2(c)|
= |f2(x)| |f1(x)− f1(c)|+ |f1(c)| |f1(x)− f1(x)|
< (|f2(c)|+ ε) ε+ |f1(c)| ε.

Brad Baxter Birkbeck College, University of London Real Analysis 4: Continuity



Lemma

Let f : [a, b]→ R be continuous and suppose that f (c) > 0 for
some point a < c < b. Then exists an open (c − δ, c + δ) ⊂ [a, b]
such that f (x) > f (c)/2 for |x − c | < δ.

Proof.

Let ε = f (c)/2. By continuity, there exists an an open interval
(c − δ, c + δ) in which

|f (x)− f (c)| < ε =
f (c)

2
.

In other words,

− f (c)

2
< f (x)− f (c) <

f (c)

2
,

which implies that f (c)
2 < f (x) < 3

2 f (c), for x ∈ (c − δ, c + δ).
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Optional extra proof of Bolzano–Weierstrass
Recall that a real sequence (an) is just a function f : N→ R, i.e.
an = f (n).

Definition

We shall call m ∈ N a peak number if am ≥ ak for all k ≥ m.

Theorem (Bolzano–Weierstrass with a different proof)

Any bounded sequence (an) of real numbers contains a monotonic,
and therefore convergent, subsequence.
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Optional extra proof of Bolzano–Weierstrass

Bolzano–Weierstrass via hidden monotonic sequences.

Either: there are infinitely many peak numbers
p(1) < p(2) < p(3) < · · · , then ap(k) ≥ ap(k+1), i.e.
ap(1), ap(2), . . . is a bounded decreasing subsequence.

Or: there are only finitely many peak numbers. Let M be the
greatest peak number. For every n > M, n is not a peak number,
so there must exist a least g(n) > n with ag(n) > an.

Define q(1) = M + 1 and q(k + 1) = g(q(k)). Then
q(k) < q(k + 1) and aq(k) < aq(k+1) for all k , so (aq(k)) is a
bounded increasing subsequence.

Finally, a bounded monotonic subsequence is convergent.
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Lemma (Continuous functions are locally bounded)

Let f : [a, b]→ R be a continuous function and choose any point
c ∈ (a, b) for which f (c) 6= 0. Then exists an open interval
(c − δ, c + δ) ⊂ [a, b] such that

|f (x)| ≤ 2 |f (c)| ,

for |x − c | < δ.

Proof.

By continuity, there exists an open interval (c − δ, c + δ) in which

|f (x)− f (c)| < |f (c)|.

In other words,

−|f (c)| < f (x)− f (c) < |f (c)|,

which implies |f (x)| < 2|f (c)|.
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Theorem

Let f : [a, b]→ R be any unbounded function. Then f is not
continuous everywhere in [a, b], i.e. there exists a point at which f
is discontinuous.

Proof.

Without loss of generality, f is not bounded above. Thus there
exists a sequence (xn) for which f (xn) > n. By
Bolzano–Weierstrass, there is a convergent subsequence (xnk ), with
limit c ∈ [a, b]. Thus, given any δ > 0, there exists N ∈ N for
which |xnk − c | < δ, for nk ≥ N, and f (xnk ) > |f (c)|. Hence, using

the Triangle Inequality |A− B| ≥
∣∣∣|A| − |B|∣∣∣,

|f (xnk )− f (c)| ≥
∣∣∣|f (xnk )| − |f (c)|

∣∣∣ > nk − |f (c)|.

Thus f is not continuous at c .

Hence a continuous function on [a, b] is bounded.
Exercise: Is the theorem true in (a, b)?
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Theorem (Intermediate Value Theorem 1)

If f : [a, b]→ R is continuous and f (a) < f (b), then, for every
y ∈ (f (a), f (b)), there exists at least one point c ∈ (a, b) for which
f (c) = y.

Proof.

Let
S = {x ∈ [a, b] : f (x) < y}.

Then a ∈ S , so it’s non-empty and contained in the bounded
interval [a, b]. Hence c = supS exists. If f (c) > y , then there
exists δ > 0 such that f (x) > y for |x − c | ≤ δ. However, if this is
so, then c − δ is an upper bound for S , contradicting the definition
of c . Similarly, if f (c) < y , then there exists δ > 0 such that
f (x) < y for |x − c | ≤ δ, again contradicting the definition of c .
The only remaining possibility is f (y) = c.

Exercise: What happens if f (a) > f (b)? Hint: Consider −f .
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Theorem

(IVT2) If f : [a, b]→ R is continuous and f (a) > 0 > f (b), then
there exists at least one point c ∈ (a, b) for which f (c) = 0.

Constructive Proof:
Let a0 = a, b0 = b and let L = b0 − a0. Thus f (a0) > 0 > f (b0)
and our interval [a0, b0] has length L.
Either f (a0+b0

2 ) = 0, in which case STOP

or f (a0+b0
2 ) 6= 0.

If f (a0+b0
2 ) > 0, then let a1 = (a0 + b0)/2, b1 = b0,

else let a1 = a0, b1 = (a0 + b0)/2.
We now have a new interval [a1, b1] of length L/2 for which
f (a1) > 0 > f (b1). We can then repeat the construction, each
time obtaining an interval [ak , bk ] of length L/2k for which
f (ak) > 0 > f (bk).
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Specifically, at the k-th stage of our algorithm, for k ≥ 1, we
repeat this procedure:

Either f (ak+bk
2 ) = 0, in which case STOP

or f (ak+bk
2 ) 6= 0.

If f (ak+bk
2 ) > 0, then let ak+1 = (ak + bk)/2, bk+1 = bk ,

else let ak+1 = ak , bk+1 = (ak + bk)/2.
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To conclude, we have generated two sequences a0, a1, . . . and
b0, b1, . . . with the following properties:

1 {ak} is an increasing sequence,

2 {bk} is a decreasing sequence,

3 each ak is bounded above by b1, b2, . . .,

4 each b` is bounded below by a1, a2, . . ., and

5 bk − ak = L/2k .

Since bounded monotonic sequences are convergent, we deduce
the existence of α = limk→∞ ak and β = limk→∞ bk . Further
α ≤ β, f (α) ≥ 0 ≥ f (β) and [α, β] ⊂ [ak , bk ], for every integer k
(Why?). Hence β − α ≤ L/2k , for every k , which implies α = β.
We then conclude that f (α) ≥ 0 and f (α) ≤ 0, since α is the limit
of the {ak} and the {bk}, which implies that f (α) = 0. Thus
c = α is our desired root.
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Example

A continuous function can have arbitrarily many roots in a closed
interval: consider a = 0, b = π, f (x) = cos nx , where n is an odd
positive integer.

Exercise

Give an example of a continuous function with infinitely many
roots in (0, 1]. Hint: First find an example of a continuous
function with infinitely many roots in [1,∞).
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The next result will again use a bisection argument. I shall use the
notation

sup
I

f = sup{f (x) : x ∈ I},

and
inf
I
f = inf{f (x) : x ∈ I},

for any interval I .
Key point: At least one of sup[a,(a+b)/2] f and sup[(a+b)/2,b] f must
be equal to sup[a,b] f .
The proof that inf I f is attained is essentially identical.
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Theorem

If f : [a, b]→ R is a continuous function, then f attains its bounds.

Constructive proof:
We begin the bisection argument as before:
If sup[a0,(a0+b0)/2] f = sup[a0,b0] f , or if

sup
[a0,(a0+b0)/2]

f = sup
[(a0+b0)/2,b0]

f ,

then let a1 = a0, b1 = (a0 + b0)/2,
else let a1 = (a0 + b0)/2, b1 = b0.
We now have a new interval [a1, b1] of length L/2 for which
sup[a1,b1] f = sup[a0,b0] f .
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As in the bisection proof of the Intermediate Value Theorem, we
now repeat the construction, each time obtaining an interval
[ak , bk ] of length L/2k on which sup[ak ,bk ] f = sup[a0,b0] f .
To conclude, we have generated two sequences a0, a1, . . . and
b0, b1, . . . with the following properties:

1 {ak} is an increasing sequence,

2 {bk} is a decreasing sequence,

3 each ak is bounded above by b1, b2, . . .,

4 each b` is bounded below by a1, a2, . . ., and

5 bk − ak = L/2k .
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Since bounded monotonic sequences are convergent, we deduce
the existence of α = limk→∞ ak and β = limk→∞ bk . Further
α ≤ β, f (α) ≥ 0 ≥ f (β) and [α, β] ⊂ [ak , bk ], for every integer k
(Why?). Hence β − α ≤ L/2k , for every k, which implies α = β.
Thus sup[ak ,bk ] f = sup[a,b] f , bk − ak = L/2k and α ∈ [ak , bk ], for
all k. However, f is continuous at α. Hence, given any ε > 0,
there exists δ > 0 such that |x − α| ≤ δ implies |f (x)− f (α)| ≤ ε.
Finally, [ak , bk ] ⊂ [α− δ, α + δ], for all sufficiently large k , which
implies that f (α) = sup[a,b] f .

Brad Baxter Birkbeck College, University of London Real Analysis 4: Continuity



Example (Non-uniformly continuous function)

Consider the function f (x) = 1/x for 0 < x ≤ 1. Then

1

x
− 1

y
=

y − x

xy
.

If 0 < r < 1 and we let x = r , y = 2r , then

1

x
− 1

y
=

1

2r

which tends to infinity as r → 0.
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Definition (Uniform continuity)

Let f : E → R, where E ⊂ R. We say that f is uniformly
continuous on E iff, for any ε > 0, there exists δ > 0 for which

|x − y | < δ implies |f (x)− f (y)| < ε

for all x , y ∈ E.

In symbols (∀ = “for all”, ∃ = ‘there exists”), uniform continuity
requires

∀ε ∃δ > 0 ∀x , y ∈ E : |x − y | < δ =⇒ |f (x)− f (y)| < ε.

Compare this with continuity:

∀x ∈ E ∀ε ∃δ > 0 ∀y ∈ E : |x − y | < δ =⇒ |f (x)− f (y)| < ε.

Key difference: δ only depends on ε for uniform continuity, while
it’s a function of both ε and x for continuity.
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Theorem

If f : [a, b]→ R is not uniformly continuous, then it’s
discontinuous at some point in [a, b]

Proof.

If f were NOT uniformly continuous, then

∃ε > 0 ∀δ > 0 ∃x , y ∈ [a, b] : |x − y | < δ AND |f (x)− f (y)| > ε.

In other words, there exists ε > 0 and two sequences (xn) and (yn)
in [a, b] for which

|f (xn)− f (yn)| > ε AND |xn − yn| <
1

n
.

By Bolzano–Weierstrass, these sequences have convergent
subsequences (xnk ) and (ynk ) with a common limit c ∈ [a, b]
(Why?). Hence f is not continuous at c , since

0 < ε < |f (xnk )− f (ynk )| ≤ |f (xnk )− f (c)|+ |f (c)− f (ynk )|.
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