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1. (i). The SVD is the factorization A = USV T , where U ∈ O(m), V ∈ O(n) and S ∈
Rm×n is a diagonal matrix whose diagonal elements satisfy

s1 ≥ s2 ≥ · · · ≥ sn.

The diagonal elements of S are called the singular values of A.

3 pts

(ii). Given any pair of matrices A,B ∈ Rm×n, their Frobenius inner product is given by

〈A,B〉F =
m∑
i=1

n∑
j=1

AijBij.

The Frobenius norm is defined by

‖A‖F =
√
〈A,A〉F .

4 pts

(iii). If A = (a1 a2 · · · an), then

‖QA‖2F =
n∑

k=1

‖Qak‖22 =
n∑

k=1

‖ak‖22 = ‖A‖2F ,

because an orthogonal matrix leaves the Euclidean norm of a vector unchanged.

Now
‖AR‖F = ‖ (AR)T ‖F = ‖RTAT‖F = ‖AT‖F = ‖A‖F ,

because R ∈ O(n) if and only if RT ∈ O(n), and the Frobenius norm is invariant
under the transpose operation, which is obvious from its definition.

4 pts

(iv). We have

‖A−Q‖2F = ‖USV T −Q‖2F = ‖UT
(
USV T −Q

)
V ‖2F = ‖S − UTQV ‖2F ,

since the Frobenius norm is invariant under pre- and post-multiplication by orthog-
onal matrices. Thus

‖A−Q‖2F = ‖S −W‖2 = 〈S −W,S −W 〉F = ‖S‖2F − 2〈S,W 〉F + ‖W‖2F .

Now every column of an orthogonal matrix is a unit vector, which implies ‖W‖2F =
n. Further, since S is a diagonal matrix, 〈S,W 〉F = s1W11+ · · ·+snWnn. Therefore

‖A−Q‖2F = ‖S‖2F − 2
n∑

k=1

skWkk + n =
n∑

k=1

s2k − 2skWkk + 1.

4 pts
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(v). We have

‖A−Q‖2F =
n∑

k=1

s2k + 1− 2
n∑

k=1

skWkk.

Thus minimizing ‖A−Q‖F is equivalent to maximizing
∑n

k=1 skWkk, for W ∈ O(n).
Now every column of an orthogonal matrix is a unit vector, so its diagonal elements
satisfy −1 ≤ Wkk ≤ 1. Hence

n∑
k=1

skWkk ≤
n∑

k=1

sk,

with equality if UTQV = W = I, or Q = UV T .

The Procrustes problems arises in many areas, but one possible application is in
missile guidance systems, where A is a perturbed orthogonal matrix, generated by
hardware, which specifies the orientation of the missile.

5 pts
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2. (i). Let x1, . . . ,xn be points in Rd. The k-means algorithm is a simple method for
iteratively updating a set of k cluster centres m1, . . . ,mk. At the start of the
algorithm, these points can be any vectors.

Now the k cluster centres partition Rd into k clusters: we let the ith cluster Ci be
those points in Rd for which mi is the closest cluster centre, that is

Ci = {x ∈ Rd : ‖x−mi‖ = min
1≤`≤k

‖x−m`‖}, 1 ≤ i ≤ n,

and students are not expected to deal with ambiguous cases for which some points lie
in more than one cluster. We then replace each cluster centre mi by the centroid of
the subset of points in x1, . . . ,xn which are contained in the ith-cluster (the centroid
of a finite set of points v1, . . . ,vj is simply the sample average (v1 + · · · + vj)/j).
The new cluster centres then define corresponding new centres, and we then repeat
the procedure until the cluster centres converge.

8 pts

(ii). We can summarize the links between websites by a single matrix containing 0s and
1s. Specifically, if there are N websites, then we let Wij = 1 if site i links to site j
and i 6= j, but otherwise set Wij = 0. A

Page and Brin decided to rank these N websites by simulating user behaviour with
a Markov model based on the connectivity matrix W . Specifically, we imagine vast
numbers of users surfing the web in discrete time. At the kth step, the vector π(k)

denotes the probability distribution for our users, that is, π
(k)
i is the probability that

a user is surfing site i at time k. We then let our users surf to new sites according
to the transition matrix P ∈ RN×N , where

Pij =
Wij∑N
k=1Wik

, 1 ≤ i, j ≤ N. (1)

Further, we shall assume that
∑n

k=1Wik 6= 0, for all i, to avoid a zero denominator
in the definition of P (we are assuming that there are no dangling pages, to use
Google’s jargon).

Thus the new probability vector is given by

π(k+1) = P Tπ(k) (2)

and, over time, we hope to obtain an invariant measure (or stationary probability
vector) π. Unfortunately this Markov chain turns out to be inadequate, because
most sites tend to fall into isolated clusters and it inherits this stagnation. One
way to avoid this is a teleporting random walk: we choose a parameter c ∈ (0, 1)
and either use P with probability c, or move to one of the N websites with equal
probability. Thus our new transition matrix is

M = cP + (1− c)ee
T

N
, (3)
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where

e =


1
1
...
1

 . (4)

The new invariant measure vector π now satisfies MTπ = π.

Page and Brin decided to define the rank vector r = Nπ. Thus the last equation
becomes (

I − cP T
)
r = (1− c)e. (5)

This linear system contains N linear equations in N unknowns, but N ≈ 109. Un-
fortunately, direct elimination requires T (N) = CN3 seconds, where T (103) ≈ 1 on
basic modern computer. Hence elimination is completely unsuitable. Fortunately,
a simple iterative algorithm called Jacobi’s method is available. Specifically, given
any n×n matrix A, Jacobi’s method attempts to solve Ax = y as follows. We first
choose any initial vector x(0). Then, given x(k−1), we define x(k) by the equation

x
(k)
i =

yi
Aii

−
n∑

j=1,j 6=i

(
Aij

Aii

)
x
(k)
j , 1 ≤ i ≤ n. (6)

Hence
r(k) = cP T r(k−1) + (1− c)e. (7)

12 pts
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3. (i). We have, recalling that Spq = spδpq,

Aij =
m∑
p=1

Uip(SV
T )pj

=
m∑
p=1

n∑
q=1

UipSpqVjq

=
n∑

p=1

spUipVjp

=
n∑

p=1

spup(i)vp(j)

=

(
n∑

p=1

spupv
T
p

)
ij

,

as required. 6 pts

(ii). We have

Arv` =
r∑

k=1

skukv
T
k v` = 0,

if ` > r. 3 pts

(iii). We have

Arx =
r∑

k=1

sk(vT
k x)uk.

3 pts

(iv). The orthogonal invariance of the Frobenius norm implies

‖A− Ar‖2F = ‖S − Sr‖2F = s2r+1 + · · ·+ s2n,

where Sr = diag {s1, . . . , sr, 0, . . . , 0}.
3 pts

(v). We have ‖(A− Ar)x‖2 = ‖(S − Sr)y‖2, where y = V Tx and ‖y‖2 = ‖x‖2. Now

‖(S − Sr)y‖22 = s2r+1y
2
r+1 + · · ·+ s2ny

2
n ≤ s2r+1‖y‖2,

because s1 ≥ · · · ≥ sn. Hence ‖(A− Ar)x‖2 ≤ sr+1‖x‖2, as required.

5 pts
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