
A BRIEF INTRODUCTION TO MATLAB

BRAD BAXTER

Version: 201710261526

Abstract. This is a short introduction to scientific computation in MATLAB.

It is designed for self-study. 1

Contents

1. Introduction 1
2. MATLAB Basics 2
2.1. Matrices and Vectors 2
2.2. The sum function 3
2.3. Solving Linear Equations 3
2.4. The MATLAB Colon Notation 4
2.5. Graphics 4
2.6. Getting help 5
3. Generating random numbers 5
4. Brownian Motion 6
4.1. Simple Random Walk 7
4.2. Geometric Brownian Motion (GBM) 8
4.3. The Central Limit Theorem 9
4.4. Gaussian Details 9
5. Some Finance 12
6. Least Squares fitting 15
7. General Least Squares 16
8. Warning Examples 19
8.1. Floating Point Warnings 19
8.2. Machine Precision 21
9. Recursion and Sudoku 22

1. Introduction

These notes, and much else, can be obtained from

http://econ109.econ.bbk.ac.uk/brad/Methods/

The book Numerical Methods in Finance and Economics: A MATLAB-based
Introduction, by P. Brandimarte, contains many excellent examples, and is strongly
recommended, particularly for MSc Mathematical Finance. I also recommend the
undergraduate-level textbook An Introduction to Financial Option Valuation, by
D. Higham, which is particularly clear.

1

2 BRAD BAXTER

All of the programs in this note also work with Octave, which is a free quasi-clone
of MATLAB, and can be found here:

http://www.gnu.org/software/octave/

Another good quasi-clone is

http://freemat.sourceforge.net/

You’re welcome to use the Computer Room (Room 742); the door code is 5858.

2. MATLAB Basics

2.1. Matrices and Vectors. MATLAB (i.e. MATrix LABoratory) was designed
for numerical linear algebra.

Notation: a p × q matrix has p rows and q columns; its entries are usually real
numbers in these notes, but they can also be complex numbers. A p× 1 matrix is
also called a column vector, and a 1× q matrix is called a row vector. If p = q = 1,
then it’s called a scalar.

Entering commands: You can enter commands at the command prompt. How-
ever, there are more than one or two lines of commands, it is usually better to
create a script, or .m file. A .m file is simply a textfile whose filename extension is
.m, to indicate that it is a MATLAB program. I will describe script creation in the
MATLAB class.

We can easily enter matrices:

A = [1 2 3; 4 5 6; 7 8 9; 10 11 12]

In this example, the semi-colon tells MATLAB the row is complete.
The transpose AT of a matrix A is formed by swapping the rows and columns:

A = [1 2 3; 4 5 6; 7 8 9; 10 11 12]

AT = A’

Sometimes we don’t want to see intermediate results. If we add a semi-colon to
the end of the line, the MATLAB computes silently:

A = [1 2 3; 4 5 6; 7 8 9; 10 11 12];

AT = A’

Matrix multiplication is also easy. In this example, we compute AAT and ATA.

A = [1 2 3; 4 5 6; 7 8 9; 10 11 12]

AT = A’

M1 = A*AT

M2 = AT*A

In general, matrix multiplication is non-commutative, as seen in Example 2.1.

Example 2.1. As another example, let’s take two column vectors u and v in R4

and compute the matrix products u′v and uv′. The result might surprise you at
first glance.

u = [1; 2; 3; 4]

v = [5; 6; 7; 8]

u’*v

u*v’

A BRIEF INTRODUCTION TO MATLAB 3

Exercise 2.1. Use Example 2.1 to find u′v and uv′ when

u =

(
u1
u2

)
and v =

(
v1
v2

)
.

Exercise 2.2. What’s the general formula for A = uv′ and B = u′v when u and
v are column vectors in Rn? In other words, find formulae for the components of
A and B.

2.2. The sum function. It’s often very useful to be able to sum all of the elements
in a vector, which is very easy in MATLAB:

u = [1 2 3 4]

sum(u)

The sum is also useful when dealing with matrices:

A = [1 2; 3 4]

sum(A)

You will see that MATLAB has summed each column of the matrix.

2.3. Solving Linear Equations. MATLAB can also solve linear equations painlessly.
Specifically, to solve Au = v, we use

u = A\v;

This might seem to be a typographical error at first, but the backslash is correct.
Here is a longer example, best created as a script. The lines beginning with percent-
age signs are comment lines, but you should include them as good programming
practice.

Example 2.2. n = 10

% M is a random n x n matrix

M = randn(n);

% y is a random n x 1 matrix, or column vector.

y = randn(n,1);

% solve M x = y

x = M\y

% check the solution

y - M*x

We shall need to measure the length, or norm, of a vector, and this is defined by

‖v‖ =
√
v21 + v22 + · · ·+ v2n,

where v1, . . . , vn ∈ R are the components of the vector v; the corresponding MAT-
LAB function is norm(v). For example, to check the accuracy of the numerical
solution of Mx = y, we type norm(y - M*x).

It’s rarely necessary to compute the inverse M−1 of a matrix, because it’s usually
better to solve the corresponding linear system Mx = y using

x = M\y

as we did above. However, the corresponding MATLAB function is inv(M).

4 BRAD BAXTER

2.4. The MATLAB Colon Notation. MATLAB has a very useful Colon nota-
tion for generating lists of equally-spaced numbers:

1:5

will generate the integers 1, 2, . . . , 5, while

1:0.5:4

will generate 1, 1.5, 2, 2.5, . . . , 3.5, 4, i.e. the middle number is the step-size.

Example 2.3. This example illustrates a negative step-length and their use to
generate a vector.

v = [10:-1:1]’;

w = 2*v

We can easily extract parts of a matrix using the MATLAB colon notation.

A = [1 2 3; 4 5 6; 7 8 9; 10 11 12]

M = A(2:3, 2:3)

The same procedure works for a vector:

v = [1; 2; 3; 4]

u = v(2:3)

The following example illustrates the MATLAB dot notation

Example 2.4. Consider the following MATLAB code.

A = [1 2; 3 4]

A^2

A.^2

The first command uses matrix multiplication to multiply A by itself, whilst the
second creates a new matrix by squaring every component of A.

Exercise 2.3. What does the following do?

sum([1:100].^2)

Exercise 2.4. What does the following do?

y = exp(-0.5 * [0:0.1:1].^2);

2.5. Graphics. Let’s learn more about graphics.

Example 2.5. Plotting a sine curve:

t = 0: pi/200: 2*pi;

y = sin(3*t);

plot(t,y)

Exercise 2.5. Replace plot(t,y) by plot(t,y,’o’) in the last example.

Example 2.6. See if you can predict the result of this code before typing it:

t = 0: pi/200: 2*pi;

y = sin(3*t).^2;

plot(t,y)

Exercise 2.6. Use the plot function to plot the graph of the quadratic p(x) =
2x2 − 5x+ 2, for −3 ≤ x ≤ 3.

Exercise 2.7. Use the plot function to plot the graph of the cubic q(x) = x3 −
3x2 + 3x− 1, for −10 ≤ x ≤ 10.

A BRIEF INTRODUCTION TO MATLAB 5

Example 2.7. Here’s a more substantial code fragment producing a cardioid as
the envelope of certain circles. You’ll also see this curve formed by light reflection
on the surface of tea or coffee if there’s a point source nearby (halogen bulbs are
good for this). It also introduces the axis command, which makes sure that circles
are displayed as proper circles (otherwise MATLAB rescales, turning circles into
ellipses). This longer example should, of course, have its own .m file.

hold off

clf

t=0:pi/2000:2*pi;

plot(cos(t)+1,sin(t))

axis([-1 5 -3 3])

axis(’square’)

hold on

M=10;

for alpha=0:pi/M:2*pi

c=[cos(alpha)+1; sin(alpha)];

r = norm(c);

plot(c(1)+r*cos(t),c(2)+r*sin(t));

end

Exercise 2.8. Generate a graph of the Gaussian N(0, 1) probability density func-
tion

p(s) = (2π)−1/2e−s
2/2, s ∈ R,

over the interval [−5, 5].

2.6. Getting help. You can type

help polar

to learn more about any particular command. MATLAB has extensive documen-
tation built-in, and there’s lots of information available online.

3. Generating random numbers

Computers generate pseudorandom numbers, i.e. deterministic (entirely pre-
dictable) sequences which mimic the statistical properties of random numbers.
Speaking informally, however, I shall often refer to “random numbers” when, strictly
speaking, “pseudorandom numbers” would be the correct term. At a deeper level,
one might question whether anything is truly random, but these (unsolved) philo-
sophical problems need not concern at this stage.

We shall first introduce the extremely important rand and randn functions. De-
spite their almost identical names, they are very different, as we shall see, and
should not be confused. The rand function generates uniformly distributed num-
bers on the interval [0, 1], whilst the randn function generates normally distributed,
or Gaussian random numbers. In financial applications, randn is extremely impor-
tant.

Our first code generating random numbers can be typed in as a program, using
the create script facility, or just entered in the command window.

The function we shall use is rand(m,n), which produces an m × n matrix of
pseudorandom numbers, uniformly distributed in the interval [0, 1].

6 BRAD BAXTER

Example 3.1. Uniformly distributed random numbers and histograms:

N = 10000;

v=rand(N,1);

nbins = 20;

hist(v,nbins);

Here MATLAB has divided the interval [0, 1] into 20 equal subintervals, i.e.

[0, 0.05], [0.05, 0.1], [0.1, 0.15], . . . , [0.90, 0.95], [0.95, 1],

and has simply drawn a bar chart: the height of the bar for the interval [0, 0.05]
is the number of elements of the vector v which lie in the interval [0.0.05], and
similarly for the other sub-intervals.

Exercise 3.1. Now experiment with this code: change N and nbins.

Example 3.2. Gaussian random numbers and histograms:

N = 100000;

v=randn(N,1);

nbins = 50;

hist(v,nbins);

Observe the obvious difference between this bell-shaped distribution and the his-
togram for the uniform distribution.

Exercise 3.2. Now experiment with this code: change N and nbins. What happens
for large N and nbins?

As we have seen, MATLAB can easily construct histograms for Gaussian (i.e.
normal) pseudorandom numbers. As N and nbins tend to infinity, the histogram
converges to a curve, which is called the probability density function (PDF). The
formula for this curve is

p(s) = (2π)−1/2e−s
2/2, for s ∈ R,

and the crucial properties of the PDF are

P(a < Z < b) =

∫ b

a

p(s) ds

and

Ef(Z) =

∫ ∞
−∞

f(s)p(s) ds.

4. Brownian Motion

The mathematics of Brownian motion is covered in my Mathematical Methods
lectures. However, it is possible to obtain a good feel for Brownian motion using
some simple MATLAB examples.

Our first example generates discrete Brownian motion. Mathematically, we’re
generating a random function W : [0,∞)→ R using the equation

W (kh) =
√
h (Z1 + Z2 + · · ·+ Zk) , for k = 1, 2, . . . ,

where h > 0 is a positive time step and Z1, Z2, . . . , Zk are independent N(0, 1)
random variables. Another way to write this is that

W (kh) = V1 + V2 + · · ·+ Vk,

A BRIEF INTRODUCTION TO MATLAB 7

where V1, V2, . . . are independent N(0, h) random variables. The MATLAB function
cumsum calculates this cumulative sum in one line:

Example 4.1. T=1; N=10000; dt = T/N; dW=sqrt(dt)*randn(1,N); plot(cumsum(dW))

Now play with this code, changing T and N.

Example 4.2. In this example we illustrate Itô’s rules computationally. It’s almost
exactly the same code as before, but this time calculates the cumulative sum

V 2
1 + V 2

2 + · · ·+ V 2
k ,

where V1, V2, . . . are independent N(0, h) random variables.

T=1; N=10000; dt = T/N; dW=sqrt(dt)*randn(1,N); plot(cumsum(dW.^2))

Again, play with this code, changing T and N.

Exercise 4.1. Now modify the last example:

T=1; N=100000; dt = T/N; dW=sqrt(dt)*randn(1,N); plot(cumsum(dW.^3))

followed by

T=1; N=100000; dt = T/N; dW=sqrt(dt)*randn(1,N); plot(cumsum(dW.^4))

and

T=1; N=100000; dt = T/N; dW=sqrt(dt)*randn(1,N); plot(cumsum(dW.^5))

Try to explain this behaviour once we have covered stochastic calculus in lectures.

Those of you who have been reading notes carefully will remember the axiom
that W (0) = 0. This is slightly more fiddly to incorporate:

Example 4.3. T = 1; N = 10000; dt = T/N;

dW = sqrt(dt)*randn(1,N); plot([0:dt:T],[0,cumsum(dW)])

Example 4.4. We can also use cumsum to generate many Brownian sample paths.
Note the use of hold on, which keeps the previous graph on screen.

T = 1; N = 500; dt = T/N;

nsamples = 10;

hold on

for k=1:nsamples

dW = sqrt(dt)*randn(1,N); plot([0:dt:T],[0,cumsum(dW)])

end

Exercise 4.2. Increase nsamples in the last example. What do you see?

4.1. Simple Random Walk. A simple random walk is given by

Sn = X1 +X2 + · · ·+Xn,

where X1, X2, . . . is a sequence of independent (Bernoulli) random variables satis-
fying P(Xk = ±1) = 1/2, for all k. This is the discrete time analogue of Brownian
motion and is also easily generated using MATLAB.

n = 10^5;

a = rand(n,1);

b=(a > 0.5);

du=2*b-1;

plot(cumsum(du/sqrt(n)))

Exercise 4.3. Explain how the previous example works.

8 BRAD BAXTER

To make repeated experiments slightly easier, we can condense this code into
one line:

n = 10^5; du=2*(rand(n,1)>0.5)-1; plot(cumsum(du/sqrt(n)))

You will see that simple random walk looks very like Brownian motion, so it
should not surprise you to learn that Brownian motion is the limit of simple random
walk as the number of steps tends to infinity: this is the Central Limit Theorem
once again.

Exercise 4.4. What happens if we replace the final plot command as follows?

plot(cumsum(du.^2))

4.2. Geometric Brownian Motion (GBM). The idea that it can be useful
to model asset prices using random functions was both surprising and implausi-
ble when Louis Bachelier first suggested Brownian motion in his thesis in 1900.
There is an excellent translation of his pioneering work in Louis Bachelier’s Theory
of Speculation: The Origins of Modern Finance, by M. Davis and A. Etheridge.
However, as you have already seen, a Brownian motion can be both positive and
negative, whilst a share price can only be positive, so Brownian motion isn’t quite
suitable as a mathematical model for share prices. Its modern replacement is to
take the exponential, and the result is called Geometric Brownian Motion (GBM),
although exponential Brownian motion would be a better name. In other words,
the most common mathematical model in modern finance is given by

S(t) = S(0)eµt+σW (t), for t > 0,

where µ ∈ R is called the drift and σ is called the volatility.

Example 4.5. Generating GBM the quick way:

T = 1; N = 500; dt = T/N;

t = dt:dt:T;

dW = sqrt(dt)*randn(1,N);

mu = 0.1; sigma = 0.01;

plot(t,exp(mu*t + sigma*cumsum(dW)))

Example 4.6. Generating GBM, being careful to ensure W (0) = 0:

T = 1; N = 500; dt = T/N;

t = 0:dt:T;

dW = sqrt(dt)*randn(1,N);

mu = 0.1; sigma = 0.01;

plot(t,exp(mu*t + sigma*[0,cumsum(dW)]))

Exercise 4.5. Now experiment by increasing and decreasing the volatility sigma.

In mathematical finance, we cannot predict the future, but we estimate gen-
eral future behaviour, albeit approximately. For this we need to generate several
Brownian motion sample paths, i.e. several possible futures for our share. The key
command will be randn(M,N), which generates an M × N matrix of independent
Gaussian random numbers, all of which are N(0, 1). We now need to tell the cumsum
function to cumulatively sum along each row, and this is slightly more tricky.

Example 4.7. Generating several GBM sample paths:

A BRIEF INTRODUCTION TO MATLAB 9

T = 1; N = 500; dt = T/N;

t = 0:dt:T;

M=10;

dW = sqrt(dt)*randn(M,N);

mu = 0.1; sigma = 0.01;

S = exp(mu*ones(M,1)*t + sigma*[zeros(M,1), cumsum(dW,2)]);

plot(t,S)

Here the MATLAB function ones(p,q) creates a p × q matrix of ones, whilst
zeros(p,q) creates a p× q matrix of zeros. The matrix product ones(M,1)*t is a
simple way to create an M ×N matrix whose every row is a copy of t.

Exercise 4.6. Experiment with various values of the drift and volatility.

Exercise 4.7. Copy the use of the cumsum function in Example 4.7 to avoid the
for loop in Example 4.4.

4.3. The Central Limit Theorem. Where does the Gaussian distribution come
from? Why does it occur in so many statistical applications? It turns out that
averages of random variables are often well approximated by Gaussian random
variables, if the random variables are not too wild, and this important theorem is
called the Central Limit Theorem. The next example illustrates the Central Limit
Theorem, and shows that averages of independent, uniformly distributed random
variables converge to the Gaussian distribution.

Example 4.8. This program illustrates the Central Limit Theorem: suitably scaled
averages of uniformly distributed random variables look Gaussian, or normally dis-
tributed. First we create a 20× 10000 matrix of pseudorandom numbers uniformly
distributed on the interval [0, 1], using the rand functions. We then sum every

column of this matrix and divide by
√

20.

m = 20;

n = 10000;

v = rand(m,n);

%

% We now sum each column of this matrix, divide by sqrt(m)

% and histogram the new sequence

%

nbins = 20

w = sum(v)/sqrt(m);

hist(w,nbins);

Exercise 4.8. Play with the constants m and n in the last example.

4.4. Gaussian Details. The MATLAB randn command generates Gaussian pseu-
dorandom numbers with mean zero and variance one; we write this N(0, 1), and
such random variables are said to be normalized Gaussian, or standard normal.
If Z is a normalized Gaussian random variable, then the standard notation to in-
dicate this is Z ∼ N(0, 1), where “∼” means “is distributed as”. We can easily
demonstrate these properties in MATLAB:

10 BRAD BAXTER

Example 4.9. Here we generate n normalized Gaussian pseudorandom numbers
Z1, . . . , Zn, and then calculate their sample mean

µ̂ =
1

n

n∑
k=1

Zk

and their sample variance

σ̂2 =
1

n

n∑
k=1

Z2
k ,

as follows.

n=10000;

Z=randn(n,1);

mean(Z)

mean(Z.^2)

Experiment with this code, increasing n to 106, say.

Obviously not all random variables have mean zero and unit variance, but it’s
simple to generate Gaussian random variables with any given mean µ and variance
σ2. Specifically, if Z ∼ N(0, 1), then W = µ+σZ ∼ N(µ, σ2). It’s easy to illustrate
this in MATLAB.

Example 4.10. Here we generate n normalized Gaussian pseudorandom numbers
Z1, . . . , Zn, to represent a normalized Gaussian random variable Z ∼ N(0, 1). We
then define W = µ+σZ, and generate the corresponding pseudorandom W1, . . . ,Wn,
finding their sample mean and variance

µ̂ =
1

n

n∑
k=1

Zk

and their sample variance

σ̂2 =
1

n

n∑
k=1

(Zk − µ̂)
2
,

as follows.

n=10000;

Z=randn(n,1);

mu = 1; sigma = 0.2;

W = mu + sigma*Z;

mu_hat = mean(W)

sigma_hat = sqrt(mean((W-mu_hat).^2))

Experiment with this code, increasing n to 106, say.

For reference, the PDF for a N(0, σ2) random variable is given by

p(s) = (2πσ2)−1/2e−s
2/(2σ2), s ∈ R.

Exercise 4.9. What the PDF for a N(µ, σ2) random variable?

Here is a much longer exercise on the use of simulation. This is obviously not
a financial example, but the underlying phenomenon (i.e. random variables with
identical means but different variances) is highly relevant to portfolio management.

A BRIEF INTRODUCTION TO MATLAB 11

Exercise 4.10. The pupils of two groups of 10000 students, A and B say, compete
for a new mathematical scholarship by taking an examination. The marks for pupils
in Group A are approximately normally distributed N(µ, σ2), whilst the marks for
pupils in Group B are approximately normally distributed N(µ, (1 + δ)2σ2), where
δ is positive. The scholarship providers decide that to award scholarships to all stu-
dents whose marks exceed µ+Tσ. Further, they provide special “star scholarships”
to those whose marks exceed µ+ (T + 0.5)σ.

(a) Suppose µ = 100, σ = 10, δ = 0.1 and T = 2.5. It transpires that 60 of
the 10000 pupils of Group A win scholarships, compared to 110 of the 10000 pupils
of Group B. Moreover, 13 Group A pupils win star scholarships, compared to 32
Group B pupils. A truculent local politician is angered by this result, stating “This
is clearly discrimination! Since the average marks of the groups are identical, the
same proportion should win a scholarship. It’s even more egregious discrimination
for star scholarships!” Is the politician justified? Justify your answer by using the
MATLAB randn function to simulate behaviour. [Hint: you don’t need to use a
relatively small sample of 104 pupils in your simulation.]

(b) The scholarship provider deems any mark lower than µ− Tσ to be a failure.
The truculent politician makes a new discovery: “I have found that 62 pupils in
Group A failed the examination, whilst 120 pupils in Group B failed. This proves
that Group B is no better than Group A! How, therefore, can we trust the claim that
Group B should be awarded double the proportion of scholarships?” Is the politician
justified? Once again, justify your answer by using the MATLAB randn function
to simulate behaviour.

(c) Use MATLAB to discover the behaviour of

P (Pupil in Group B wins scholarship)

P (Pupil in Group A wins scholarship)

as T grows.

12 BRAD BAXTER

5. Some Finance

Now let’s discuss a financial application. We shall use Monte Carlo simulation.1

You can find a full mathematical treatment in my notes for Mathematical Methods,
but we really only need the basics here. We shall assume that our share price S(t)
is a random variable given by the following formula

S(t) = S(0)e(r−σ
2/2)t+σ

√
tZ , for t > 0,

where Z is a standard Gaussian random variable, S(0) = 42, r = 0.1 and σ = 0.2.
These parameters were fairly typical for the NYSE in the 1990s, and this example
was taken from Options, Futures and Other Derivative Securities, by J. C. Hull.

We cannot predict the future price S(T) of our stock at time T , but we can
approximate the distribution of its possible values. In other words, we can predict
the likely behaviour of our asset in many possible futures, although its value in our
future sadly remains a mystery.

Example 5.1. Predicting many possible futures at expiry time T :

S0 = 42;

r = 0.1;

T = 0.5;

sigma = 0.2;

N = 100000;

%

% generate asset prices at expiry

%

Z = randn(N,1);

ST = S0*exp((r-(sigma^2)/2)*T + sigma*sqrt(T)*Z);

%

% display histogram of possible prices at expiry

%

nbins=40;

hist(ST,nbins);

Exercise 5.1. Try various values of N, sigma, T and nbins in the previous example.
What happens for, say, sigma=20?

Once we know how to generate likely future prices in this way, we can actually
price a Euro put option: let us suppose we own the share already and wish to
insure ourselves against a decrease in its value over the next 6 months. Specifically,
we wish to buy the right, but not the obligation, to sell the share at the exercise
price K = $40 at T = 0.5. Such a contract is called a European put option, with
exercise price (or strike price) K and expiry time T = 0.5. Obviously we want to

1This name originated with the brilliant mathematician John von Neumann, during his work

on the Manhattan Project, the secret project building the first American atomic bombs during

World War II. In the first Monte Carlo simulation, the sample paths were those of neutrons
passing through Uranium, the aim being to estimate the mass of the Uranium isotope U235
required for a successful fission bomb. The American team used some of the first computers

(more like programmable calculators, by our standards) to estimate some 64 kg of U235 would be
sufficient, which was achievable using the cumbersome technology required to separate the 0.07%

of U235 from common Uranium ore; they were correct in their estimates. The German team, led

by Werner Heisenberg, had neither computers nor simulation. Heisenberg estimated a 1000 kg of
U235 would be required, and therefore gave up, ending the German atomic bomb project.

A BRIEF INTRODUCTION TO MATLAB 13

compute the fair price of such a contract. Now, if S(T) ≥ K, then the option is
worth nothing at expiry; there is no value in being able to sell a share for K if
it’s actually worth more! In contrast, if S(T) < K, then we have made a profit of
K − S(T). If we take the view that the fair price at expiry should be the average
value of max{K −S(T), 0}, then we can easily compute this using the vector ST of
possible expiry prices calculated in the previous example. Specifically, we compute
the average

tput = sum(max(K-ST,0.0)/N;

To complete the pricing of this option, we need to understand the time value of
money: we shall assume that we can borrow and save at the risk-free rate r. Thus,
to obtain 1 at a time t in the future, we need only invest $ exp(−rt) now. In other
words, the discounted future expected price of the European put option is given by

fput = exp(-r*T)*sum(max(K-ST,0.0)/N;

Finally, here is a summary of all of the above.

Example 5.2. Using Monte Carlo simulation to approximate the value of the Eu-
ropean put option of Example 11.6 of Hull:

%

% These are the parameters chosen in Example 11.6 of

% OPTIONS, FUTURES AND OTHER DERIVATIVES,

% by John C. Hull (Prentice Hall, 4th edn, 2000)

%

%% initial stock price

S0 = 42;

% unit of time = year

% continuous compounding risk-free rate

%

r = 0.1;

% exercise price

K = 40;

% time to expiration in years

T = 0.5;

% volatility

sigma = 0.2;

% generate asset prices at expiry

N=10000;

Z = randn(N,1);

ST = S0*exp((r-(sigma^2)/2)*T + sigma*sqrt(T)*Z);

% calculate put contract values at expiry

fput = max(K - ST,0.0);

% average put values at expiry and discount to present

mc_put = exp(-r*T)*sum(fput)/N

Exercise 5.2. Modify this example to calculate the Monte Carlo approximation for
a European call, for which the contract value at expiry is given by

max(ST - K, 0)

Exercise 5.3. How can we check our Monte Carlo approximations to the prices of
European calls and puts? For this, you will need to create a script to calculate the

14 BRAD BAXTER

cumulative distribution function for the normalized Gaussian distribution, that is,

(1) Φ(x) = P(Z ≤ x) =

∫ x

−∞
(2π)−1/2e−s

2/2 ds, for x ∈ R,

where Z ∼ N(0, 1). The following code will produce a suitable script, which you
should save in a file called phi.m.

function Y = Phi(t)

Y = 0.5*(1.0 + erf(t/sqrt(2)));

To calculate analytic values of a put, you can use the code:

% calculate analytic value of put contract

wK = (log(K/S0) - (r - (sigma^2)/2)*T)/(sigma*sqrt(T));

a_put = K*exp(-r*T)*Phi(wK) - S0*Phi(wK - sigma*sqrt(T))

For the European call, you should use put–call parity: given European Put and
Call options, each with exercise price K and expiry time T , their prices satisfy

(2) fC(S, t)− fP (S, t) = S −Ke−rτ , for S ∈ R and 0 ≤ t ≤ T,
where τ = T − t, the time-to-expiry. Use put–call parity to calculate the analytic
call price from the put price.

Example 5.3. There is a very useful MATLAB trick when dealing with digital
options. Type the following code.

v = [-3 -2 -1 0 1 2 3]

(v >= 0);

Thus (. . .) generates a vector (or matrix) of zeros and ones, with ones where the
condition in brackets is true.

Example 5.4. In this example, we first generate a matrix of random numbers
uniformly distributed on the interval [0, 1], using rand, following which we transform
this into a matrix of random ±1 entries.

%

% m = 10, n = 5

%

A = rand(m, n)

B = (A > 0.5)

C = 2*B-1

Exercise 5.4. Modify the code to calculate the Monte Carlo approximation to a
digital call, for which the contract value at expiry is given by

(ST > K);

A BRIEF INTRODUCTION TO MATLAB 15

6. Least Squares fitting

Suppose we are given N points (xk, yk), for k = 1, 2, . . . , N , which lie approxi-
mately on a line. How should we compute the line?

If the points lay exactly on a line, then we simply solve the linear system(
x1 1
x2 1

)
c =

(
y1
y2

)
,

to give the coefficients c = (c1, c2)T . Since the points are exactly on the line, we
can even solve the linear system

Ac = y

where A is the N × 2 matrix

A =


x1 1
x2 1
...

...
xN 1


and y = (y1, y2, . . . , yN)T ∈ RN . However, when the points lie approximately, but
not exactly, on a line, we cannot solve Ac = y, because these N equations in 2
variables will be inconsistent.

We can however solve them approximately, and the least squares solution finds
that vector c ∈ R2 minimizing the norm ‖y − Az‖, for all z ∈ R2. MATLAB can
handle this equally easily: we simply type

c = A \ y;

Mathematically, we first define the Euclidean norm by

(3) ‖v‖ =

(
n∑
k=1

v2k

)1/2

,

for any vector v ∈ Rn. The least squares solution to the overdetermined2 linear
system Ax ≈ y is that vector x∗ minimizing the Euclidean norm ‖y−Ax‖. It can
be shown that x∗ satisfies the so called normal equations:

(4) ATAx∗ = ATy,

but it turns out that solving the normal equations is extremely bad in floating point
arithmetic. Fortunately, MATLAB uses a far superior algorithm.

Example 6.1. This MATLAB example generates lots of points on a line, and then
perturbs them by adding some Gaussian noise, to simulate the imperfections of real
data. It then computes the least squares line of best fit.

%

% We first generate some

% points on a line and add some noise

%

a0=1; b0=0;

n=100; sigma=0.1;

x=randn(n,1);

y=a0*x + b0 + sigma*randn(n,1);

2I.e. more equations than unknowns.

16 BRAD BAXTER

%

% Here’s the least squares linear fit

% to our simulated noisy data

%

A=[x ones(n,1)];

c = A\y;

%

% Now we plot the points and the fitted line.

%

plot(x,y,’o’);

hold on

xx = -2.5:.01:2.5;

yy=a0*xx+b0;

zz=c(1)*xx+c(2);

plot(xx,yy,’r’)

plot(xx,zz,’b’)

Exercise 6.1. What happens when we increase the parameter sigma?

Exercise 6.2. Least Squares fitting is an extremely useful technique, but it is ex-
tremely sensitive to outliers. Here is a MATLAB code fragment to illustrate this:

%

% Now let’s massively perturb one data value.

%

y(n/2)=100;

cnew=A\y;

%

% Exercise: display the new fitted line. What happens when we vary the

% value and location of the outlier?

%

7. General Least Squares

There is no reason to restrict ourselves to linear fits. If we wanted to fit a
quadratic p(x) = p0 + p1x + p2x

2 to the data (x1, y1), . . . , (xN , yN), then we can
still compute the least squares solution to the overdetermined linear system

Ap ≈ y,

where p = (p0, p1, p2)T ∈ R3 and A is now the N × 3 matrix given by

A =


x21 x1 1
x22 x2 1
...

...
...

x2N xN 1

 .

This requires a minor modification to Example 6.1.

Example 7.1. Generalizing Example 6.1, we generate a quadratic, perturb the
quadratic by adding some Gaussian noise, and then fit a quadratic to the noisy
data.

A BRIEF INTRODUCTION TO MATLAB 17

%

% We first generate some

% points using the quadratic x^2 - 2x + 1 and add some noise

%

a0=1; b0=-2; c0=1;

n=100; sigma=0.1;

x=randn(n,1);

y=a0*(x.^2) + b0*x + c0 + sigma*randn(n,1);

%

% Here’s the least squares quadratic fit

% to our simulated noisy data

%

A=[x.^2 x ones(n,1)];

c = A\y;

%

% Now we plot the points and the fitted quadratic

%

plot(x,y,’o’);

hold on

xx = -2.5:.01:2.5;

yy=a0*(xx.^2)+b0*xx + c0;

zz=c(1)*(xx.^2)+c(2)*xx + c(3);

plot(xx,yy,’r’)

plot(xx,zz,’b’)

Exercise 7.1. Increase sigma in the previous example, as for Example 6.1. Fur-
ther, explore the effect of choosing a large negative outlier by adding the line y(n/2)=-10000;
before solving for c.

There is absolutely no need to restrict ourselves to polynomials. Suppose we
believe that our data (x1, y1), . . . , (xN , yN) are best modelled by a function of the
form

s(x) = c0 exp(−x) + c1 exp(−2x) + c2 exp(−3x).

We now compute the least squares solution to the overdetermined linear system
Ap ≈ y, where p = (p0, p1, p2)T ∈ R3 and

A =


e−x1 e−2∗x1 e−3x1

e−x2 e−2∗x2 e−3x2

...
...

...
e−xN e−2∗xN e−3xN

 .

Example 7.2. %

% We first generate some

% points using the function

% a0*exp(-x) + b0*exp(-2*x) + c0*exp(-3*x)

% and add some noise

%

a0=1; b0=-2; c0=1;

n=100; sigma=0.1;

x=randn(n,1);

18 BRAD BAXTER

y=a0*exp(-x) + b0*exp(-2*x) + c0*exp(-3*x) + sigma*randn(n,1);

%

% Here’s the least squares fit

% to our simulated noisy data

%

A=[exp(-x) exp(-2*x) exp(-3*x)];

c = A\y;

%

% Now we plot the points and the fitted quadratic

%

plot(x,y,’o’);

hold on

xx = -2.5:.01:2.5;

yy=a0*exp(-xx)+b0*exp(-2*xx) + c0*exp(-3*xx);

zz=c(1)*exp(-xx)+c(2)*exp(-2*xx) + c(3)*exp(-3*xx);

plot(xx,yy,’r’)

plot(xx,zz,’b’)

A BRIEF INTRODUCTION TO MATLAB 19

8. Warning Examples

In the 1960s, mainframe computers became much more widely available in uni-
versities and industry, and it rapidly became obvious that it was necessary to
provide software libraries to solve common numerical problems, such as the least
squares solution of linear systems. This was a golden age for the new discipline of
Numerical Analysis, straddling the boundaries of pure mathematics, applied math-
ematics and computer science. Universities and national research centres provided
this software, and three of the pioneering groups were here in Britain: the National
Physical Laboratory, in Teddington, the Atomic Energy Research Establishment,
near Oxford, and the Numerical Algorithms Group (NAG), in Oxford. In the late
1980s, all of this code was incorporated into MATLAB. The great advantage of this
is that the numerical methods chosen by MATLAB are excellent and extremely
well tested. However any method can be defeated by a sufficiently nasty problem,
so you should not become complacent. The following matrix is usually called the
Hilbert matrix, and seems quite harmless on first contact: it is the n × n matrix
H(n) whose elements are given by the simple formula

H
(n)
jk =

1

j + k + 1
, 1 ≤ j, k ≤ n.

MATLAB knows about the Hilbert matrix: you can generate the 20 × 20 Hilbert
matrix using the command A = hilb(20);. The Hilbert matrix is notoriously
ill-conditioned, and the practical consequence of this property is shown here:

Example 8.1. %

% A is the n x n Hilbert matrix

%

n = 15;

A = hilb(n);

%

%

%

v = [1:n]’;

w = A * v;

%

% If we now solve w = A*vnew using vnew = A \ w,

% then we should find that vnew is the vector v.

% Unfortunately this is NOT so . . .

%

vnew = A \ w

Exercise 8.1. Try increasing n in the previous example.

8.1. Floating Point Warnings. Computers use floating point arithmetic. You
shouldn’t worry about this too much, because the relative error in any arithmetic
operation is roughly 10−16, and we shall make this more precise below. However,
it is not the same as real arithmetic. In particular, errors can be greatly magnified
and the order of evaluation can affect results. For example, floating point addition
is commutative, but not associative: a+ (b+ c) 6= (a+ b) + c, in general.

In this section, we want to see the full form of numbers, and not just the first
few decimal places. To do this, use the MATLAB command format long.

20 BRAD BAXTER

Example 8.2. Prove that

1− cosx

x2
=

sin2 x

x2 (1 + cosx)
.

Let’s check this identity in MATLAB:

for k=1:8, x=10^(-k); x^(-2)*(1-cos(x)), end

for k=1:8, x=10^(-k); x^(-2)*sin(x)^2/(1+cos(x)), end

Explain these calculations. Which is closer to the truth?

We can also avoid using loops using MATLAB’s dot notation for pointwise opera-
tions. I have omitted colons in the next example to illustrate this:

x=10.^(-[1:8])

1-cos(x)

(sin(x).^2) ./ (1+cos(x))

Example 8.3. Prove that

√
x+ 1−

√
x =

1√
x+ 1 +

√
x
,

for x > 0. Now explain what happens when we try these algebraically equal expres-
sions in MATLAB:

x=123456789012345;

a=sqrt(x+1)-sqrt(x)

a = 4.65661287307739e-08

b=1/(sqrt(x+1) + sqrt(x))

b = 4.50000002025000e-08

Which is correct?

Example 8.4. You should know from calculus that

exp(z) =

∞∑
k=0

zk

k!
,

for any z ∈ C. Let’s test this.

x=2; S=1; N=20; for k=1:N, S=S+(x^k)/factorial(k); end

exp(x)

S

Now replace x=2 by x=-20. What has happened? What happens if we increase N?

Example 8.5. The roots of the quadratic equation

x2 + bx+ c = 0

are given by

x1 =
−b+

√
b2 − 4c

2
and x2 =

−b−
√
b2 − 4c

2
.

Use these expressions to find the roots when b = 1111111; c=1. Now the identity

x2 + bx+ c = (x− x1)(x− x2)

implies that c = x1x2. Is c/x2 equal to your computed value of x1? What has
occurred?

A BRIEF INTRODUCTION TO MATLAB 21

8.2. Machine Precision. The smallest number ε such that the computer can
distinguish 1 + ε from 1 is called the machine epsilon. Computers use base 2, so
finding ε reduces to finding the largest positive integer k for which the computer
can distinguish between 1 + 2−k and 1. We can easily find this using the following
MATLAB code:

Example 8.6. The following code generates a 55× 4 matrix for which row k con-
tains k, 2−k, 1 + 2−k, and finally a true/false value (i.e. 1 or 0) depending on
whether MATLAB believes that 1 + 2−k exceeds 1.

x=zeros(55,0);

for k=1:55

x(k,1)=k; x(k,2)=2^(-k); x(k,3) = 1+x(k,2);

x(k,4) = (x(k,3) > 1); % equals 1 if x(k,3) > 1 else 0

end

You should find that ε = 2−52 = 16−13 = 2.22044604925031×10−16. This will be the
case on almost all computers, which now follow the IEEE 754 standard specifying
the details of floating point arithmetic, without which our machines’ computations
would be far more dubious.

Exercise 8.2. Construct values of a, b and c for which a + (b + c) 6= (a + b) + c,
implying that floating point arithmetic is not associative.

22 BRAD BAXTER

9. Recursion and Sudoku

This section is really just for fun, but it also gives me a chance to display some
other features of the MATLAB language, of which the most important is recursion:
a MATLAB function can call itself.

Sudoku is a popular puzzle in which a 9 × 9 matrix is further sub-divided into
9 3 × 3 submatrices. The matrix can only contain the integers 1, . . . , 9, but each
row, each column, and each of the 9 3 × 3 submatrices, must contain all 9 digits.
Initially, the solver is faced with some given values, the remainder being blank.
Here’s a simple example:

2 5 3 9 1

1 4

4 7 2 8

5 2

9 8 1

4 3

3 6 7 2

7 3

9 3 6 4

Here’s a harder example:

A BRIEF INTRODUCTION TO MATLAB 23

2 3 9 7

1

4 7 2 8

5 2 9

1 8 7

4 3

6 7 1

7

9 3 2 6 5

It’s not too difficult to write a MATLAB program which can solve any Sudoku.
You can download a simple Sudoku solver (sud.m) from my office machine:

http://econ109.econ.bbk.ac.uk/brad/CTFE/matlab_code/sudoku/

Here’s the MATLAB code for the solver:

function A = sud(A)

global cc

cc = cc+1;

% find all empty cells

[yy xx]=find(A==0);

if length(xx)==0

disp(’solution’)

disp(A);

return

end

x=xx(1);

y=yy(1);

for i=1:9 % try 1 to 9

% compute the 3 x 3 block containing this element

y1=1+3*floor((y-1)/3); % find 3x3 block

x1=1+3*floor((x-1)/3);

% check if i is in this element’s row, column or 3 x 3 block

24 BRAD BAXTER

if ~(any(A(y,:)==i) | any(A(:,x)==i) | any(any(A(y1:y1+2,x1:x1+2)==i)))

Atemp=A;

Atemp(y,x)=i;

% recursively call this function

Atemp=sud(Atemp);

if all(all(Atemp))

A=Atemp; % ... the solution

return; % and that’s it

end

end

end

Download and save this file as sud.m. You can try the solver with the following
example:

%

% Here’s the initial Sudoku; zeros indicate blanks.

%

M0 = [

0 4 0 0 0 0 0 6 8

7 0 0 0 0 5 3 0 0

0 0 9 0 2 0 0 0 0

3 0 0 5 0 0 0 0 7

0 0 1 2 6 4 9 0 0

2 0 0 0 0 7 0 0 6

0 0 0 0 5 0 7 0 0

0 0 6 3 0 0 0 0 1

4 8 0 0 0 0 0 3 0];

M0

M = M0;

%

% cc counts the number of calls to sud, so it is one measure

% of Sudoku difficulty.

%

global cc = 0;

sud(M);

cc

Exercise 9.1. Solve the first two Sudokus using sud.m.

Exercise 9.2. How does sud.m work?

Department of Economics, Mathematics and Statistics, Birkbeck College, University
of London, Malet Street, London WC1E 7HX, England

E-mail address: b.baxter@bbk.ac.uk

