
DATA MINING

BRAD BAXTER

[Version: 202311061841]. You can access last year’s examination questions and some other

material from my college homepage, including the PDF version of these notes:
http://econ109.econ.bbk.ac.uk/brad/datamining/dmnotes.pdf. Please contact me if you need

the notes in a different visual form.

Contents

1. Introduction 1
2. Radial Basis Functions 3
2.1. Characteristic Functions 4
3. Applied Linear Algebra 9
3.1. Complex Numbers 9
3.2. Covariance Matrices 10
3.3. Orthogonal Matrices 11
3.4. The Singular Value Decomposition 11
3.5. Linear Least Squares 13
3.6. Matrix Nearness Problems 14
3.7. Lagrange’s Identity 17
4. Alternative Procrustes 19
5. Generating Random Matrices 21
5.1. Gaussian Random Vectors and Matrices 21
5.2. Uniformly distributed points on the Sphere 21
5.3. Random Orthogonal Matrices 23
6. Clustering Algorithms 24
6.1. The k-means Clustering Algorithm 24
7. PageRank 26

1. Introduction

The term “Data Mining” is poorly defined, but most problems fit into the follow-
ing framework in one way or another: we are given observation vectors z1, z2, . . . , zn
in Rd and want to discover some useful pattern, or trend, in the data. Typically
n and d are large, but this is not an essential feature. Thus “Data Mining” is re-
ally just a new name for statistical analysis, but there are some important reasons
which justify the jargon’s existence. In particular, we shall devote several lectures
to the use of radial basis functions (RBFs) for data fitting. RBFs are becoming
vital tools in several fields closely related to statistics, such as learning theory and
neural networks. We shall also be studying other methods, including clustering
algorithms and the famous PageRank algorithm, which forms the heart of Google.

1

2 BRAD BAXTER

Further, an important theme will be numerical linear algebra. In particular, we
shall introduce the Singular Value Decomposition to study linear and nonlinear
least squares problems, including several matrix nearness problems. Successful use
of these techniques requires a solid theoretical foundation, so this course is not a
recipe book. We shall also be using Matlab although examination questions will
not test Matlab knowledge.

These notes contain all examinable theoretical material for the course, although
I reserve the right to set examination questions based on the examples given in
class. However, you should still find your lecture notes to be highly useful; the
belief that printed notes render the board presentation of mathematics irrlevant is
not one with which I concur – a musical instrument is best learnt by close contact
with a competent musician, rather than simply listening to recordings of competent
musicians. Further, the presentation in these notes is much more concise than in
lectures.

There is no single suitable book for this course, although you may find the review
paper of Hegland interesting. I refereed this paper four years ago and, although it’s
really designed for beginning researchers, there is much useful material. I have also
distributed some early copies of my book “Foundations of Scientific Computing”,
which will help you with some of the background numerical analysis.

Notation: I shall use R to denote the real numbers, Rn to denote real n-
dimensional space, and Rm×n to denote the set of all m× n real matrices.

DATA MINING 3

2. Radial Basis Functions

You will have seen in the Matlab classes that polynomials are really quite
unsuitable for practical approximation. The modern alternative is to use radial
basis functions (RBFs), which we describe via an example.

Example 2.1. Suppose a bank wants to credit score a large set of n customers.
Each customer is specified by a d-dimensional “credit vector” xi, which might con-
tain their annual salary, the value of any property owned, their current debt, their
age, their number of dependents, etc. Suppose there is a much smaller subset of
m points, y1, . . . ,ym say, to which the company has assigned the credit scores
f1, . . . , fm. These credit scores might be calculated on the basis of the customers’
detailed financial history, which might only be available for this smaller “training
set”. We want a function which learns from these credit scores and enables us to
calculate the score for any one of our much larger set of n customers, for most of
whom we only know their credit vector. Thus we need a function s : Rd → R such
that

s(xi) = f(yi), for 1 ≤ i ≤ m.
We say that s interpolates the data (or that s is an interpolant). If the interpolant
is inexpensive to evaluate, then we can assign a credit score very easily to our entire
database of n customers. We might even use s to allow credit scoring to take place
online.

A radial basis function has the following general form:

(2.1) s(x) =

n∑
k=1

akφ(‖x− bk‖), x ∈ Rd,

where ‖x‖ is simply the Euclidean norm in Rd, that is,

(2.2) ‖x‖ =
√
x21 + x22 + · · ·+ x2d, for x =


x1
x2
...
xd

 ∈ Rd.

We shall be using three norms in these notes: the symbol ‖x‖ will always denote
the Euclidean norm of a vector x, as defined by (2.2); the infinity norm ‖x‖∞ is
used in Section 7; and the Frobenius norm ‖A‖F for a matrix A is described in
Section 3.2.

Theorem 2.1. The following choices of φ : [0,∞) → R are suitable for RBF
interpolation.

• (the Gaussian) φ(r) = e−cr
2

;
• (the multiquadric) φ(r) = (r2 + c2)1/2;
• (the inverse multiquadric) φ(r) = (r2 + c2)−1/2;
• (the Euclidean norm) φ(r) = r (we need n > 1 for this RBF).

In these examples c is a positive constant.

Proof. The suitability of the Gaussian is given in Theorems 2.5 and 2.6. The suit-
ability of the inverse multiquadric comprises 2.5. The proofs for the multiquadric
and the Euclidean norm are not examinable. �

4 BRAD BAXTER

The numbers a1, . . . , an in (2.1) are usually called the coefficients. The points
b1, . . . ,bn ∈ Rd are called centres (and sometimes nodes). We shall assume that
the centres are distinct.

To interpolate function values f1, . . . , fn ∈ R at the centres b1, . . . ,bn, we must
be able to solve the linear equations

(2.3) s(bi) = fi, 1 ≤ i ≤ n,
that is,

(2.4)

n∑
j=1

ajφ(‖bi − bj‖) = fi, 1 ≤ i ≤ n.

In matrix form, we must solve the linear system

(2.5) Aa = f ,

where the interpolation matrix A ∈ Rn×n is given by

(2.6) Aij = φ(‖bi − bj‖), 1 ≤ i, j ≤ n,
and

(2.7) a =

 a1
...
an

 , f =

 f1
...
fn

 .

It is not obvious that the interpolation matrix A is invertible, and the possibil-
ity that it might be singular impeded the adoption of RBF approximations until
Charles Micchelli, building on much earlier work of Schoenberg, established the non-
singularity of interpolation matrices for suitable φ in a brilliant paper published in
1985. Other potential users were equally sceptical that RBF approximations were
suitable for data fitting, but this was dispelled by an extensive survey of multi-
variate approximation methods in the early 1980s, undertaken by Richard Franke
at the US Bureau of Naval Research. This began an explosion of theoretical and
empirical study of RBFs, which continues to this day. We shall be studying the
proof of invertibility of the distance matrix in some detail, because the mathemat-
ics required is beautiful and very useful in some of the newer applications of RBFs
to data mining, such as classification methods. Micchelli’s proof relies on use of
characteristic functions, which therefore form our next object of study.

Let us summarize the use of RBFs to emphasize their simplicity. Given any
number of points n in Rd, for any dimension d (with the proviso that n > 1 if we’re
using the Euclidean norm for φ), we first choose one of the functions φ given in
Theorem 2.1. We then form the interpolation matrix (2.6) and solve (2.5). The
resulting function s(x), given by (2.1), is the required interpolant.

2.1. Characteristic Functions. Let X be any real-valued random variable. Its
characteristic function is defined1 by the expectation

φX(z) = EeizX , z ∈ R.

Here2 i =
√
−1

1Strictly speaking, we should also ensure that this expectation is well-defined by stipulating

that E|X| is finite.
2I have provided a brief review of required complex arithmetic in the section Linear Algebra.

DATA MINING 5

Why would anyone create and study characteristic functions? They were created
by the great French probabilist Paul Lévy in the 1930s in order to prove the Central
Limit Theorem, but they turn out to be enormously useful. First observe that, if
X and Y are independent random variable, then

φX+Y (z) = Eeiz(X+Y) = EeizXEeizY = φX(z)φY (z).

In other words, the characteristic function of a sum of independent random vari-
ables is the product of their characteristic functions. Thus, given any sequence of
independent random variables X1, X2, . . . , Xn, we have

φX1+···+Xn
(z) = φX1

(z)φX2
(z) · · ·φXn

(z).

What happens if we scale a random variable X to form cX? Then

φcX(z) = EeiczX = φX(cz).

Let’s calculate some characteristic functions. If X has a continuous probability
density function p(t), then its characteristic function is given by

(2.8) φX(z) =

∫ ∞
−∞

p(t)eizt dt, z ∈ R.

Lévy was not the first mathematician to consider integrals of this form. In fact
(2.8) is an example of a Fourier transform, an enormously important discovery of
the great French mathematician Jean Babtiste Fourier.

Exercise 2.1. Let X be uniformly distributed in the interval [−1/2, 1/2]. Then

φX(z) = EeizX

=

∫ 1

−1
eizt dt

=

∫ 1

−1
cos(zt) dt+ i

∫ 1

−1
sin(zt) dt.

Show that

φX(z) =
sin(z/2)

z/2
, z ∈ R.

Characteristic functions are equally important when the random variable X ∈ Rd
is a random vector. The definition is essentially unchanged:

(2.9) φ(z) = Eeiz
TX, z ∈ Rd.

If the random vector X has a continuous probability density function p(t), for
t ∈ Rd, then

(2.10) φ(z) =

∫
Rd

p(t)eiz
T t dt, z ∈ Rd.

In fact, if the characteristic function φ(z), z ∈ Rd, of a continuous probability
density function p(t), t ∈ Rd, is absolutely integrable, which simply means that the
integral ∫

Rd

|φ(z)| dz

is finite, then we can recover p(t) using the integral

p(t) = (2π)−d
∫
Rd

φ(z)e−it
T z dz, t ∈ Rd.

6 BRAD BAXTER

The Gaussian is extremely privileged: the characteristic function of a Gaussian
is another Gaussian. Let’s state this formally, although its proof is not examinable.

Theorem 2.2. The probability density function for the multivariate Gaussian
N(0, σ2), that is,

p(t) = (2π/σ2)−n/2e−‖t‖
2/2σ2

, t ∈ Rd,

has characteristic function

φ(z) = e−σ
2‖z‖2/2, z ∈ Rd.

Proof. This is beyond the scope of this course. �

The normalization factor required to make the Gaussian a probability density
function makes the previous theorem unnecessarily complicated. It’s much easier
to use the standard notation of the Fourier transform, summarized in the following
theorem.

Theorem 2.3. Let f(x), x ∈ Rd, be a continuous, absolutely integrable function.

Its Fourier transform f̂(z), z ∈ Rd, is given by

f̂(z) =

∫
Rd

f(x)eiz
Tx dx, z ∈ Rd.

Further, if f̂(z) is an absolutely integrable function, then f(x) is given by the inverse
Fourier transform integral

f(x) = (2π)−d
∫
Rd

f̂(z)e−iz
Tx dz, x ∈ Rd.

Proof. This is beyond the scope of the course. �

Theorem 2.4. If λ is a positive constant and

Gλ(x) = e−λ‖x‖
2

, x ∈ Rd,

then its Fourier transform is given by

Ĝλ(z) = (π/λ)d/2 exp

(
−‖z‖2

4λ

)
, z ∈ Rd.

Further,

G(x) = (2π)−d
∫
Rd

Ĝλ(z)eiz
Tx dz, x ∈ Rd.

Proof. This is beyond the scope of the course. �

Exercise 2.2. Let d = 1 and use Matlab to draw p(t) and φ(z) for small and
large values of σ. What do you see?

Remark 2.1. As mentioned above, Lévy used characteristic functions to prove the Cen-
tral Limit Theorem. I shall sketch his proof here for general interest, since it is one of the
great theorems of Probability Theory. This is not examinable.

Now suppose that X1, . . . , Xn are independent, identically distributed random variables
with mean zero and unit variance, and let φ(z) be their common characteristic function.
Then the characteristic function of the scaled sum

An =
X1 + · · ·+Xn√

n

DATA MINING 7

is given by

φn(z) = φ(z/
√
n)n, z ∈ R.

Now

φ(w) = φ(0) + φ′(0)w + φ(2)(0)w2/2! + · · · = 1− w2/2 + · · · .
Thus, for any fixed z ∈ R, we obtain

φn(z) =

(
1− z2

2n
+ · · ·

)n

→ e−z2/2,

as n → ∞. It can be shown that this implies that the scaled sum An converges (in

probability) to the Gaussian distribution as n→∞.

We shall now prove that the interpolation matrix is positive definite, and there-
fore invertible, if the centres b1, . . . ,bn are all different. We first demonstrate the
weaker result that A(λ) is always non-negative definite.

Theorem 2.5. The Gaussian interpolation matrix A(λ) ∈ Rn×n, defined by

A(λ)jk = Gλ(bj − bk), 1 ≤ j, k ≤ n,

is non-negative definite, that is, vTA(λ)v ≥ 0, for every v ∈ Rn.

Proof. The following beautiful equation is vital:

vTA(λ)v =

n∑
j=1

n∑
k=1

vjvkGλ(bj − bk)

=

n∑
j=1

n∑
k=1

vjvk (2π)−d
∫
Rd

Ĝλ(z)eiz
T (bj−bk) dz

= (2π)−d
∫
Rd

Ĝλ(z)

n∑
j=1

n∑
k=1

vjvke
izT (bj−bk) dz

= (2π)−d
∫
Rd

Ĝλ(z)
∣∣∣ n∑
k=1

vke
ibT

k z
∣∣∣2 dz.(2.11)

Since the integrand is a non-negative function, we deduce vTA(λ)v ≥ 0, for every
v ∈ Rn. Thus A(λ) is indeed non-negative definite; its symmetry is obvious. �

If the points b1, . . . ,bn are all different, then ‖bj−bk‖ > 0, for j 6= k. This simple
observation implies that

lim
λ→∞

Gλ(bj − bk) = 0, if j 6= k.

Hence

lim
λ→∞

A(λ) = I

if the points b1, . . . ,bn are all different.

Theorem 2.6. Suppose the points b1, . . . ,bn ∈ Rd are all different. Then every
matrix A(λ) is positive definite.

Proof. If vTA(λ)v = 0, then (2.11) implies that

n∑
k=1

vke
ibT

k z ≡ 0.

8 BRAD BAXTER

But then (2.11) also implies that vTA(µ)v = 0, for all µ > 0. Letting µ → ∞,
and recalling that limλ→∞A(λ) = I, because the points b1, . . . ,bn are all different,
we deduce that vTv = 0, that is, v = 0. Thus vTAv ≥ 0, with equality if and
only if v is the zero vector; but this is precisely the statement that A(λ) is positive
definite. �

Exercise 2.3. Can A(λ) be nonsingular when the points b1, . . . ,bn are not all
different?

Exercise 2.4. Let w : [0,∞) → R be any bounded, positive continuous function
and define

φ(r) =

∫ ∞
0

e−sr
2

w(s) ds, r ≥ 0.

Define A ∈ Rn×n by

Ajk = φ(‖xj − xk‖), 1 ≤ j, k ≤ n.
Prove that A is non-negative definite by modifying the proof of Theorem 2.5. Is A
positive definite when the points x1, . . . ,xn ∈ Rd are distinct?

Exercise 2.5. The theory of the Gamma function provides the equation

π1/2 = Γ(1/2) =

∫ ∞
0

e−tt−1/2 dt.

Use the change of variable t = a2s, where a is a positive constant, to show that

1

a
=

∫ ∞
0

e−a
2s 1√

πs
ds, a > 0.

Use this integral to derive

(r2 + c2)−1/2 =

∫ ∞
0

e−r
2sw(s) ds, r ≥ 0,

where
w(s) = e−c

2s(πs)−1/2, s ≥ 0.

Here c is a positive constant. [This implies that the inverse multiquadric generates
positive definite interpolation matrices, so can be used as a radial basis function to
interpolate scattered data in any dimension d.]

DATA MINING 9

3. Applied Linear Algebra

3.1. Complex Numbers. In this subsection, I will assume that you already know
that the 2× 2 matrix

R(θ) =

(
cos θ − sin θ
sin θ cos θ

)
rotates vectors anticlockwise through an angle θ. It is geometrically obvious that
R(θ1 + θ2) = R(θ1)R(θ2).

Exercise 3.1. Use the relation R(θ1+θ2) = R(θ1)R(θ2) to prove the trigonometric
addition formulae

cos(θ1 + θ2) = cos θ1 cos θ2 − sin θ1 sin θ2

and

sin(θ1 + θ2) = sin θ1 cos θ2 + cos θ1 sin θ2.

Exercise 3.2. Write down R(0) and R(π/2). Interpret them geometrically.

We shall now consider the set of rotation–enlargements. Specifically, a rotation–
enlargement is simply a matrix of the form sR(θ), for some s, θ ∈ R. In other words,
it’s just a multiple of a rotation matrix. If we take any two rotation–enlargements
s1R(θ1) and s2R(θ2), then

[s1R(θ1)] [s2R(θ2)] = s1s2R(θ1 + θ2).

Further

sR(θ) = s

(
cos θ − sin θ
sin θ cos θ

)
=

(
a −b
b a

)
,

where a = s cos θ and b = s sin θ. Thus every rotation enlargement can be written
as a linear combination of the two special matrices

1 =

(
1 0
0 1

)
and I =

(
0 −1
1 0

)
.

Exercise 3.3. Show that I2 = −1 and

(a1 + bI) (c1 + dI) = (ac− bd) 1 + (ad+ bc) I.

Historically, we usually write a+ ib instead of a1 + bI, so that i2 = −1 and the
previous displayed equation becomes

(a+ ib) (c+ id) = ac− bd+ i (ad+ bc) .

Thus real arithmetic corresponds to adding and multiplying enlargement matri-
ces, whilst complex arithmetic augments this to adding and multiplying rotation–
enlargement matrices. Multiplication by i is simply rotation (clockwise) through
90 degrees, so i2 = −1 is geometrically obvious. Instead of speaking of rotation-
enlargements a1+ bI, we shall now revert to the time-honoured notation a+ ib and
let C denote the complex plane, the set of all complex numbers.

The conjugate z∗ of z = a+ ib is defined by

z∗ = a− ib.

Exercise 3.4. Prove that z = z∗ if and only if z is real (i.e. b = 0). Further, show

that z∗z = |z|2, where |z| =
√
a2 + b2 for z = a+ ib.

10 BRAD BAXTER

Exercise 3.5. Let z = a + ib, w = c + id. Show that z∗w∗ = (zw)
∗
. Further, let

c1, . . . , cn and θ1, . . . , θn be real numbers. Prove that(
c1e

iθ1 + · · ·+ cne
iθn
)∗

= c1e
−iθ1 + · · ·+ cne

−iθn .

One of the great triumphs of Eighteenth and Nighteenth century mathemat-
ics was a fuller understanding of complex function theory. It turns out that the
exponential function can be defined for any complex number by

exp(z) = 1 + z + z2/2! + z3/3! + z4/4! + · · · ,

and that this series is convergent for all z ∈ C. Further, the Taylor series

cos z = 1−z2/2!+z4/4!−z6/6!+ · · · and sin z = z−z3/3!+z5/5!−z7/7!+ · · ·

for all z ∈ C. The brilliant Swiss mathematician Euler realized that these series
implied the remarkable formula

exp(iz) = cos z + i sin z, z ∈ C.

If z = θ ∈ R, then Euler’s formula takes its traditional form

eiθ = cos θ + i sin θ, θ ∈ R.

Exercise 3.6. Show that, if z = eiθ and θ ∈ R, then z∗ = e−iθ and |z| = 1.

Exercise 3.7. Show that eiπ = −1.

3.2. Covariance Matrices. Let X1, . . . , Xn be random variables and set µj =
EXj ¡ for 1 ≤ j ≤ n. Now the corresponding covariance matrix M ∈ Rn×n, where

Mjk = E [(Xj − µj)(Xk − µk)] , 1 ≤ j, k ≤ n,

should always be non-negative definite. The proof is easy:

vTMv =

n∑
j=1

n∑
k=1

vjvkMjk

= E

 n∑
j=1

n∑
k=1

vjvk(Xj − µj)(Xk − µk)


= E


 n∑
j=1

vj(Xj − µj)

2
 .(3.1)

Exercise 3.8. Let

X =

 X1

...
Xn

 ,µ =

 µ1

...
µn


and let Y = X− µ. Prove that M = E(YYT), so that

vTMv = vTE
(
YYT

)
v = E

(
vTYYTv

)
= E

[(
vTY

)2]
.

Thus every real, symmetric, non-negative definite matrix is a covariance matrix. In
fact, the converse is also true, so real symmetric, non-negative definite matrices are
exactly the same as covariance matrices.

DATA MINING 11

3.3. Orthogonal Matrices. Modern numerical linear algebra began with the com-
puter during the Second World War, its progress accelerating enormously as com-
puters became faster and more convenient in the 1960s. One of the most vital
conclusions of this research field is the enormous practical importance of matrices
which leave Euclidean length invariant. More formally:

Definition 3.1. We shall say that Q ∈ Rn×n is distance-preserving if ‖Qx‖ = ‖x‖,
for all x ∈ Rn, where the Euclidean norm ‖x‖ is defined by

‖x‖ =
√
x21 + x22 + · · ·+ x2n, for x ∈ Rn.

The following simple result is very useful.

Lemma 3.1. Let M ∈ Rn×n be any symmetric matrix for which xTMx = 0, for
every x ∈ Rn. Then M is the zero matrix.

Proof. Let e1, e2, . . . , en ∈ Rn be the usual coordinate vectors. Then

Mjk = eTj Mek =
1

2
(ej + ek)

T
M (ej + ek) = 0, 1 ≤ j, k ≤ n.

�

Theorem 3.2. The matrix Q ∈ Rn is distance-preserving if and only if QTQ = I.

Proof. If QTQ = I, then

‖Qx‖2 = (Qx)T (Qx) = xTQTQx = xTx = ‖x‖2,
and Q is distance-preserving. Conversely, if ‖Qx‖2 = ‖x‖2, for all x ∈ Rn, then

xT
(
QTQ− I

)
x = 0, x ∈ Rn.

Since QTQ − I is a symmetric matrix, Lemma 3.1 implies QTQ − I = 0, i.e.
QTQ = I. �

The condition QTQ = I simply states that the columns of Q are orthonormal
vectors, that is, if the columns of Q are q1,q2, . . . ,qn, then ‖q1‖ = · · · = ‖qn‖ = 1
and qTj qk = 0 when j 6= k. For this reason, Q is also called an orthogonal matrix.
We shall let O(n) denote the set of all (real) n× n orthogonal matrices.

Exercise 3.9. Let Q ∈ O(n). Prove that Q−1 = QT . Further, prove that O(n) is
closed under matrix multiplication, that is, Q1Q2 ∈ O(n) when Q1, Q2 ∈ O(n). (In
other words, O(n) forms a group under matrix multiplication. This observation is
important, and O(n) is often called the Orthogonal Group.)

3.4. The Singular Value Decomposition. If A ∈ Rn×n is a symmetric matrix,
then its spectral structure, that is, its eigenvalues and eigenvectors, are vital for
understanding its behaviour in many problems. To compute the spectrum in Mat-
lab , we use [Q, D] = eig(A). Thus Q ∈ Rn×n is the matrix whose columns are
eigenvalues of A and D is the diagonal matrix whose elements are the eigenvalues
of A. When A is symmetric, the matrix Q is orthogonal, that is QTQ = I, and
A = QDQT .

Exercise 3.10. Generate a random symmetric matrix A using

M = randn(n);

A = M + M’;

and use Matlab to calculate its spectral decomposition. Test Q for orthogonality.

12 BRAD BAXTER

If A is not symmetric, or if A is rectangular (as is typical in least squares prob-
lems), then the Singular Value Decomposition (SVD) provides the guidance given
by the spectral decomposition for real symmetric matrices.

Theorem 3.3. Let A ∈ Rm×n, m ≥ n. Then there exist orthogonal matrices
U ∈ O(m), V ∈ O(n), and a diagonal matrix S ∈ Rm×n, such that A = USV T , and
this is called the Singular Value Decomposition (SVD). Further, the elements
of S satisfy s1 ≥ s2 ≥ · · · ≥ sn ≥ 0, and they are called the singular values of A.

Proof. This proof is included for general interest, but is not examinable.
The unit sphere

S = {x ∈ Rn : ‖x‖ = 1}
in Rn is a closed and bounded set. Since the function f(x) = ‖Ax‖, x ∈ Rn, is continuous,
there exists a unit vector v1 ∈ Rn for which f attains its maximum value, that is,

‖Ax‖ ≤ ‖Av1‖, for x ∈ S.

Let σ1 = ‖Av1‖ and u1 = Av1/σ1, so that u1 ∈ Rm is a unit vector for which Av1 = σ1u1.
Using Lemma 3.4, whose proof is based on the next guided exercise, we construct orthog-
onal matrices U1 ∈ O(m), V1 ∈ O(n), whose first columns are u1 and v1, respectively.
Then

A1 := UT
1 AV1 =

(
σ1 wT

0 B

)
.

Now let

y =

(
σ1

w

)
.

Then

‖y‖2 = σ2
1 + ‖w‖2

and

(A1y)1 = σ2
1 + ‖w‖2.

Thus

‖A1y‖2 ≥ (A1y)21 =
(
σ2
1 + ‖w‖2

)2
and

‖A1y‖
‖y‖ ≥

√
σ2
1 + ‖w‖2.

Thus z := y/‖y‖ is a unit vector in Rn and

σ1 ≥ ‖A1z‖ ≥
(
σ2
1 + ‖w‖2

)1/2
,

which implies w = 0. Thus

A1 := UT
1 AV1 =

(
σ1 0
0 B

)
.

The proof now proceeds inductively, working on the (n− 1)× (n− 1) matrix B. �

Exercise 3.11. Let a and b be different unit vectors in Rn, i.e. a 6= b and
‖a‖ = ‖b‖ = 1. Let

u =
a− b

‖a− b‖
and define Q = I − 2uuT . Show that Q = QT , QTQ = I and Qa = b. [Thus

we can always construct an orthogonal matrix mapping one vector onto another. This is

important in several algorithms. Geometrically, Q is reflection in the subspace of vectors

orthogonal to u.]

DATA MINING 13

Lemma 3.4. Let u1 ∈ Rn be any unit vector. Then there is an orthogonal matrix
Q ∈ O(n) whose first column is u1.

Proof. We substitute a = e1 and b = u1 in Exercise 3.11. �

3.5. Linear Least Squares. One use of the SVD is to calculate the least squares
solution of linear systems. If A ∈ Rm×n has the SVD A = USV T , then

‖Ax− y‖2 = ‖USV Tx− y‖2 = ‖Sa− b‖2,

where a = V Tx and b = UTy. But

Sa =



s1a1
...

snan
0
...
0


.

Thus

‖Ax− y‖2 =

n∑
k=1

(skak − bk)
2

+

m∑
`=n+1

b2` ,

and this is minimized by choosing

ak = bk/sk, 1 ≤ k ≤ n,

the minimum value being b2n+1 + · · ·+ b2m.
All of this is done automatically by Matlab : simply type x = A\ y;.

Example 3.1. We want to calculate coefficients c1, . . . , cn ∈ R such that the func-
tion

s(x) =

n∑
k=1

ckfk(x), x ∈ Rn,

minimizes the sum of squares

m∑
`=1

(g` − s(x`))2 .

In matrix form, we let

g =


g1
g2
...
gm

 ∈ Rm

and define A ∈ Rm×n by

Ajk = fk(xj), 1 ≤ j ≤ m, 1 ≤ k ≤ n.

Thus we must minimize ‖g − Ac‖2, whose solution is given by the SVD analysis
above.

14 BRAD BAXTER

3.6. Matrix Nearness Problems. Certain important matrix nearness problems
give rise to several special nonlinear least squares problems. All of these problems
provide excellent illustrations of the power of the singular value decomposition and
the spectral decomposition.

(1) (Nearest Covariance Matrix) Let Pn denote the set of n×n non-negative
definite symmetric real matrices. Given a symmetric A ∈ Rn×n, we want to
calculate the nearest element of Pn in the Frobenius norm. For example, a
corrupted covariance matrix A might have some small negative eigenvalues,
and these can be disastrous if the corrupted matrix is used “as is”. Thus
we need to calculate MA minimizing the sum of squares

‖A−MA‖2F = min
M∈Pn

‖A−M‖2F .

The solution is simple given the spectral decomposition A = QDQT . Here
Q is the orthogonal matrix formed by the eigenvectors of A and the diagonal
elements of the diagonal matrix D are the corresponding eigenvalues. We
then let D̂ = max{D, 0} and set

MA = QD̂QT .

In Matlab, we use

[Q, D] = eig(A); Dhat = max(D,0)); MA = Q*Dhat*Q’;

(2) (Square Procrustes) Let O(n) denote the set of n × n real orthogonal
matrices. Given A ∈ Rn×n, we want to compute the nearest orthogonal
matrix QA ∈ O(n). For example, the matrix A might contain the principal
axes of a computer-controlled flying vehicle, corrupted by measurement
error. Thus we need to calculate QA ∈ O(n) minimizing the sum of squares

‖A−QA‖2F = min
Q∈O(n)

‖A−Q‖2F .

The solution is simple given the singular value decompositionA = USV T ,
where U, V ∈ O(n) and S is a diagonal matrix whose diagonal elements (the
singular values of A) satisfy

s1 ≥ s2 ≥ · · · ≥ sn ≥ 0.

As shown in lectures, QA = UV T . In Matlab, we use

[U, S, V] = svd(A); QA = U*V’;

(3) (Rectangular Procrustes) Let m ≥ n and let A,B ∈ Rm×n be given

matrices. We want to compute the orthogonal matrix Q̂ minimizing ‖A−
BQ‖F . For example, the rows of A and B might be coordinates of points
with respect to two orthogonal coordinate systems, such as the computer
systems controlling a ship and one of its missiles after launch.

More formally, we need to calculate Q ∈ O(n) minimizing the sum of
squares

‖A−BQ‖2F = min
U∈O(n)

‖A−BU‖2F .

As shown in lectures, we first calculate the SVD BTA = USV T , then
simply set Q = UV T . In Matlab,

[U, S, V] = svd(B’*A);

Q = U*V’;

DATA MINING 15

(4) (Closest matrix of given rank) Given any matrix A ∈ Rm×n, for m ≥ n,
the rank of A is simply the number of nonzero singular values. It’s also
equal to the number of linearly independent columns (and also equal to
the number of linearly independent rows). However, in practice, we are
often faced with a matrix A with no singular values exactly equal to zero.
Instead, we find matrices whose first r singular values, say, are much larger
than the remaining singular values. In this case, it is often useful to regard
the tiny singular values as corresponding to noise. Thus we want to find
the nearest matrix of rank r in the Frobenius norm; more formally, Ar must
satisfy

‖A−Ar‖2F = min
rank B=r

‖A−B‖2F .

The solution is, once again, very simple given the SVD A = USV T . We
simply set

Sr = diag {s1, . . . , sr, 0, . . . , 0}.
In other words, we just set all singular values to zero except for the r
largest singular values. As shown in lectures, Ar = USrV

T . You have seen
this technique in Principal Component Analysis, for which A is symmetric
(and non-negative definite), in which case the SVD is precisely the spectral
decomposition.

Exercise 3.12. Write Matlab code to generate the closest matrix of rank r.

Our study of the SVD will make use of the following so-called Frobenius inner
product on matrices. Just think of an m × n matrix as a long vector in Rmn and
use the usual inner product there.

Definition 3.2. Given any two matrices A,B ∈ Rm×n, their Frobenius inner
product is defined by the equation

〈A,B〉F =

m∑
k=1

n∑
`=1

Ak`Bk`.

The Frobenius norm of A is defined by

‖A‖F =
√
〈A,A〉F =

√√√√ m∑
k=1

n∑
`=1

A2
k`.

Lemma 3.5. Let A ∈ Rn×n and let Q ∈ O(n). Then

‖A‖F = ‖QA‖F = ‖AQ‖F .

Proof. Let a1,a2, . . . ,an be the columns of A. Then QA is the matrix with columns
Qa1, Qa2, . . . , Qan. Since Q is an orthogonal matrix, ‖Qaj‖2 = ‖aj‖2, for 1 ≤ j ≤
n, and

‖QA‖2F = ‖Qa1‖2 + · · ·+ ‖Qan‖2 = ‖a1‖2 + · · ·+ ‖an‖2 = ‖A‖2F .
�

Lemma 3.6. Let A,B ∈ Rm×n and let U ∈ O(m), V ∈ O(n). Then 〈A,B〉F =
〈UA,UB〉F = 〈AV,BV 〉F .

16 BRAD BAXTER

Proof. This is almost identical to the proof of the previous lemma, and is left as an
exercise. �

Lemma 3.7. Let A,B ∈ Rm×n and let C ∈ Rn×n. Then

〈A,BC〉F = 〈BTA,C〉F .

Proof. Let a1, . . . ,an be the columns of A and let b1, . . . ,bn be the columns of B.
Then Bc1, . . . , Bcn form the columns of BC and we obtain

〈A,BC〉F = aT1 (Bc1) + · · ·aTn (Bcn)

= (BTa1)T c1 + · · ·+ (BTan)T cn

= 〈BTA,C〉F ,
because BTa1, . . . , B

Tan form the columns of BTA. �

Lemma 3.7 can also be proved using a highly useful alternative formula for the
Frobenius inner product of two matrices. We recall that the trace of a matrix is
the sum of its diagonal elements, that is,

traceA =

n∑
j=1

Ajj ,

for A ∈ Rn×n.

Example 3.2. Of course, AB 6= BA in general, but traceAB = traceBA, as the
following direct calculation show. We have

traceAB =

n∑
j=1

n∑
k=1

AjkBkj

and

traceBA =

n∑
`=1

n∑
m=1

B`mAm`

and these double sums are identical.

Here is the alternative expression.

Theorem 3.8. Let A,B ∈ Rm×n. Then

〈A,B〉F = trace
(
ABT

)
Proof. We have

traceABT =

n∑
j=1

(
ABT

)
jj

=

n∑
j=1

n∑
k=1

Ajk
(
BT
)
kj

=

n∑
j=1

n∑
k=1

AjkBjk

= 〈A,B〉F .

DATA MINING 17

�

Example 3.3. We can use Theorem 3.8 to give a slick proof of Lemma 3.7. We
have

〈A,BC〉F = traceA (BC)
T

= traceACTBT = traceBTACT = 〈BTA,C〉F .

3.7. Lagrange’s Identity. This subsection is not examinable and is included purely for
interest. It can be safely omitted, although I hope you enjoy it.

Let a1, . . . , an and b1, . . . , bn be any real numbers. Then Lagrange’s Identity states
that

(3.2)

(
n∑

k=1

akbk

)2

=

(
n∑

k=1

a2k

)(
n∑

`=1

b2`

)
−

∑
1≤k<j≤n

(akbj − ajbk)2 .

Incidentally, note that this provides Cauchy–Schwarz as a corollary.
How do we prove (3.2) and what does it have to do with Frobenius norm inner products?

The key observation is to introduce the skew-symmetric matrix M ∈ Rn×n defined by

Mjk = ajbk − akbj , 1 ≤ j, k ≤ n.

Thus

(3.3) ‖M‖2F = 2
∑

1≤k<j≤n

(akbj − ajbk)2 .

Further, we can write M as

M = abT − baT ,

where a = (a1, . . . , an)T ∈ Rn and b = (b1, . . . , bn)T ∈ Rn. We can now apply Theorem
3.8 to find

‖M‖2F = traceMMT = − traceM2.

Now

M2 =
(
abT − baT

)(
abT − baT

)
= abTabT − abTbaT − baTabT + baTbaT

=
(
aTb

)(
abT + baT

)
− ‖b‖2aaT − ‖a‖2bbT .

Hence

(3.4) traceM2 = 2
(
aTb

)2
− 2‖a‖2‖b‖2.

Combining (3.3) and (3.4) yields Lagrange’s Identity.

Our final theorem justifies the procedures given above for both the rectangular
and square Procrustes’ problems.

Theorem 3.9. Let A,B ∈ Rm×n, where m ≥ n, and let BTA = USV T be the SVD
of BTA. Then the orthogonal matrix solving the rectangular Procrustes problem

min
Q∈O(n)

‖A−BQ‖F

is given by Q̂ = UV T .

18 BRAD BAXTER

Proof. Lemma 3.5 and Lemma 3.7 imply that

‖A−BQ‖2F = 〈A−BQ,A−BQ〉F
= ‖A‖2F + ‖BQ‖2F − 2〈A,BQ〉F
= ‖A‖2F + ‖B‖2F − 2〈BTA,Q〉F .

Thus minimizing ‖A−BQ‖2F is equivalent to maximizing 〈BTA,Q〉F , for Q ∈ O(n).
To this end, substituting the SVD of BTA and applying Lemma 3.6, we obtain

max
Q∈O(n)

〈BTA,Q〉F = max
Q∈O(n)

〈USV T , Q〉F

= max
Q∈O(n)

〈S,UTQV 〉F

= max
W∈O(n)

〈S,W 〉F

= max
W∈O(n)

n∑
k=1

skWkk,

where s1 ≥ s2 ≥ · · · ≥ sn ≥ 0 are the singular values of BTA. Now W is an
orthogonal matrix, so its columns all have Euclidean norm one. Hence |Wkk| ≤ 1,
for all k, with equality if and only if W = I. Thus

n∑
k=1

skWkk ≤

∣∣∣∣∣
n∑
k=1

skWkk

∣∣∣∣∣ ≤
n∑
k=1

sk|Wkk| ≤
n∑
k=1

sk,

with equality if and only if W = I, that is, Q = UV T . Hence ‖A − BQ‖2F is

minimized when Q̂ = UV T . �

The mathematics of Procrustes’ problem leads to the so-called Polar Factoriza-
tion. The name “polar factorization” refers to the analogy with complex numbers:
any z ∈ C can be written as z = reiθ, and this is said to be its polar factorization.

Exercise 3.13. Let A ∈ Rn×n. Then there exists an orthogonal matrix Q ∈ O(n),
and a symmetric non-negative definite matrix P such that A = PQ. [Hint: Rewrite
the SVD A = USV T as A = (USUT)(UV T).]

DATA MINING 19

4. Alternative Procrustes

This was one of the questions set on assigned work last year. The singular value
decomposition is not always the quickest way to solve the rectangular Procrustes
problems, particular when the ambient dimension n is small and A is already close
to an orthogonal matrix. Here’s an alternative.

Several applications, such as robotics and aircraft control systems, present the
following problem: the system attempts to maintain an orthogonal matrix Q(t) that
describes its orientation at each time t (the columns of the matrix are orthonormal
vectors fixed in the system). Unfortunately, measurement errors occur which cause
the measured Q(t) to lose orthogonality, i.e. we no longer have Q(t)TQ(t) = I.

Therefore there is a need to calculate an orthogonal matrix Q̂(t) that is closest to

the observed matrix Q(t) in some sense. If we decide to choose Q̂(t) to minimize

the Frobenius norm ‖Q(t)− Q̂(t)‖F , then there is a clever algorithm for calculating

Q̂(t): we choose V0 = Q(t) and then set

W`+1 =
1

2

(
W` + (W−1`)T

)
, ` ≥ 0.

It can be shown that ‖W`−Q̂(t)‖F → 0 as `→∞, and you will see that convergence
is fast (in many cases 5 steps will be enough).

Exercise 4.1. Write a short Matlab script to generate the matrices of this it-
eration and investigate the speed of convergence (for 3 × 3 matrices) by plotting

log ‖Q̂(t)−W`‖F . You will need to generate random orthogonal matrices, for which
the following Matlab code is suitable.

A = randn(3); [Q, R] = qr(A);

You can assume that Q is a suitable random orthogonal matrix. You can then
slightly perturb Q by setting

W = Q + delta*randn(3);

Of course, a large delta is a large perturbation. I suggest starting with delta

= 0.1, but try larger values also. Does the algorithm ever fail? Generate some
histograms displaying the average behaviour for fixed delta and many random initial
perturbed orthogonal matrices. [You can enhance your Christmas by discovering
Procrustes’ sadistic practices via Google.]

In fact, the SVD is the key to proving that this algorithm converges.

Exercise 4.2. Given the SVD Wk = UkSkV
T
k , show that(

WT
k

)−1
= UkS

−1
k V Tk .

Thus

Wk+1 =
1

2

(
Wk +

(
WT
k

))
= UkSk+1V

T
k ,

where

Sk+1 =
1

2

(
Sk + S−1k

)
.

Thus the orthogonal factors of the SVD Wk+1 = Uk+1Sk+1Vk+1 are the same as the
orthogonal factors of Wk – only the singular values change. This is true at every
iteration. Thus W0 = U0S0V

T
0 and

Wk = U0SkV
T
0 ,

20 BRAD BAXTER

where

Sk+1 =
1

2

(
Sk + S−1k

)
.

Exercise 4.3. Let s
(k)
1 ≥ · · · ≥ s(k)n ≥ 0 be the diagonal elements of Sk. Prove that

s
(k+1)
i =

1

2

(
s
(k)
i +

1

s
(k)
i

)
, 1 ≤ i ≤ n.

Thus everything reduces to the study of the iteration

xk+1 =
1

2

(
xk +

1

xk

)
, k ≥ 0,

when x0 can be any positive number. It is not hard to prove that xk → 1, for any
x0 > 0. Thus the singular value matrix Sk of Wk converges to the identity matrix,
which implies Wk → U0V

T
0 . Further it is not hard to prove that the algorithm

converges quadratically: given any initial point x0 > 0, there is a constant C and
an integer N for which

|1− xk+1| ≤ C (1− xk)
2
, for k ≥ N.

Thus we ultimately obtain a sequence of errors of the typical form

10−1, 10−2, 10−4, 10−8, 10−16,

at which point computer arithmetic reaches its limit.

DATA MINING 21

5. Generating Random Matrices

As you know, random number generation is a vital part of modern statistics,
being required for all simulation work. Our purpose here is to construct certain
random matrices. We shall apply these random matrices to test the matrix nearness
problems given in the previous section.

5.1. Gaussian Random Vectors and Matrices. Let {Zjk : 1 ≤ j, k ≤ n} be
n2 independent N(0, 1) Gaussian random variables. Then the matrix Z formed by
these components is called a (normalized) Gaussian random matrix. In Matlab ,
we simply type Z = randn(n).

It is sometimes important to generate symmetric Gaussian random matrices.
Given a general Gaussian random matrix Z, we simply set W = (Z + Z’)/2.

A (normalized) Gaussian random vector X simply a vector whose components
are independent N(0, 1) random variables. In other words, it’s just a Gaussian
random matrix that is n× 1. In Matlab , we type X = randn(n,1);

5.2. Uniformly distributed points on the Sphere. The following problem is
very common in geostatistics: generate unit vectors u1, . . . , uN ∈ R3 that are uni-
formly distributed on the sphere. The solution is very simple and works in n-
dimensions: we generate a normalized Gaussian random vector and divide by its
Euclidean norm. In Matlab :

X = randn(n,1);

Y = X/norm(X);

Let us now state this more formally.

Theorem 5.1. Let X ∈ Rn be a normalized Gaussian random vector. The Y :=
X/‖X‖ is uniformly distributed on the unit sphere S in n-dimensions.

Proof. Let U be any subset3 of the unit sphere S. Then Y ∈ U if and only if
X ∈ K(U), where

K(U) = {ru : r ≥ 0 and u ∈ U}.
Hence, if

p(z) = (2π)−n/2e−‖z‖
2/2, z ∈ Rn,

denotes the probability density function for the Gaussian, then

P(Y ∈ U) = P(X ∈ K(U))

=

∫
K(U)

p(z) dz

= (2π)−n/2
(∫ ∞

0

e−r
2/2rn−1 dr

)
voln−1(U)(5.1)

= In−1 voln−1(U).(5.2)

If U = S, then the previous equation becomes 1 = In−1 voln−1(S), so that

P(Y ∈ U) =
voln−1(U)

voln−1(S)
,

and Y is uniformly distributed on the sphere. �

3If you’ve taken a course in measure theory, then this should be a Lebesgue measurable subset
of S.

22 BRAD BAXTER

Exercise 5.1. Write out the previous proof in the special case when n = 2, to
ensure you understand it.

Exercise 5.2. Use Matlab to generate uniformly distributed points on the unit
circle in two dimensions using the construction above. How do we check that they
are uniformly distributed?

Example 5.1. The last exercise, and the Matlab session, point towards a χ2

goodness-of-fit test. In fact, the χ2 distribution is only a slight modification of the
proof given above, and we can now derive its probability density distribution, which
you have probably used for years. Specifically, if X ∈ Rn is a Gaussian random
vector, the we say that the random variable ‖X‖ has the χ2 distribution with n
degrees of freedom. Now, if we let

ann(c, d) = {x ∈ Rn : c < ‖x‖ < d},

that is, the annulus with inner radius c and outer radius d, then

P
(
a < ‖X‖2 < b

)
= P

(
X ∈ ann(a1/2, b1/2)

)
=

∫
ann(a1/2,b1/2)

e−‖z‖
2/2(2π)−n/2 dz

= ωn−1(2π)−n/2
∫ b1/2

a1/2
e−r

2/2rn−1 dr

=
1

2
ωn−1(2π)−n/2

∫ b

a

e−s/2sn/2−1 ds,

where ωn−1 is the (n− 1)-dimensional volume of the unit sphere and I substituted
s = r2 to obtain the last integral. Thus the probability density function of the χ2

distribution, with n degrees of freedom, is given by

pn(s) =
1

2
ωn−1(2π)−n/2e−s/2sn/2−1, s ≥ 0.

If we set a = 0 and b =∞, then

1 =
1

2
ωn−1(2π)−n/2

∫ ∞
0

e−s/2sn/2−1 ds

=
1

2
ωn−1(2π)−n/22n/2Γ(n/2),

using the fact that the Gamma function is defined by the integral

Γ(z) =

∫ ∞
0

e−ttz−1 dt,

for any complex number z with non-negative real part. Thus

pn(s) =
1

2n/2Γ(n/2)
e−s/2sn/2−1, s ≥ 0.

As a byproduct of this analysis, we obtain ωn−1 = 2πn/2/Γ(n/2).

Exercise 5.3. Use the technique of the previous example to find the probability
density function for ‖X‖ when X ∈ R2 is a two-dimensional Gaussian random
vector.

DATA MINING 23

5.3. Random Orthogonal Matrices. The mathematical details of what pre-
cisely is meant by a random orthogonal matrix are beyond the scope of this course.
To generate them, we shall use the QR-factorizationg: given any matrix A ∈ Rn×n,
there exists an orthogonal matrix Q ∈ O(n), and an upper triangular matrix
R ∈ Rn×n, such that A = QR. The Matlab command for calculating this impor-
tant factorization is simply [Q, R] = qr(A).

To generate a random orthogonal matrix Q, we first generate a (normalized)
Gaussian random matrix Z, and then let Q be the orthogonal factor in its QR-
factorization, that is

Z = randn(n);

[Q, R] = qr(Z);

The QR-factorization is in fact the Gram–Schmidt algorithm in disguise, which you
might well have seen as undergraduates..

24 BRAD BAXTER

6. Clustering Algorithms

Given points x1, . . . ,xn ∈ Rd, we often want to classify them into clusters. For
example, suppose the point are the first d characters of n email messages, containing
spam and bona fide emails. Many spam filter programs are based on the hope that
these emails will fall into two well-defined clusters, spam and non-spam. Some filters
look for k clusters, reflecting the fact that spam often falls into fairly well-defined
categories. But what do we mean by clusters in d-dimensions?

6.1. The k-means Clustering Algorithm. Let x1, . . . ,xn be points in Rd. We
shall study a simple algorithm for iteratively updating a set of k cluster centres
m1, . . . ,mk. At the start of the algorithm, these points can be any vectors; in my
Matlab code below, I’ve chosen them randomly.

Now the k cluster centres partition Rd into k clusters: we let the ith cluster Ci
be those points in Rd for which mi is the closest cluster centre, that is

Ci = {x ∈ Rd : ‖x−mi‖ = min
1≤`≤k

‖x−m`‖}, 1 ≤ i ≤ n.

We then replace each cluster centre mi by the centroid of the subset of points in
x1, . . . , xn which are contained in the ith-cluster (the centroid of a finite set of
points v1, . . . ,vj is simply the sample average (v1 + · · ·+ vj)/j). The new cluster
centres then define corresponding new centres, and we then repeat the procedure
until the cluster centres converge.

Exercise 6.1. Let k = 2 and give a sketch illustrating C1 amd C2.

In fact, the above algorithm is minimizing yet another nonlinear least squares
problem. We want to choose centres m̂1, . . . , m̂k ∈ Rd minimizing

F (m1, . . . ,mk) =

n∑
j=1

min
1≤`≤k

‖xj −m`‖2.

The algorithm below performs the iteration described above.

%

% One iteration of the k-means algorithm

%

% INPUT:

% d = dimension

% n = number of points

% k = number of clusters

% x = d x n array of points

% m = d x k array of trial centroids

%

% OUTPUT:

% m = new d x k array of trial centroids

%

C = zeros(d,k); csize = zeros(k);

for i=1:n

%

% Find the nearest cluster centre to the current point

%

DATA MINING 25

mindist = norm(x(:,i) - m(:,1));

cluster_index = 1;

for j=2:k

dist = norm(x(:,i) - m(:,j));

if dist < mindist

mindist = dist;

cluster_index = j;

end

end

%

% cluster_index is the index of the closest trial centroid

%

C(:,cluster_index) = C(:,cluster_index) + x(:, i);

csize(cluster_index) = csize(cluster_index) + 1;

end

for j=1:k

m(:,j) = C(:,j)/csize(j);

end

How can we test this? One way to is to first choose k = d = 2 and generate data
that lie in two fairly well-defined clusters. For example:

N=100; x = randn(2,2*N); x(:,N+1:2*N)=[4; 5]*ones(1,N);

26 BRAD BAXTER

7. PageRank

How do we construct a search engine? The PageRank algorithm was deviced by
Page and Brin in 1994, the founders of Google, and provides an excellent example
of linear algebra applied to data mining.

We can summarize the links between websites by a single matrix containing 0s
and 1s. Specifically, if there are N websites, then we let Wij = 1 if site i links to
site j and i 6= j, but otherwise set Wij = 0. At present Google uses N ≈ 109, so
almost all the elements of W are zero (why?); we say that W is a sparse matrix.

Page and Brin decided to rank these N websites by simulating user behaviour
with a Markov model based on the connectivity matrix W . [All students have
indicated some familiarity with the basics of Markov chains, but any standard
textbook should contain the fundamental properties used here.] Specifically, we
imagine vast numbers of users surfing the web in discrete time. At the kth step,

the vector π(k) denotes the probability distribution for our users, that is, π
(k)
i is

the probability that a user is surfing site i at time k. We then let our users surf to
new sites according to the transition matrix P ∈ RN×N , where

(7.1) Pij =
Wij∑N
k=1Wik

, 1 ≤ i, j ≤ N.

Further, we shall assume that
∑n
k=1Wik 6= 0, for all i, to avoid a zero denominator

in the definition of P (we are assuming that there are no dangling pages, to use
Google’s jargon). Thus every row of P contains non-negative numbers summing to
one.

Therefore the new probability vector is given by

(7.2) π(k+1) = PTπ(k)

and, over time, we hope to obtain an invariant measure (or stationary probability
vector) π. Unfortunately this Markov chain turns out to be inadequate, because
most sites tend to fall into isolated clusters and it inherits this stagnation. One
way to avoid this is a teleporting random walk: we choose a parameter c ∈ (0, 1)
and either use P with probability c, or move to one of the N websites with equal
probability. Thus our new transition matrix is

(7.3) M = cP + (1− c)eeT

N
,

where

(7.4) e =


1
1
...
1

 .

The new invariant measure vector π now satisfies MTπ = π.

Exercise 7.1. Show that π satisfies

(7.5) cPTπ + (1− c) e

N
= π.

Page and Brin decided to define the rank vector r = Nπ. Thus the last equation
becomes

(7.6)
(
I − cPT

)
r = (1− c)e.

DATA MINING 27

This linear system contains N linear equations in N unknowns, but N ≈ 109.
Unfortunately, direct elimination requires T (N) = CN3 seconds, where T (103) ≈ 1
on basic modern computer.

Exercise 7.2. Calculate T (109) assuming that T (103) = 1. (One year contains
approximately 3× 107 seconds.)

Thus elimination is completely unsuitable for solving (7.6). Fortunately, a simple
iterative algorithm called Jacobi’s method is available. Specifically, given any n×n
matrix A, Jacobi’s method attempts to solve Ax = y as follows. We first choose
any initial vector x(0). Then, given x(k−1), we define x(k) by the equation

(7.7) x
(k)
i =

yi
Aii
−

n∑
j=1,j 6=i

(
Aij
Aii

)
x
(k−1)
j , 1 ≤ i ≤ n.

It is important to understand that Jacobi’s method is not a good method for
solving a general linear system Ax = y, but can be efficient if we are lucky in our
choice of A, as turns out to be the case for PageRank.

Exercise 7.3. Show that Jacobi (7.7) applied to (7.6) becomes

(7.8) r(k) = cPT r(k−1) + (1− c)e.

The analysis of convergence in Jacobi’s method is much more suited to the L1

norm, which is defined by

(7.9) ‖v‖1 =
∑

1≤k≤n

|vk|, v ∈ Rn.

Theorem 7.1. Let r(0) be any initial vector and generate r(k) using Jacobi’s method
(7.8) applied to (7.6). Then the kth stage error e(k) = r(k) − r satisfies

(7.10) ‖e(k)‖1 ≤ c‖e(k−1)‖1, k ≥ 1.

Hence ‖e(k)‖1 ≤ ck‖e(0)‖1 and, since 0 ≤ c < 1, we deduce that ‖e(k)‖1 → 0, as
k →∞, for any initial vector r(0).

Proof. Subtracting (7.6) from (7.8) provides

(7.11) e(k) = cPTe(k−1).

Now

‖PTe(k−1)‖1 =

N∑
i=1

∣∣∣(PTe(k−1)
)
i

∣∣∣
=

N∑
i=1

∣∣∣∣∣∣
N∑
j=1

(PT)ije
(k−1)
j

∣∣∣∣∣∣
≤

N∑
i=1

N∑
j=1

|(PT)ij ||e(k−1)j | =
N∑
j=1

|e(k−1)j |
N∑
i=1

Pji = ‖e(k−1)‖1,

using the fact that, by construction, every row of P contains non-negative numbers
summing to one. Hence ‖e(k)‖1 ≤ c‖e(k−1)‖1, which implies ‖e(k)‖1 ≤ ck‖e(0)‖1.
Since 0 ≤ c < 1, we deduce limk→∞ ‖e(k)‖1 = 0. �

28 BRAD BAXTER

School of Economics, Mathematics and Statistics, Birkbeck College, University of
London, Malet Street, London WC1E 7HX, England

Email address: b.baxter@bbk.ac.uk

