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office server

http://econ109.econ.bbk.ac.uk/brad/analysis/

Recommended books: Lara Alcock (2014), “How to Think
about Analysis”, Oxford University Press.
J. C. Burkill (1978), “A First Course in Mathematical Analysis”,
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The exponential function is defined by

exp z =
∞∑
k=0

zk

k!
, for z ∈ C,

which is an absolutely convergent series by the ratio test:∣∣∣ak+1

ak

∣∣∣ =
|z |

k + 1
→ 0,

as k →∞, where ak = zk/k!. We now need to deduce its other
vital properties from this definition.
Notation: It’s fine to write ez or exp(z), but we shall keep to
exp(z) until we have derived further properties.
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Theorem (Can differentiate power series term by term)

If

f (z) =
∞∑
n=0

anz
n

is convergent for |z | < R, then

f ′(z) =
∞∑
n=1

annz
n−1.

Proof.

Nonexaminable
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Theorem

d

dz
exp z = exp z .

Proof.

Here an = 1/n!, so that

d

dz
exp z =

∞∑
n=1

n

n!
zn−1

=
∞∑
n=1

1

(n − 1)!
zn−1

=
∞∑
k=0

1

k!
zk

= exp z .
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Theorem

Choose any w ∈ C and define

f (z) = exp(w − z) exp(z), z ∈ C.

Then f ′(z) ≡ 0 and f (z) ≡ f (w).

Proof.

f ′(z) = − exp(w − z) exp(z) + exp(w − z) exp(z) = 0.

Hence f is constant and f (z) ≡ f (0) = exp(w).

Theorem

exp(a + b) = exp(a) exp(b) for any a, b ∈ C.

Proof.

Let w = a + b and z = b in the previous theorem.
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Alternative.

We already know Taylor’s theorem (last lecture) is valid for
f (x) = exp(x):

f (x + y) =
∞∑
k=0

yk

k!
f (k)(x)

or

exp(x + y) =
∞∑
k=0

yk

k!
exp(x) = exp(x) exp(y).
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Theorem

For all z ∈ C
exp(−z) exp(z) = 1.

Thus the exponential function is never zero.

Proof.

exp(−z) exp(z) = exp(−z + z) = exp 0 = 1.

Theorem

If x ∈ R, then exp x > 0.

Proof.

exp x = exp
(x

2
+

x

2

)
= exp(x/2)2 > 0,

because exp(x/2) is real if x is real.
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Theorem (exp is strictly increasing on R)

If x , y ∈ R and x < y, then exp x < exp y.

Proof.

By the Mean Value Theorem, there exists c ∈ (x , y) for which

exp y − exp x = (y − x) exp c > 0.

Thus exp : R→ (0,∞) is injective: if exp x = exp y , then x = y .
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Theorem

Let e = exp 1 = 2.71828182845904523536 . . .. Then exp n = en,
for any integer n. Further, exp(p/q) = ep/q, for any integers p and
q 6= 0. We define

ez = exp(z)

for all z ∈ C.

Proof.

exp n = exp

1 + · · ·+ 1︸ ︷︷ ︸
n

 = (exp 1)n = en, n ∈ N.

Further, exp(−n) exp(n) = exp 0 = 1 implies that
exp(−n) = 1/ exp n = 1/(en), which is the definition of e−n, and

ep = exp p = exp[(p/q)q] = exp(p/q)q.

Brad Baxter Birkbeck College, University of London Real Analysis 6: The Standard Functions of Analysis



Theorem (Non-examinable)

e = exp 1 is irrational.

Non-examinable Proof: Suppose e = m/n, where m, n ∈ N
with no common factors. Now

m

n
= e =

∞∑
k=0

1

k!
=

n∑
k=0

1

k!
+

∞∑
k=n+1

1

k!
≡ S1 + S2.

Multiply both sides by n!:

m(n − 1)! = n!S1︸︷︷︸
integer

+n!S2.

Brad Baxter Birkbeck College, University of London Real Analysis 6: The Standard Functions of Analysis



But

n!S2 =
1

n + 1
+

1

(n + 1)(n + 2)
+

1

(n + 1)(n + 2)(n + 3)
+ · · ·

<
1

n + 1
+

1

(n + 1)2
+

1

(n + 1)3
+ · · ·

=
1

n
,

summing the geometric series (exercise). Hence

m(n − 1)!− n!S1 = n!S2.

The LHS is an integer, while the RHS is a positive number in
(0, 1), which is a contradiction.
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Theorem

For any positive integer n and x > 0,

xn

exp x
<

(n + 1)!

x
.

Hence limn→∞ xn exp(−x) = 0.

Proof.

xn

exp x
=

xn

1 + x + x2

2! + · · ·+ xn+1

(n+1)! + · · ·
<

xn

xn+1

(n+1)!

=
(n + 1)!

x
.

Exercise

Show that exp x →∞ as x → +∞ and exp x → 0 as x → −∞.
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Theorem

The exponential function exp: R→ (0,∞) is a bijection.

Proof.

We already know that it’s strictly increasing, so it’s an injection.
Further, for any y > 0, exp y > 1 + y and, since exp x → 0 as
x → −∞, there exists x0 ∈ R for which exp x0 < y . Thus the
function f (x) = exp x − y satisfies f (y) > 1 and f (x0) < 0. Hence
there must exist x ∈ (x0, y) for which exp x = y .
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Theorem

Let L : (0,∞)→ R denote the inverse of the exponential function,
i.e. L(exp x) = x, for all x ∈ R. Then

d

dy
L(y) =

1

y
, for y > 0,

and L(1) = 0.

Proof.

Differentiating L(exp x) = x using the Chain rule, we have

L′(exp x) exp x = 1

and setting y = exp x gives L′(y)y = 1, Since exp(0) = 1, we must
have L(1) = 0.

Of course, L(y) = ln y , the natural logarithm, but we shall keep to
L(y) for now.
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Theorem

L(y)→∞ as y →∞. Further,

L(ab) = L(a) + L(b)

for any a, b > 0.

Proof.

Let x = L(a) and y = L(b). Then exp x = a, exp y = b and

exp(x + y) = exp x exp y ,

i.e.
exp(L(a) + L(b)) = ab,

or
L(a) + L(b) = L(ab).
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Definition (xa for a ∈ R)

For x > 0, define
ra(x) = exp(aL(x)).

Theorem

For m, n ∈ N

rn(x) = exp(nL(x)) = exp(L(x))n = xn

and

rm/n(x) = exp((m/n)L(x)) = exp(L(x))m/n = xm/n.

Definition

Define xa = ra(x) = exp(aL(x)) for x > 0 and a ∈ R.
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Example (Usual properties of exponents)

For x , y > 0,

(xy)a = exp(aL(xy))

= exp(a[L(x) + L(y)])

= exp(aL(x)) exp(aL(y))

= xa · ya.

Further

xa+b = exp((a + b)L(x))

= exp(aL(x)) exp(bL(x))

= xa · xb.
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Example

We also see that, for x > 0, x1 = exp(L(x)) = x . Further,

(xb)a = exp(aL(xb))

= exp(aL(exp(bL(x))))

= exp(abL(x))

= xab.

Exercise

Show that x−1 = exp(−L(x)) = 1/x, for x > 0.
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Theorem

d

dx
xa = axa−1 for x > 0, a ∈ R.

Proof.

d

dx
exp(aL(x)) = exp(aL(x))(a/x)

= a exp(aL(x)) exp(−L(x))

= a exp((a− 1)L(x))

= axa−1.
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Theorem

If x > 0, then
d

da
xa = L(x)xa, a ∈ R.

Proof.

d

da
xa =

d

da
exp(aL(x)) = L(x) exp(aL(x)) = L(x)xa.
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Example (Nonexaminable: Calculating L(x))

If we choose x = 1 + a and |a| < 1, then, setting y = 1 + s,

L(1 + a) =

∫ 1+a

1

1

y
dy =

∫ a

0

1

1 + s
ds.

Now
1

1 + s
= 1− s + s2 − s3 + · · ·

and it turns out that we can integrate power series term by term:

L(1 + a) =

∫ a

0

1

1 + s
ds

=

∫ a

0
1− s + s2 − s3 + · · · ds

= a− a2

2
+

a3

3
− a4

4
+ · · · .
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Example

If we let a = 1/2, then

L(1/2) = L(1− a/2) = −
(
a +

a2

2
+

a3

3
+ · · ·

)
and

L(2) ≈
(
a +

a2

2
+

a3

3
+ · · ·+ an

n

)
.

If n = 20, then we find

L(2) ≈ 0.6931471370510288

which is correct to 5 decimal places.
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Definition

We define

c(z) =
1

2

(
exp(iz) + exp(−iz)

)
and

s(z) =
1

2i

(
exp(iz)− exp(−iz)

)
.

Of course, c(z) = cos z and s(z) = sin z , but we shall keep to c(z)
and s(z) while deducing their fundamental properties.

Theorem

exp(iz) = c(z) + is(z) and exp(−iz) = c(z)− is(z)

and exp 0 = 1 implies c(0) = 1 and s(0) = 0. Further, c(z) is an
even function, i.e. c(−z) = c(z), while s(z) is an odd function,
i.e. s(−z) = −s(z), for all z ∈ C.
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Example

c(5i) = (exp(5) + exp(−5))/2 ≈ 74.2099485

and

s(5i) = −i(exp(−5)− exp(5))/2 ≈ 74.2032105777i .

Hence

c(5i)2 =
1

4

(
exp(10) + 2 + exp(−10)

)
and

s(5i)2 = −1

4

(
exp(10)− 2 + exp(−10)

)
.

Thus
c(5i)2 + s(5i)2 = 1.

Exercise

Check that c(5i)2 + s(5i)2 = 1 numerically.
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Theorem

We have
c(z)2 + s(z)2 = 1

for all z ∈ C.

Proof.

c(z)2 + s(z)2

=
1

4

(
exp(2iz) + 2 + exp(−2iz)− exp(2iz) + 2− exp(−2iz)

)
= 1.

Brad Baxter Birkbeck College, University of London Real Analysis 6: The Standard Functions of Analysis



Theorem

We have c(0) = 1, s(0) = 0 and the differential equations

c ′(z) = −s(z) and s ′(z) = c(z).

Hence
c ′′(z) + c(z) = s ′′(z) + s = 0.

Proof.

For example, c(z) = (1/2)(exp(iz) + exp(−iz)) implies

c ′(z) = (1/2)(i exp(iz)− i exp(−iz)) = −s(z).

The rest are left as exercises.
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Theorem (The addition formulae for c(z) and s(z))

We have

c(z + w) = c(z)c(w)− s(z)s(w)

and s(z + w) = s(z)c(w) + c(z)s(w),

for any z ,w ∈ C.

Proof.

c(z + w) + is(z + w) = exp(i(z + w))

= exp(iz) exp(iw)

= (c(z) + is(z))(c(w) + is(w)).

Now equate real and imaginary parts.

Exercise:

c(z − w) = c(z)c(w) + s(z)s(w), for all z ,w ∈ C.
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Theorem

c(z) = 1− z2

2!
+

z4

4!
− z6

6!
+ · · ·

and

s(z) = z − z3

3!
+

z5

5!
− z7

7!
+ · · · ,

for any z ∈ C.

Proof.

These are the real and imaginary parts of the absolutely
convergent series

exp(iz) =
∞∑
k=0

(iz)k

k!
,

using the fact that i2 = −1, i3 = −i and i4 = 1. Exercise: These
series are absolutely convergent for all z ∈ C, by the Ratio test
.
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Theorem

There exists w ∈ (0, 2) for which c(w) = 0.

Proof.

We know that c(0) = 1 and

c(x) = 1− x2

2!
+

x4

4!
− · · ·

is an alternating series. Hence

1− x2

2!
≤ c(x) ≤ 1− x2

2!
+

x4

4!
,

for x ∈ R. If x = 2, then

c(2) ≤ 1− 22

2!
+

24

4!
= −1/3.

Hence there is a root w ∈ (0, 2) by the Intermediate Value
Theorem.
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Definition

Let ω = inf{w ∈ R+ : c(w) = 0}.

Exercise

Use the addition formulae to prove that

c(2z) = 2c(z)2 − 1 = c(z)2 − s(z)2 and s(2z) = 2s(z)c(z),

for any z ∈ C. Hence find c(ω/2) and s(ω/2).

Theorem (c(2ω) = −1, c(4ω) = 1, s(2ω) = s(4ω) = 0)

Now c(ω) = 0 implies that

c(2ω) = 2c(ω)2 − 1 = −1

and
c(4ω) = 2c(2ω)2 − 1 = 1.

Note that c(z)2 + s(z)2 = 1 implies that s(2ω) = s(4ω) = 0.
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Theorem (c(z) and s(z) have period 4ω)

c(z + 4ω) = c(z) and s(z + 4ω) = s(z)

for all z ∈ C.

Proof.

c(z + 4ω) = c(z)c(4ω)− s(z)s(4ω) = c(z)

and
s(z + 4ω) = s(z)c(4ω) + c(z)s(4ω) = s(z).
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Theorem

1 c(0) = 1, c(x) > 0 for 0 ≤ x < ω.

2 s ′(x) = c(x) > 0 for 0 ≤ x < ω, i.e. s is strictly increasing on
[0, ω). Thus 1 = c(ω)2 + s(ω)2 = s(ω)2 implies s(ω) = 1.

3 c ′′(x) = −c(x) < 0 for 0 ≤ x < ω.
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Theorem

For all z ∈ C:

1 c(z − ω) = c(z)c(ω) + s(z)s(ω) = s(z).

2 s(z + ω) = s(z)c(ω) + c(z)s(ω) = c(z).

3 c(z + 2ω) = c(z)c(2ω)− s(z)s(2ω) = −c(z), recalling that
c(2ω) = 2c(ω)2 − 1 = −1 and s(2ω) = 2s(ω)c(ω) = 0.

Theorem

We have c(x) > 0 for −ω < x < ω and c(x) = −c(x − 2ω) < 0
for ω < x < 3ω. Hence the real zeros of c are at
{ω + 2nω : n ∈ Z} and the real zeros of s are at {2nω : n ∈ Z}.
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Theorem

c and s have no zeros in C \ R.

Proof.

If s(x + iy) = 0, then 1 = exp(2i(x + iy) = exp(2ix) exp(−2y).
But | exp(2ix)|2 = c(2x)2 + s(2x)2 = 1. Hence exp(−2y) = 1,
which implies y = 0.
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Theorem

exp(z + 4iω) = exp z

for all z ∈ C. In particular, exp(4iω) = 1.

Proof.

exp(z + 4iω) = exp(z) exp(4iω) = exp(z)(c(4ω) + is(4ω)).

We can stop pretending now: c(z) ≡ cos z , s(z) ≡ sin z and
ω = π/2.
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Example (Nonexaminable: Viète’s Formula)

The addition formula for sin x gives

sin x = 2 sin
x

2
cos

x

2

= 22 sin
x

4
cos

x

4
cos

x

2

= 23 sin
x

8
cos

x

8
cos

x

4
cos

x

2
.

A simple induction provides Viète’s formula (1593):

sin x

2n sin x
2n

= cncn−1 · · · c2c1,

where ck = cos(x/2k).

Brad Baxter Birkbeck College, University of London Real Analysis 6: The Standard Functions of Analysis



Exercise (Nonexaminable)

Prove that

lim
n→∞

sin x

2n sin x
2n

=
sin x

x
.

Theorem (Nonexaminable)

If x = π/2, then Viète’s formula becomes

2

π
= lim

n→∞
c1c2 · · · cn−1cn,

where
ck = cos

π

2k+1
, k ∈ N.

Exercise

Find c1 and show that ck+1 =
√

(1 + ck)/2.
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Theorem (cosh and sinh)

cos(iz) =
1

2

(
ez + e−z

)
≡ cosh z .

and

sin(iz) =
1

2i

(
e i(iz) + e−i(iz)

)
= i sinh z ,

where cosh z = (ez + e−z)/2 and sinh z = (ez − e−z)/2.

Example

1 = cos2(iz) + sin2(iz) = cosh2 z − sinh2 z .

Brad Baxter Birkbeck College, University of London Real Analysis 6: The Standard Functions of Analysis



Example

cosh(2z) = cos(2iz) = cos2(iz)− sin2(iz) = cosh2 z + sinh2 z .

Example

sinh(2z) = −i sin(2iz) = −2i sin(iz) cos(iz) = 2 sinh z cosh z .
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Example

cos(x + iy) = cos x cos(iy)− sin x sin(iy)

= cos x cosh y − i sin x sinh y .

Exercise

Show that

sin(x + iy) = sin x cosh y + i cos x sinh y .

Hence show that
tan(z∗) = [tan z ]∗,

where z = x + iy and z∗ = x − iy .
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