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Summary

The problem of interpolating functions of d real variables (d > 1) occurs naturally

in many areas of applied mathematics and the sciences. Radial basis function

methods can provide interpolants to function values given at irregularly positioned

points for any value of d. Further, these interpolants are often excellent approxi-

mations to the underlying function, even when the number of interpolation points

is small.

In this dissertation we begin with the existence theory of radial basis function

interpolants. It is first shown that, when the radial basis function is a p-norm

and 1 < p < 2, interpolation is always possible when the points are all different

and there are at least two of them. Our approach extends the analysis of the case

p = 2 devised in the 1930s by Schoenberg. We then show that interpolation is not

always possible when p > 2. Specifically, for every p > 2, we construct a set of

different points in some Rd for which the interpolation matrix is singular. This

construction seems to have no precursor in the literature.

The greater part of this work investigates the sensitivity of radial basis func-

tion interpolants to changes in the function values at the interpolation points.

This study was motivated by the observation that large condition numbers occur

in some practical calculations. Our early results show that it is possible to recast

the work of Ball, Narcowich and Ward in the language of distributional Fourier

transforms in an elegant way. We then use this language to study the interpola-

tion matrices generated by subsets of regular grids. In particular, we are able to

extend the classical theory of Toeplitz operators to calculate sharp bounds on the

spectra of such matrices. Moreover, we also describe some joint work with Charles

Micchelli in which we use the theory of Pólya frequency functions to continue this

work, as well as shedding new light on some of our earlier results.
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Applying our understanding of these spectra, we construct preconditioners for

the conjugate gradient solution of the interpolation equations. The preconditioned

conjugate gradient algorithm was first suggested for this problem by Dyn, Levin

and Rippa in 1983, who were motivated by the variational theory of the thin

plate spline. In contrast, our approach is intimately connected to the theory of

Toeplitz forms. Our main result is that the number of steps required to achieve

solution of the linear system to within a required tolerance can be independent of

the number of interpolation points. In other words, the number of floating point

operations needed for a regular grid is proportional to the cost of a matrix-vector

multiplication. The Toeplitz structure allows us to use fast Fourier transform

techniques, which implies that the total number of operations is a multiple of

n log n, where n is the number of interpolation points.

Finally, we use some of our methods to study the behaviour of the multiquadric

when its shape parameter increases to infinity. We find a surprising link with

the sinus cardinalis or sinc function of Whittaker. Consequently, it can be highly

useful to use a large shape parameter when approximating band-limited functions.
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1 : Introduction

The multivariate interpolation problem occurs frequently in many branches of

science and engineering. Typically, we are given a discrete set I in Rd, where d is

greater than one, and real numbers {fi}i∈I . Our task is to construct a continuous

or sufficiently differentiable function s:Rd → R such that

s(i) = fi, i ∈ I, (1.1)

and we say that s interpolates the data {(i, fi) : i ∈ I}. Interpolants can be highly

useful. For example, we may need to approximate a function whose values are

known only at the interpolation points, that is we are ignorant of its behaviour

outside I. Alternatively, the underlying function might be far too expensive to

evaluate at a large number of points, in which case the aim is to choose an in-

terpolant which is cheap to compute. We can then use our interpolant in other

algorithms in order to, for example, calculate approximations to extremal values of

the original function. Another application is data-compression, where the size of

our initial data {(i, fi) : i ∈ Î} exceeds the storage capacity of available computer

hardware. In this case, we can choose a subset I of Î and use the corresponding

data to construct an interpolant with which we estimate the remaining values. It

is important to note that in general I will consist of scattered points, that is its

elements can be irregularly positioned. Thus algorithms that apply to arbitrary

distributions of points are necessary. Such algorithms exist and are well under-

stood in the univariate case (see, for instance, Powell (1981)), but many difficulties

intrude when d is bigger than one.

There are many applications of multivariate interpolation, but we prefer to

treat a particular application in some detail rather than provide a list. Therefore

we consider the following interesting example of Barrodale et al (1991).

When a time-dependent system is under observation, it is often necessary

to relate pictures of the system taken at different times. For example, when

measuring the growth of a tumour in a patient, we must expect many changes to

occur between successive X-ray photographs, such as the position of the patient
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Introduction

or the amount of fluid in the body’s tissues. If we can identify corresponding

points on the two photographs, such as parts of the bone structure or intersections

of particular veins, then these pairs of points can be viewed as the data for two

interpolation problems. Specifically, let (xj , yj)
n
j=1 be the coordinates of the points

in one picture, and let the corresponding points in the second picture be (ξj , ηj)
n
j=1.

We need functions sx:R2 → R and sy:R2 → R such that

sx(xj , yj) = ξj and sy(xj , yj) = ηj for j = 1, . . . , n. (1.2)

Therefore we see that the scattered data interpolation problem arises quite nat-

urally as an attempt to approximate the non-linear coordinate transformation

mapping one picture into the next.

It is important to understand that interpolation is not always desirable. For

example, our data may be corrupted by measurement errors, in which case there

is no good reason to choose an approximation which satisfies the interpolation

equations, but we do want to construct an approximation which is close to the

function values in some sense. One option is to choose our function s:Rd → R
from some family (usually a linear space) of functions so as to minimize a certain

functional G, such as

G(s− f) =
∑

i∈I

[fi − s(i)]2, (1.3)

which is the familiar least-squares fitting problem. Of course this can require

the solution of a nonlinearly constrained optimization problem, depending on the

family of functions and the functional G. Another alternative to interpolation

takes s to be the sum of decaying functions, each centred at a point in I and

taking the function value at that point. Such an approximation is usually called

a quasi-interpolant, reflecting the requirement that it should resemble the inter-

polant in some suitable way. These methods are of both practical and theoretical

importance, but we emphasize that this dissertation is restricted to interpolation,

specifically interpolation using radial basis functions, for which we refer the reader

to Section 1.5 and the later chapters of the dissertation.
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We now briefly describe some other multivariate approximation schemes. Of

course, our treatment does not provide a thorough overview of the field, for which

we refer the reader to de Boor (1987), Franke (1987) or Hayes (1987). However,

it is interesting to contrast radial basis functions with some of the other methods.

In fact, the memoir of Franke (1982) is dedicated to this purpose; it contains

careful numerical experiments using some thirty methods, including radial basis

functions, and provides an excellent reason for their theoretical study: they obtain

excellent accuracy when interpolating scattered data. Indeed, Franke found them

to excel in this sense when compared to the other tested methods, thus providing

an excellent reason for their theoretical study.

1.1 Polynomial interpolation

Let P be a linear space of polynomials in d real variables spanned by (pi)i∈I , where

I is the discrete subset of Rd discussed at the beginning of the introduction. Then

an interpolant s:Rd → R of the form

s(x) =
∑

i∈I

cipi(x), x ∈ Rd, (1.4)

exists if and only if the matrix (pi(j))i,j∈I is invertible. We see that this prop-

erty depends on the geometry of the centres when d > 1, which is a signifi-

cant difficulty. One solution is to choose a particular geometry. As an example

we describe the tensor product approach on a “tartan grid”. Specifically, let

I = {(xj , yk) : 1 ≤ j ≤ l, 1 ≤ k ≤ m}, where x1 < · · · < xl and y1 < · · · < ym

are given real numbers, and let {f(xj ,yk) : 1 ≤ j ≤ l, 1 ≤ k ≤ m} be the func-

tion values at these centres. We let (L1
j )

l
j=1 and (L2

k)m
k=1 be the usual univariate

Lagrange interpolating polynomials associated with the numbers (xj)
l
1 and (yk)m

1

respectively and define our interpolant s:R2 → R by the equation

s(x, y) =

l∑

j=1

m∑

k=1

f(xj ,yk)L
1
j (x)L

2
k(y), (x, y) ∈ R2. (1.5)

Clearly this approach extends to any number of dimensions d.
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1.2 Tensor product methods

The tensor product scheme for tartan grids described in the previous section is

not restricted to polynomials. Using the same notation as before, we replace

(L1
j )

l
j=1 and (L2

k)m
k=1 by univariate functions (Pj)

l
j=1 and (Qk)m

k=1 respectively.

Our interpolant takes the form

s(x, y) =

l∑

j=1

m∑

k=1

yjkPj(x)Qk(y), (x, y) ∈ R2, (1.7)

from which we obtain the coefficients (yjk). By adding points outside the interval

[x1, xl] and [y1, ym] we can choose (Pj) and (Qk) to be univariate B-splines. In this

case the linear systems involved are invertible and banded, so that the number of

operations and the storage required are both multiples of the total number of points

in the tartan grid. Such methods are extremely important for the subtabulation

of functions on regular grids, and clearly the scheme exists for any number of

dimensions d. A useful survey is the book of Light and Cheney (1986)

1.3 Multivariate Splines

Generalizing some of the properties of univariate splines to a multivariate set-

ting has been an idée fixe of approximation theory. Thus the name “spline” is

overused, being applied to almost any extension of univariate spline theory. In this

section we briefly consider box splines. These are compactly supported piecewise

polynomial functions which extend Schoenberg’s characterization of the B-spline

B(·; t0, . . . , tk) with arbitrary knots t0, . . . , tk as the “shadow” of a k-dimensional

simplex (Schoenberg (1973), Theorem 1, Lecture 1). Specifically, the box spline

B(·;A) associated with the d× n matrix A is the distibution defined by

B(·;A) : C∞
0 (Rd) → R : ϕ 7→

∫

[−1/2,1/2]n
ϕ(Ax) dx,

where C∞
0 (Rd) is the vector subspace of C∞(Rd) whose elements vanish at infinity.

If we let a1, . . . , an ∈ Rd be the columns of A, then the Fourier transform of the
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box spline is given by

B̂(ξ;A) =

n∏

j=1

sinc ξTaj , ξ ∈ Rd,

where sinc(x) = sin(x/2)/(x/2). We see that a simple example of a box spline

is a tensor product of univariate B-splines. It can be shown that there exist box

splines with smaller supports than tensor product B-splines.

A large body of mathematics now exists, and a suitable comprehensive

review is the long paper of Dahmen and Micchelli (1983). Further, this theory is

also yielding useful results in the study of wavelets (see Chui (1992)). However,

there are many computational difficulties. At present, box spline software is not

available from the main providers of scientific computation packages.

1.4 Finite element methods

Finite element methods can provide extremely flexible piecewise polynomial spaces

for approximation and scattered data interpolation. When d = 2 we first choose

a triangulation of the points. Then a polynomial is constructed on each triangle,

possibly using function values and partial derivative values at other points in

addition to the vertices of the triangulation. This is a non-trivial problem, since

we usually require some global differentiability properties, that is the polynomials

must fit together in a suitably smooth way. Further, the partial derivatives are

frequently unknown, and these methods can be highly sensitive to the accuracy of

their estimates (Franke (1982)).

Much recent research has been directed towards the choice of triangula-

tion. The Delaunay triangulation (Lawson (1977)) is often recommended, but

some work of Dyn, Levin and Rippa (1986) indicates that greater accuracy can be

achieved using data-dependent triangulations, that is triangulations whose com-

ponent triangles reflect the geometry of the function in some way. Finally, the

complexity of constructing triangulations in higher dimensions effectively limits

these methods to two and three dimensional problems.
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1.5 Radial basis functions

A radial basis function approximation takes the form

s(x) =
∑

i∈I

yiϕ(‖x− i‖), x ∈ Rd, (1.8)

where ϕ: [0,∞) → R is a fixed univariate function and the coefficients (yi)i∈I

are real numbers. We do not place any restriction on the norm ‖ · ‖ at this

point, although we note that the Euclidean norm is the most common choice.

Therefore our approximation s is a linear combination of translates of a fixed

function x 7→ ϕ(‖x‖) which is “radially symmetric” with respect to the given

norm, in the sense that it clearly possesses the symmetries of the unit ball. We

shall often say that the points (xj)
n
j=1 are the centres of the radial basis function

interpolant. Moreover, it is usual to refer to ϕ as the radial basis function, if the

norm is understood.

If I is a finite set, say I = (xj)
n
j=1, the interpolation conditions provide the

linear system

Ay = f, (1.9)

where

A =
(
ϕ(‖xj − xk‖)

)n

j,k=1
, (1.10)

y = (yj)
n
j=1 and f = (fj)

n
j=1.

One of the most attractive features of radial basis function methods is the

fact that a unique interpolant is often guaranteed under rather mild conditions

on the centres. In several important cases, the only restrictions are that there

are at least two centres and they are all distinct, which are as simple as one

could wish. However, one important exception to this statement is the thin plate

spline introduced by Duchon (1975, 1976), where we choose ϕ(r) = r2 log r. It

is easy to see that the interpolation matrix A given by (1.10) can be singular for

non-trivial sets of distinct centres. For example, choosing x2, . . . , xn to be any

different points on the sphere of unit radius whose centre is x1, we conclude that

the first row and column of A consist entirely of zeros. Of course, such examples

6
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exist for any function ϕ with more than one zero. Fortunately, it can be shown

that it is suitable to add a polynomial of degree m ≥ 1 to the definition of s

if the centres are unisolvent, which means that the zero polynomial is the only

polynomial of degree m which vanishes at every centre (see, for instance, Powell

(1992)). The extra degrees of freedom are usually taken up by moment conditions

on the coefficients (yj)
n
j=1. Specifically, we have the equations

n∑

k=1

ykϕ(‖xj − xk‖) + P (xj) = fj , j = 1, 2, . . . , n,

n∑

k=1

ykp(xk) = 0 for every p ∈ Πm(Rd),

(1.11)

where Πm(Rd) denotes the vector space of polynomials in d real variables of total

degree m, and the theory guarantees the existence of a unique vector (yj)
n
j=1 and

a unique polynomial P ∈ Πm(Rd) satisfying (1.11). Moreover, because (1.8) does

not reproduce polynomials when I is a finite set, it is sometimes useful to augment

s in this way.

In fact Duchon derived (1.11) as the solution to a variational problem when

d = 2: he proved that the function s given by (1.11) minimizes the integral
∫

R2

[sx1x1
]2 + 2[sx1x2

]2 + [sx2x2
]2 dx,

where m = 1 and s satisfies some differentiability conditions. Duchon’s treatment

is somewhat abstract, using sophisticated distribution theory techniques, but a

detailed alternative may be found in Powell (1992). We do not study the thin

plate spline in this dissertation, although many of our results are highly relevant

to its behaviour.

In his comparison of multivariate approximation methods, Franke (1982)

considered several radial basis functions including the thin plate spline. Therefore

we briefly consider some of these functions.

The multiquadric

Here we choose ϕ(r) = (r2 + c2)1/2, where c is a real constant. The interpolation

matrix A is invertible provided only that the points are all different and there are
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at least two of them. Further, this matrix has an important spectral property: it

is almost negative definite; we refer the reader to Section 2 for details.

Franke found that this radial basis function provided the most accurate

interpolation surfaces of all the methods tried for interpolation in two dimensions.

His centres were mildly irregular in the sense that the range of distances between

centres was not so large that the average distance became useless. He found that

the method worked best when c was chosen to be close to this average distance.

It is still true to say that we do not know how to choose c for a general function.

Buhmann and Dyn (1991) derived error estimates which indicated that a large

value of c should provide excellent accuracy. This was borne out by some calcu-

lations and an analysis of Powell (1991) in the case when the centres formed a

regular grid in one dimension. Specifically, he found that the uniform norm of the

error in interpolating f(x) = x2 on the integer grid decreased by a factor of 103

when c increased by one; see Table 6 of Powell (1991) for these stunning results.

In Chapter 7 of this thesis we are able to show that the interpolants converge uni-

formly as c→ ∞ if the underlying function is square-integrable and band-limited,

that is its Fourier transform is supported by the interval [−π, π]d. Thus, for many

functions, it would seem to be useful to choose a large value of c. Unfortunately,

if the centres form a finite regular grid, then we find that the smallest eigenvalue

of the distance decreases exponentially to zero as c tends to infinity. Indeed, the

reader is encouraged to consider Table 4.1, where we find that the smallest eigen-

value decreases by a factor of about 20 when c is increased by one and the spacing

of the regular grid is unity.

We do not consider the polynomial reproduction properties of the multi-

quadric discovered by Buhmann (1990) in this dissertation, but we do make use

of some of his work, in particular his formula for the cardinal function’s Fourier

transform (see Chapter 7). However, we cannot resist mentioning one of the bril-

liant results of Buhmann, in particular the beautiful and surprising result that

the degree of polynomials reproduced by interpolation on an infinite regular grid

actually increases with the dimension. The work of Jackson (1988) is also highly
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relevant here.

The Gaussian

There are many reasons to advise users to avoid the Gaussian ϕ(r) = exp(−cr2).
Franke (1982) found that it is very sensitive to the choice of parameter c, as we

might expect. Further, it cannot even reproduce constants when interpolating

function values given on an infinite regular grid (see Buhmann (1990)). Thus

its potential for practical computer calculations seems to be small. However,

it possesses many properties which continue to win admirers in spite of these

problems. In particular, it seems that users are seduced by its smoothness and

rapid decay. Moreover the Gaussian interpolation matrix (1.10) is positive definite

if the centres are distinct, as well as being suited to iterative techniques. I suspect

that this state of affairs will continue until good software is made available for

radial basis functions such as the multiquadric. Therefore I wish to emphasize

that this thesis addresses some properties of the Gaussian because of its theoretical

importance rather than for any use in applications.

In a sense it is true to say that the Gaussian generates all of the radial

basis functions considered in this thesis. Here we are thinking of the Schoenberg

characterization theorems for conditionally negative definite functions of order

zero and order one. These theorems and related results occur many times in this

dissertation.

The inverse multiquadric

Here we choose ϕ(r) = (r2 + c2)−1/2. Again , Franke (1982) found that this radial

basis function can provide excellent approximations, even when the number of

centres is small. As for the multiquadric, there is no good choice of c known at

present. However, the work presented in Chapter 7 does extend to this function

(although this analysis is not presented here), so that sometimes a large value of

c can be useful.

The thin plate spline

We have hardly touched on this highly important function, even though the works

9
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of Franke (1982) and Buhmann (1990) indicate its importance is two dimensions

(and, more generally, in even dimensional spaces). However, we aim to generalize

the norm estimate material of Chapters 3–5 to this function in future. There

is no numerical evidence to indicate that this ambition is unfounded, and the

preconditioning technique of Chapter 6 works equally well when applied to this

function. Therefore we are optimistic that these properties will be understood

more thoroughly in the near future.

1.6 Contents of the thesis

Like Gaul, this thesis falls naturally into three parts, namely Chapter 2, Chapters

3–6, and Chapter 7. In Chapter 2 we study and extend the work of Schoenberg

and Micchelli on the nonsingularity of interpolation matrices. One of our main

discoveries is that it is sometimes possible to prove nonsingularity when the norm is

non-Euclidean. Specifically, we prove that the interpolation matrix is non-singular

if we choose a p-norm for 1 < p < 2 and if the centres are different and there are

at least two of them. This complements the work of Dyn, Light and Cheney

(1991) which investigates the case when p = 1. They find that a necessary and

sufficient condition for nonsingularity when d = 2 is that the points should not

form the vertices of a closed path, which is a closed polygonal curve consisting of

alternately horizontal and vertical arcs. For example, the 1-norm interpolation

matrix generated by the vertices of any rectangle is singular. Therefore it may

be useful that we can avoid these difficulties by using a p-norm for some p ∈
(1, 2). However, the situation is rather different when p > 2. This is probably

the most original contribution of this section, since it makes use of a device that

seems to have no precursor in the literature and is wholly independent of the

Schoenberg-Micchelli corpus. We find that, if both p and the dimension d exceed

two, then it is possible to construct sets of distinct points which generate a singular

interpolation matrix. It is interesting to relate that these sets were suggested by

numerical experiment, and the author is grateful to M. J. D. Powell for the use of

his TOLMIN optimization software.

10
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The second part of this dissertation is dedicated to the study of the spectra

of interpolation matrices. Thus, having studied the nonsingularity (or otherwise)

of certain interpolation matrices, we begin to quantify . This study was initiated by

the beautiful papers of Ball (1989), and Narcowich and Ward (1990, 1991), which

provided some spectral bounds for several functions, including the multiquadric.

Our main findings are that it is possible to use Fourier transform methods to

address these questions, and that, if the centres form a subset of a regular grid,

then it is possible to provide a sharp upper bound on the norm of the inverse of the

interpolation matrix. Further, we are able to understand the distribution of all the

eigenvalues using some work of Grenander and Szegő (1984). This work comprises

Chapters 3 and 4. In the latter section, it turns out that everything depends on an

infinite product expansion for a Theta function of Jacobi type. This connection

with classical complex analysis still excites the author, and this excitement was

shared by Charles Micchelli. Our collaboration, which forms Chapter 5, explores

a property of Pólya frequency functions which generalizes the product formula

mentioned above. Furthermore, Chapter 5 contains several results which attack

the norm estimate problem of Chapter 4 using a slightly different approach. We

find that we can remove some of the assumptions required at the expense of a

little more abstraction. This work is still in progress, and we cannot yet say

anything about the approximation properties of our suggested class of functions.

We have included this work because we think it is interesting and, perhaps more

importantly, new mathematics is frequently open-ended.

Chapters 6 and 7 apply the work of previous chapters. In Chapter 6 we use

our study of Toeplitz forms in Chapter 4 to suggest a preconditioner for the conju-

gate gradient solution of the interpolation equations, and the results are excellent,

although they only apply to finite regular grids. Of course it is our hope to extend

this work to arbitrary point sets in future. We remark that our approach is rather

different from the variational heuristic of Dyn, Levin and Rippa (1986), which

concentrated on preconditioners for thin plate splines in two dimensions. Proba-

bly our most important practical finding is that the number of iterations required

11
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to attain a solution to within a particular tolerance seems to be independent of

the number of centres.

Next, Chapter 7 is unique in that it is the only chapter of this thesis

which concerns itself with the approximation power of radial basis function spaces.

Specifically, we investigate the behaviour of interpolation on an infinite regular grid

using a multiquadric ϕ(r) = (r2 + c2)1/2 when the parameter c tends to infinity.

We find an interesting connection with the classical theory of the Whittaker car-

dinal spline: the Fourier transform of the cardinal (or fundamental) function of

interpolation converges (in the L2 norm) to the characteristic function of the cube

[−π, π]d. This enables us to show that the interpolants to certain band-limited

functions converge uniformly to the underlying function when c tends to infinity.

An aside Finally, we cannot resist the following excursion into the theory of

conic sections, whose only purpose is to lure the casual reader. Let S and S′ be

different points in R2 and let f :R2 → R be the function defined by

f(x) = ‖x− S‖ + ‖x− S′‖, x ∈ R2,

where ‖ · ‖ is the Euclidean norm. Thus the contours of f constitute the set of

all ellipses whose focal points are S and S′. By direct calculation we obtain the

expression

∇f(x) =
( x− S

‖x− S‖
)

+
( x− S′

‖x− S′‖
)

which implies the relations

( x− S

‖x− S‖
)T

∇f(x) = 1 +
( x− S

‖x− S‖
)T( x− S′

‖x− S′‖
)

=
( x− S′

‖x− S′‖
)T

∇f(x),

whose geometric interpretation is the reflector property of the ellipse. A similar

derivation exists for the hyperbola.

1.7 Notation

We have tried to use standard notation throughout this thesis with a few excep-

tions. Usually we denote a finite sequence of points in d-dimensional real space

12
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Rd by subscripted variables, for example (xj)
n
j=1. However we have avoided this

usage when coordinates of points occur. Thus Chapters 2 and 5 use superscripted

variables, such as (xj)n
j=1, and coordinates are then indicated by subscripts. For

example, xj
k denotes the kth coordinate of the jth vector of a sequence of vectors

(xj)n
j=1. The inner product of two vectors x and y is denoted xy in the context

of a Fourier transform, but we have used the more traditional linear algebra form

xT y in Chapter 6 and in a few other places. We have used no special notation for

vectors, and we hope that no ambiguity arises thereby.

Given any absolutely integrable function f :Rd → R, we define its Fourier

transform by the equation

f̂(ξ) =

∫

Rd

f(x) exp(−ixξ) dx, ξ ∈ Rd.

We also use this normalization when discussing distributional Fourier transforms.

Thus, if it is permissible to invert the Fourier transform, then the integral takes

the form

f(x) = (2π)−d

∫

Rd

f̂(ξ) exp(ixξ) dξ, x ∈ Rd.

The norm symbol (‖ · ‖) will usually denote the Euclidean norm, but this

is not so in Chapter 1. Here the Euclidean norm is denoted by | · | to distinguish

it from other norm symbols.

Finally, the reader will find that the term “radial basis function” can often

mean the univariate function ϕ: [0,∞) → R and the multivariate function Rd ∋
x 7→ ϕ(‖x‖). This abuse of notation was inherited from the literature and seems

to have become quite standard. However, such potential for ambiguity is bad. It

is perhaps unusual for the author of a dissertation to deride his own notation, but

it is hoped that the reader will not perpetuate this terminology.

13



2 : Conditionally positive functions and

p-norm distance matrices

2.1. Introduction

The real multivariate interpolation problem is as follows. Given distinct points

x1, . . . , xn ∈ Rd and real scalars f1, . . . , fn, we wish to construct a continuous

function s:Rd → R for which

s(xi) = fi, for i = 1, . . . , n.

The radial basis function approach is to choose a function ϕ: [0,∞) → [0,∞) and

a norm ‖ · ‖ on Rd and then let s take the form

s(x) =

n∑

i=1

λi ϕ(‖x− xi‖).

Thus s is chosen to be an element of the vector space spanned by the functions

ξ 7→ ϕ(‖ξ−xi‖), for i = 1, . . . , n. The interpolation conditions then define a linear

system Aλ = f , where A ∈ Rn×n is given by

Aij = ϕ(‖xi − xj‖), for 1 ≤ i, j ≤ n,

and where λ = (λ1, ..., λn) and f = (f1, ..., fn). In this thesis, a matrix such as A

will be called a distance matrix.

Usually ‖ · ‖ is chosen to be the Euclidean norm, and in this case Micchelli

(1986) has shown the distance matrix generated by distinct points to be invertible

for several useful choices of ϕ. In this chapter, we investigate the invertibility of

the distance matrix when ‖ · ‖ is a p-norm for 1 < p < ∞, p 6= 2, and ϕ(t) = t,

the identity. We find that p-norms do indeed provide invertible distance matrices

given distinct points, for 1 < p ≤ 2. Of course, p = 2 is the Euclidean case

mentioned above and is not included here. Now Dyn, Light and Cheney (1991)

have shown that the 1−norm distance matrix may be singular on quite innocuous

sets of distinct points, so that it might be useful to approximate ‖ · ‖1 by ‖ · ‖p for
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some p ∈ (1, 2]. This work comprises section 2.3. The framework of the proof is

very much that of Micchelli (1986).

For every p > 2, we find that distance matrices can be singular on certain

sets of distinct points, which we construct. We find that the higher the dimension

of the underlying vector space for the points x1, . . . , xn, the smaller the least p for

which there exists a singular p-norm.

2.2. Almost negative matrices

Almost every matrix considered in this section will induce a non-positive form on

a certain hyperplane in Rn. Accordingly, we first define this ubiquitous subspace

and fix notation.

Definition 2.2.1. For any positive integer n, let

Zn = { y ∈ Rn :

n∑

i=1

yi = 0 }.

Thus Zn is a hyperplane in Rn. We note that Z1 = {0}.

Definition 2.2.2. We shall call A ∈ Rn×n almost negative definite (AND) if A

is symmetric and

yTAy ≤ 0, whenever y ∈ Zn.

Furthermore, if this inequality is strict for all non-zero y ∈ Zn, then we shall call

A strictly AND.

Proposition 2.2.3. Let A ∈ Rn×n be strictly AND with non-negative trace. Then

(−1)n−1 detA > 0.

Proof. We remark that there are no strictly AND 1×1 matrices, and hence n ≥ 2.

Thus A is a symmetric matrix inducing a negative-definite form on a subspace of

dimension n− 1 > 0, so that A has at least n− 1 negative eigenvalues. But trace

A ≥ 0, and the remaining eigenvalue must therefore be positive.
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Micchelli (1986) has shown that both Aij = |xi − xj | and Aij = (1 + |xi − xj |2) 1

2

are AND, where here and subsequently | · | denotes the Euclidean norm. In fact,

if the points x1, . . . , xn are distinct and n ≥ 2, then these matrices are strictly

AND. Thus the Euclidean and multiquadric interpolation matrices generated by

distinct points satisfy the conditions for proposition 2.2.3.

Much of the work of this chapter rests on the following characterization

of AND matrices with all diagonal entries zero. This theorem is stated and used

to good effect by Micchelli (1986), who omits much of the proof and refers us to

Schoenberg (1935). Because of its extensive use we include a proof for the conve-

nience of the reader. The derivation follows the same lines as that of Schoenberg

(1935).

Theorem 2.2.4. Let A ∈ Rn×n have all diagonal entries zero. Then A is AND

if and only if there exist n vectors y1, . . . , yn ∈ Rn for which

Aij = |yi − yj |2.

Proof. Suppose Aij = |yi−yj |2 for vectors y1, . . . , yn ∈ Rn. Then A is symmetric

and the following calculation completes the proof that A is AND. Given any z ∈
Zn, we have

zTAz =
n∑

i,j=1

zizj |yi − yj |2

=
n∑

i,j=1

zizj(|yi|2 + |yj |2 − 2(yi)T (yj))

= −2
n∑

i,j=1

zizj(y
i)T (yj) since the coordinates of z sum to zero,

= −2
∣∣∣

n∑

i=1

ziy
i
∣∣∣
2

≤ 0.

This part of the proof is given in Micchelli (1986). The converse requires two

lemmata.
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Lemma 2.2.5. Let B ∈ Rk×k be a symmetric non-negative definite matrix. Then

we can find ξ1, . . . , ξk ∈ Rk such that

Bij = |ξi|2 + |ξj |2 − |ξi − ξj |2.

Proof. Since B is symmetric and non-negative definite, we have B = PTP , for

some P ∈ Rk×k. Let p1, . . . , pk be the columns of P . Thus

Bij = (pi)T (pj).

Now

|pi − pj |2 = |pi|2 + |pj |2 − 2(pi)T (pj).

Hence

Bij =
1

2
(|pi|2 + |pj |2 − |pi − pj |2).

All that remains is to define ξi = pi/
√

2 , for i = 1, . . . , k.

Lemma 2.2.6. Let A ∈ Rn×n. Let e1, . . . , en denote the standard basis for Rn,

and define
f i = en − ei, for i = 1, . . . , n− 1,

fn = en.

Finally, let F ∈ Rn×n be the matrix with columns f1, . . . , fn. Then

(−FTAF )ij = Ain +Anj −Aij −Ann, for 1 ≤ i, j ≤ n− 1,

(−FTAF )in = Ain −Ann,

(−FTAF )ni = Ani −Ann, for 1 ≤ i ≤ n− 1,

(−FTAF )nn = −Ann.

Proof. We simply calculate (−FTAF )ij ≡ −(f i)TA(f j).

We now return to the proof of Theorem 2.2.4: Let A ∈ Rn×n be AND with

all diagonal entries zero. Lemma 2.2.6 provides a convenient basis from which

to view the action of A. Indeed, if we set B = −FTAF , as in Lemma 2.2.6,

we see that the principal submatrix of order n − 1 is non-negative definite, since
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f1, . . . , fn−1 form a basis for Zn. Now we appeal to Lemma 2.2.5, obtaining

ξ1, . . . , ξn−1 ∈ Rn−1 such that

Bij = |ξi|2 + |ξj |2 − |ξi − ξj |2 , for 1 ≤ i, j ≤ n− 1,

while Lemma 2.2.6 gives

Bij = Ain +Ajn −Aij .

Setting i = j and recalling that Aii = 0, we find

Ain = |ξi|2, for1 ≤ i ≤ n− 1

and thus we obtain

Aij = |ξi − ξj |2, for 1 ≤ i, j ≤ n− 1.

Now define ξn = 0. Thus Aij = |ξi − ξj |2, for 1 ≤ i, j ≤ n, where

ξ1, . . . , ξn ∈ Rn−1. We may of course embed Rn−1 in Rn. More formally,

let ι:Rn−1 →֒ Rn be the map ι: (x1, . . . , xn−1) 7→ (x1, . . . , xn−1, 0), and, for

i = 1, . . . , n, define yi = ι(ξi). Thus y1, . . . , yn ∈ Rn and

Aij = |yi − yj |2.

The proof is complete.

Of course, the fact that yn = 0 by this construction is of no import; we

may take any translate of the n vectors y1, . . . , yn if we wish.

2.3. Applications

In this section we introduce a class of functions inducing AND matrices and then

use our characterization Theorem 2.2.4 to prove a simple, but rather useful, the-

orem on composition within this class. We illustrate these ideas in examples

2.3.3-2.3.5. The remainder of the section then uses Theorems 2.2.4 and 2.3.2 to

deduce results concerning powers of the Euclidean norm. This enables us to derive

the promised p-norm result in Theorem 2.3.11.
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Definition 2.3.1. We shall call f : [0,∞) → [0,∞) a conditionally negative defi-

nite function of order 1 (CND1) if, for any positive integers n and d, and for any

points x1, . . . , xn ∈ Rd, the matrix A ∈ Rn×n defined by

Aij = f(|xi − xj |2), for 1 ≤ i, j ≤ n,

is AND. Furthermore, we shall call f strictly CND1 if the matrix A is strictly

AND whenever n ≥ 2 and the points x1, . . . , xn are distinct.

This terminology follows that of Micchelli (1986), Definition 2.3.1 . We see

that the matrix A of the previous definition satisfies the conditions of proposition

2.2.3 if f is strictly CND1, n ≥ 2 and the points x1, . . . , xn are distinct.

Theorem 2.3.2.

(1) Suppose that f and g are CND1 functions and that f(0) = 0. Then g ◦ f is

also a CND1 function. Indeed, if g is strictly CND1 and f vanishes only at

0, then g ◦ f is strictly CND1.

(2) Let A be an AND matrix with all diagonal entries zero. Let g be a CND1

function. Then the matrix defined by

Bij = g(Aij), for 1 ≤ i, j ≤ n,

is AND. Moreover, if n ≥ 2 and no off-diagonal elements of A vanish, then B is

strictly AND whenever g is strictly AN.

Proof.

(1) The matrix Aij = f(|xi − xj |2) is an AND matrix with all diagonal entries

zero. Hence, by Theorem 2.2.4, we can find n vectors y1, . . . , yn ∈ Rn such

that

f(|xi − xj |2) = |yi − yj |2.

But g is a CND1 function, and so the matrix B ∈ Rn×n defined by

Bij = g(|yi − yj |2) = g ◦ f(|xi − xj |2),
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is also an AND matrix. Thus g ◦ f is a CND1 function. The condition

that f vanishes only at 0 allows us to deduce that yi 6= yj , whenever i 6= j.

Thus B is strictly AND if g is strictly CND1.

(2) We observe that A satisfies the hypotheses of Theorem 2.2.4. We may

therefore write Aij = |yi − yj |2, and thus B is AND because g is CND1.

Now, if Aij 6= 0 if i 6= j, then the vectors y1, ..., yn are distinct, so that B

is strictly AND if g is strictly CND1.

For the next two examples only, we shall need the following concepts. Let

us call a function g: [0,∞) → [0,∞) positive definite if, for any positive integers n

and d, and for any points x1, . . . , xn ∈ Rd, the matrix A ∈ Rn×n defined by

Aij = g(|xi − xj |2), for 1 ≤ i, j ≤ n,

is non-negative definite. Furthermore, we shall call g strictly positive definite if

the matrix A is positive definite whenever the points x1, . . . , xn are distinct. We

reiterate that these last two definitions are needed only for examples 2.3.3 and

2.3.4.

Example 2.3.3. A Euclidean distance matrix A is AND, indeed strictly so given

distinct points. This was proved by Schoenberg (1938) and rediscovered by Mic-

chelli (1986). Schoenberg also proved the stronger result that the matrix

Aij = |xi − xj |α, for 1 ≤ i, j ≤ n,

is strictly AND given distinct points x1, . . . , xn ∈ Rd, n ≥ 2 and 0 < α < 2. We

shall derive this fact using Micchelli’s methods in Corollary 2.3.7 below, but we

shall use the result here to illustrate Theorem 2.3.2. We see that, by Theorem

2.2.4, there exist n vectors y1, . . . , yn ∈ Rn such that

Aij ≡ |xi − xj |α = |yi − yj |2.

The vectors y1, . . . , yn must be distinct whenever the points x1, . . . , xn ∈ Rd are

distinct, since Aij 6= 0 whenever i 6= j.
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Now let g denote any strictly positive definite function. Define B ∈ Rn×n

by

Bij ≡ g(Aij).

Thus

g(|xi − xj |α) = g(|yi − yj |2).

Since we have shown that the vectors y1, . . . , yn are distinct, the matrix B is

therefore positive definite.

For example, the function g(t) = exp(−t) is a strictly positive definite

function. For an elementary proof of this fact, see Micchelli (1986), p.15 . Thus

the matrix whose elements are

Bij = exp( −|xi − xj |α), 1 ≤ i, j ≤ n,

is always (i) non-negative definite, and (ii) positive definite whenever the points

x1, . . . , xn are distinct

Example 2.3.4. This will be our first example using a p-norm with p 6= 2. Sup-

pose we are given distinct points x1, . . . , xn ∈ Rd. Let us define A ∈ Rn×n by

Aij = ‖xi − xj‖1.

Furthermore, for k = 1, . . . , d, let A(k) ∈ Rn×n be given by

A
(k)
ij = |xi

k − xj
k|,

recalling that xi
k denotes the kth coordinate of the point xi.

We now remark that A =
∑d

i=1A
(k). But every A(k) is a Euclidean dis-

tance matrix, and so every A(k) is AND. Consequently A, being the sum of AND

matrices, is itself AND. Now A has all diagonal entries zero. Thus, by Theorem

2.2.4, we can construct n vectors y1, . . . , yn ∈ Rn such that

Aij ≡ ‖xi − xj‖1 = |yi − yj |2.
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As in the preceding example, whenever the points x1, . . . , xn are distinct, so too

are the vectors y1, . . . , yn.

This does not mean that A is non-singular. Indeed, Dyn, Light and Cheney

(1991) observe that the 1-norm distance matrix is singular for the distinct points

{(0, 0), (1, 0), (1, 1), (0, 1)}.

Now let g be any strictly positive definite function. Define B ∈ Rn×n

by

Bij = g(Aij) = g(‖xi − xj‖1) = g(|yi − yj |2).

Thus B is positive definite.

For example, we see that the matrix Bij = exp( −‖xi − xj‖1) is positive

definite whenever the points x1, . . . , xn are distinct.

Example 2.3.5. As in the last example, let Aij = ‖xi − xj‖1, where n ≥ 2

and the points x1, . . . , xn are distinct. Now the function f(t) = (1+ t)
1

2 is strictly

CND1 ( Micchelli (1986) ). This is the CND1 function generating the multiquadric

interpolation matrix. We shall show the matrix B ∈ Rn×n defined by

Bij = f(Aij) = (1 + ‖xi − xj‖1)
1

2

to be strictly AND.

Firstly, since the points x1, . . . , xn are distinct, the previous example shows

that we may write

Aij = ‖xi − xj‖1 = |yi − yj |2,

where the vectors y1, . . . , yn are distinct. Thus, since f is strictly CND1, we

deduce from Definition 2.3.1 that B is a strictly AND matrix.

We now return to the main theme of this chapter. Recall that a function

f is completely monotonic provided that

(−1)kf (k)(x) ≥ 0, for every k = 0, 1, 2, . . . and for 0 < x <∞.

We now require a theorem of Micchelli (1986), restated in our notation.
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Theorem 2.3.6. Let f : [0,∞) → [0,∞) have a completely monotonic derivative.

Then f is a CND1 function. Further, if f ′ is non-constant, then f is strictly

CND1.

Proof. This is Theorem 2.3 of Micchelli (1986).

Corollary 2.3.7. The function g(t) = tτ is strictly CND1 for every τ ∈ (0, 1).

Proof. The conditions of the previous theorem are satisfied by g.

We see now that we may use this choice of g in Theorem 2.3.2, as in the

following corollary.

Corollary 2.3.8. For every τ ∈ (0, 1) and for every positive integer k ∈ [1, d],

define A(k) ∈ Rn×n by

A
(k)
ij = |xi

k − xj
k|2τ , for 1 ≤ i, j ≤ n.

Then every A(k) is AND.

Proof. For each k, the matrix (|xi
k − xj

k|)n
i,j=1 is a Euclidean distance matrix.

Using the function g(t) = tτ , we now apply Theorem 2.3.2 (2) to deduce that

A(k) = g(|xi − xj |2) is AND.

We shall still use the notation ‖.‖p when p ∈ (0, 1), although of course these

functions are not norms .

Lemma 2.3.9. For every p ∈ (0, 2), the matrix A ∈ Rn×n defined by

Aij = ‖xi − xj‖p
p, for 1 ≤ i, j ≤ n,

is AND. If n ≥ 2 and the points x1, . . . , xn are distinct, then we can find distinct

y1, . . . , yn ∈ Rn such that

‖xi − xj‖p
p = |yi − yj |2.

Proof. If we set p = 2τ , then we see that τ ∈ (0, 1) and A =
∑d

k=1A
(k), where

the A(k) are those matrices defined in Corollary 2.3.8. Hence so that each A(k) is
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AND, and hence so is their sum. Thus, by Theorem 2.2.4, we may write

Aij = ‖xi − xj‖p
p = |yi − yj |2.

Furthermore, if n ≥ 2 and the points x1, . . . , xn are distinct, then Aij 6= 0 whenever

i 6= j, so that the vectors y1, . . . , yn are distinct.

Corollary 2.3.10. For any p ∈ (0, 2) and for any σ ∈ (0, 1), define B ∈ Rn×n

by

Bij = (‖xi − xj‖p
p)

σ.

Then B is AND. As before, if n ≥ 2 and the points x1, . . . , xn are distinct, then

B is strictly AND.

Proof. Let A be the matrix of the previous lemma and let g(t) = tτ . We now

apply Theorem 2.3.2 (2)

Theorem 2.3.11. For every p ∈ (1, 2), the p-norm distance matrix B ∈ Rn×n,

that is:

Bij = ‖xi − xj‖p, for 1 ≤ i, j ≤ n,

is AND. Moreover, it is strictly AND if n ≥ 2 and the points x1, . . . , xn are

distinct, in which case

(−1)n−1 detB > 0.

Proof. If p ∈ (1, 2), then σ ≡ 1/p ∈ (0, 1). Thus we may apply Corollary

2.3.12. The final inequality follows from the statement of proposition 2.2.3.

We may also apply Theorem 2.3.2 to the p−norm distance matrix, for

p ∈ (1, 2], or indeed to the pth power of the p−norm distance matrix, for p ∈ (0, 2).

Of course, we do not have a norm for 0 < p < 1, but we define the function in

the obvious way. We need only note that, in these cases, both classes satisfy

the conditions of Theorem 2.3.2 (2). We now state this formally for the p−norm

distance matrix
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Corollary 2.3.12. Suppose the matrix B is the p−norm distance matrix defined

in Theorem 2.3.13. Then, if g is a CND1 function, the matrix g(B) defined by

g(B)ij = g(Bij), for 1 ≤ i, j ≤ n,

is AND. Further, if n ≥ 2 and the points x1, . . . , xn are distinct, then g(B) is

strictly AND whenever g is strictly AN.

Proof. This is immediate from Theorem 2.3.11 and the statement of Theorem

2.3.2 (2).

2.4. The case p > 2

We are unable to use the ideas developed in the previous section to understand

this case. However, numerical experiment suggested the geometry described below,

which proved surprisingly fruitful. We shall view Rm+n as two orthogonal slices

Rm ⊕Rn. Given any p > 2, we take the vertices Γm of [−m−1/p,m−1/p]m ⊂ Rm

and embed this in Rm+n. Similarly, we take the vertices Γn of [−n−1/p, n−1/p]n ⊂
Rn and embed this too in Rm+n. We see that we have constructed two orthogonal

cubes lying in the p-norm unit sphere.

Example. If m = 2 and n = 3, then Γm = {(±α,±α, 0, 0, 0)} and Γn =

{(0, 0,±β,±β,±β)}, where α = 2−1/p and β = 3−1/p.

Of course, given m and n, we are interested in values of p for which the

p−norm distance matrix generated by Γm ∪ Γn is singular. Thus we ask whether

there exist scalars {λy}{y∈Γm} and {µz}{z∈Γn}, not all zero, such that the function

s(x) =
∑

y∈Γm

λy‖x− y‖p +
∑

z∈Γn

µz‖x− z‖p

vanishes at every interpolation point. In fact, we shall show that there exist scalars

λ and µ, not both zero, for which the function

s(x) = λ
∑

y∈Γm

‖x− y‖p + µ
∑

z∈Γn

‖x− z‖p
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vanishes at every interpolation point.

We notice that

(i) For every y ∈ Γm and z ∈ Γn, we have ‖y − z‖p = 21/p.

(ii) The sum
∑

y∈Γm
‖ỹ − y‖p takes the same value for every vertex ỹ ∈ Γm,

and similarly, mutatis mutandis, for Γn.

Thus our interpolation equations reduce to two in number:

λ
∑

y∈Γm

‖ỹ − y‖p + 2n+1/pµ = 0,

and

2m+1/pλ + µ
∑

z∈Γn

‖z̃ − z‖p = 0,

where by (ii) above, we see that ỹ and z̃ may be any vertices of Γm,Γn respectively.

We now simplify the (1,1) and (2,2) elements of our reduced system by use

of the following lemma.

Lemma 2.4.1. Let Γ denote the vertices of [0, 1]k. Then

∑

x∈Γ

‖x‖p =
k∑

l=0

(
k

l

)
l1/p.

Proof. Every vertex of Γ has coordinates taking the values 0 or 1. Thus the

distinct p-norms occur when exactly l of the coordinates take the value 1, for

l = 0, . . . , k; each of these occurs with frequency
(
k
l

)
.

Corollary 2.4.2.

∑

y∈Γm

‖ỹ − y‖p = 2

m∑

k=0

(
m

k

)
(k/m)1/p, for every ỹ ∈ Γm, and

∑

z∈Γn

‖z̃ − z‖p = 2
n∑

l=0

(
n

l

)
(l/n)1/p, for every z̃ ∈ Γn.

Proof. We simply scale the result of the previous lemma by 2m−1/p and 2n−1/p

respectively.
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With this simplification, the matrix of our system becomes




2
∑m

k=0

(
m
k

)
(k/m)1/p 2n.21/p

2m.21/p 2
∑n

l=0

(
n
l

)
(l/n)1/p


 .

We now recall that

Bi(fp, 1/2) = 2−i
i∑

j=0

(
i

j

)
(j/i)1/p

is the Bernstein polynomial approximation of order i to the function fp(t) = t1/p

at t = 1/2. Our reference for properties for Bernstein polynomial approximation

will be Davis (1975), sections 6.2 and 6.3. Hence, scaling the determinant of our

matrix by 2−(m+n), we obtain the function

ϕm,n(p) = 4Bm(fp, 1/2)Bn(fp, 1/2) − 22/p.

We observe that our task reduces to investigation of the zeros of ϕm,n.

We first deal with the case m = n, noting the factorization:

ϕn,n(p) = {2Bn(fp, 1/2) + 21/p}{2Bn(fp, 1/2) − 21/p}.

Since fp(t) ≥ 0, for t ≥ 0 we deduce from the monotonicity of the Bernstein

approximation operator that Bn(fp, 1/2) ≥ 0. Thus the zeros of ϕn,n are those of

the factor

ψn(p) = 2Bn(fp, 1/2) − 21/p.

Proposition 2.4.3. ψn enjoys the following properties.

(1) ψn(p) → ψ(p), where ψ(p) = 21−1/p − 21/p, as n→ ∞.

(2) For every p > 1, ψn(p) < ψn+1(p), for every positive integer n.

(3) For each n, ψn is strictly increasing for p ∈ [1,∞).

(4) For every positive integer n, limp→∞ ψn(p) = 1 − 21−n.

Proof.

(1) This is a consequence of the convergence of Bernstein polynomial approxi-

mation.
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(2) It suffices to show that Bn(fp, 1/2) < Bn+1(fp, 1/2), for p > 1 and n a

positive integer. We shall use Davis (1975), Theorem 6.3.4: If g is a convex

function on [0, 1], then Bn(g, x) ≥ Bn+1(g, x), for every x ∈ [0, 1]. Further,

if g is non-linear in each of the intervals [ j−1
n , j

n ], for j = 1, . . . , n, then the

inequality is strict. Every function fp is concave and non-linear on [0, 1] for

p > 1, so that this inequality is strict and reversed.

(3) We recall that

ψn(p) = 2Bn(fp, 1/2) − 21/p = 21−n
n∑

k=0

(
n

k

)
(k/n)1/p − 21/p.

Now, for p2 > p1 ≥ 1, we note that t1/p2 > t1/p1 , for t ∈ (0, 1), and also

that 21/p2 < 21/p1 . Thus (k/n)1/p2 > (k/n)1/p1 , for k = 1, . . . , n− 1 and so

ψn(p2) > ψn(p1).

(4) We observe that, as p→ ∞,

ψn(p) → 21−n
n∑

k=1

(
n

k

)
− 1 = 2(1 − 2−n) − 1 = 1 − 21−n.

Corollary 2.4.4. For every integer n > 1, each ψn has a unique root pn ∈ (2,∞).

Further, pn → 2 strictly monotonically as n→ ∞.

Proof. We first note that ψ(2) = 0, and that this is the only root of ψ. By

proposition 2.4.3 (1) and (2), we see that

lim
n→∞

ψn(2) = ψ(2) = 0 and ψn(2) < ψn+1(2) < ψ(2) = 0.

By proposition 2.4.3 (4), we know that, for n > 1, ψn is positive for all sufficiently

large p. Since every ψn is strictly increasing by proposition 2.4.3 (3), we deduce

that each ψn has a unique root pn ∈ (2,∞) and that ψn(p) < (>)0 for p < (>)pn.

We now observe that ψn+1(pn) > ψn(pn) = 0, by proposition 2.4.3 (2),

whence 2 < pn+1 < pn. Thus (pn) is a monotonic decreasing sequence bounded

below by 2. Therefore it is convergent with limit in [2,∞). Let p∗ denote this
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limit. To prove that p∗ = 2, it suffices to show that ψ(p∗) = 0, since 2 is the

unique root of ψ. Now suppose that ψ(p∗) 6= 0. By continuity, ψ is bounded away

from zero in some compact neighbourhood N of p∗. We now recall the following

theorem of Dini: If we have a monotonic increasing sequence of continuous real-

valued functions on a compact metric space with continuous limit function, then

the convergence is uniform. A proof of this result may be found in many texts,

for example Hille (1962), p. 78. Thus ψn → ψ uniformly in N . Hence there is

an integer n0 such that ψn is bounded away from zero for every n ≥ n0. But

p∗ = lim pn and ψn(pn) = 0 for each n, so that we have reached a contradiction.

Therefore ψ(p∗) = 0 as required.

Returning to our original scaled determinant ϕn,n, we see that Γn ∪ Γn

generates a singular pn-norm distance matrix and pn ց 2 as n→ ∞. Furthermore

ϕm,m(p) < ϕm,n(p) < ϕn,n(p), for 1 < m < n,

using the same method of proof as in proposition 2.4.3 (2). Thus ϕm,n has a unique

root pm,n lying in the interval (pn, pm). We have therefore proved the following

theorem.

Theorem 2.4.5. For any positive integers m and n, both greater than 1, there is

a pm,n > 2 such that the Γm∪Γn-generated pm,n-norm distance matrix is singular.

Furthermore, if 1 < m < n, then

pm ≡ pm,m > pm,n > pn,n ≡ pn,

and pn ց 2 as n→ ∞.

Finally, we deal with the “gaps” in the sequence (pn) as follows. Given

a positive integer n, we take the configuration Γn ∪ Γn(θ), where Γn(θ) denotes

the vertices of the scaled cube [−θn−1/p, θn−1/p]n and θ > 0. The 2 × 2 matrix

deduced from corollary 2.4.2 on page 8 becomes



2
∑n

k=0

(
n
k

)
(k/n)1/p 2n(1 + θp)1/p

2n(1 + θp)1/p 2θ
∑n

k=0

(
n
k

)
(k/n)1/p


 .
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Thus, instead of the function ϕn,n discussed above, we now consider its analogue:

ϕn,n,θ(p) = 4θB2
n(fp, 1/2) − (1 + θp)2/p.

If p > pn, the unique zero of our original function ϕn,n, we see that ϕn,n,1(p) ≡
ϕn,n(p) > 0, because every ϕn,n is strictly increasing, by proposition 2.4.3 (3).

However, we notice that limθ→0 ϕn,n,θ(p) = −1, so that ϕn,n,θ(p) < 0 for all

sufficiently small θ > 0. Thus there exists a θ∗ > 0 such that ϕn,n,θ∗(p) = 0.

Since this is true for every p > pn, we have strengthened the previous theorem.

We now state this formally.

Theorem 2.4.6. For every p > 2, there is a configuration of distinct points

generating a singular p-norm distance matrix.

It is interesting to investigate how rapidly the sequence of zeros (pn) con-

verges to 2. We shall use Davis (1975), Theorem 6.3.6, which states that, for any

bounded function f on [0, 1],

lim
n→∞

n(Bn(f, x) − f(x)) =
1

2
x(1 − x)f ′′(x), whenever f ′′(x) exists.

Applying this to

ψn(p) = 2Bn(fp, 1/2) − 21/p,

we shall derive the following bound.

Proposition 2.4.7. pn = 2 +O(n−1).

Proof. We simply note that

0 = ψn(pn)

= ψ(pn) +O(n−1), by Davis (1975) 6.3.6,

= ψ(2) + (pn − 2)ψ′(2) + o(pn − 2) +O(n−1).

Since ψ′(2) 6= 0, we have pn − 2 = O(n−1).
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3.1. Introduction

In this chapter we use Fourier transform techniques to derive inequalities of the

form

yT Ay ≤ −µ yT y, y ∈ Rn, (3.1)

where µ is a positive constant and
∑n

j=1 yj = 0. Here we are using the notation of

the abstract. It can be shown that equation (3.1) implies the bound ‖A−1‖2 ≤ 1/µ

(see Chapter 4). Such estimates have been derived in Ball (1989), Narcowich and

Ward (1990, 1991) and Sun (1990), using a different technique. The author submits

that the derivation presented here for the Euclidean norm is more perspicuous.

Further, we relate the generalized Fourier transform to the measure that occurs in

an important characterization theorem for those functions ϕ considered here. This

is useful because tables of generalized Fourier transforms are widely available, thus

avoiding several of the technical calculations of Narcowich (1990, 1991). Finally,

we mention some recent work of the author that provides the least upper bound

on ‖A−1‖2 when the points (xj)j∈Zd form a subset of Zd.

The norm ‖ · ‖ will always be the Euclidean norm in this section. We shall

denote the inner product of two vectors x and y by xy.

3.2. The Univariate Case for the Euclidean Norm

Let n ≥ 2 and let (xj)
n
1 be points in R satisfying the condition ‖xj − xk‖ ≥ 1 for

j 6= k. We shall prove that

∣∣∣
n∑

j,k=1

yjyk ‖xj − xk‖
∣∣∣ ≥ 1

2
‖y‖2,

whenever
∑n

j=1 yj = 0.

We shall use the fact that the generalized Fourier transform of ϕ(x) = |x|
is ϕ̂(t) = −2/t2 in the univariate case. A proof of this may be found in Jones

(1982), Theorem 7.32.
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Proposition 3.2.1. If
∑n

j=1 yj = 0, then

n∑

j,k=1

yjyk ‖xj − xk‖ = (2π)−1

∫ ∞

−∞

(−2/t2)

n∑

j,k=1

yjyk exp(i(xj − xk)t) dt

= −π−1

∫ ∞

−∞

|
n∑

j=1

yje
ixjt|2t−2 dt.

(3.2)

Proof. The two expressions on the righthand side above are equal because of the

useful identity
n∑

j,k=1

yjyk exp(i(xj − xk)t) = |
n∑

j=1

yje
ixjt|2.

This identity will be used several times below. We now let

ĝ(t) = (−2t−2) |
n∑

j=1

yje
ixjt|2, for t ∈ R.

The condition
∑n

j=1 yj = 0 implies that ĝ is uniformly bounded. Further, since

ĝ(t) = O(t−2) for large |t|, we see that ĝ is absolutely integrable. Thus we have

the equation

g(x) = (2π)−1

∫ ∞

−∞

ĝ(t) exp(ixt) dt.

A standard result of the theory of generalized Fourier transforms (cf. Jones (1982),

Theorem 7.14, pages 224ff) provides the expression

n∑

j,k=1

yjyk ‖x+ xj − xk‖ = (2π)−1

∫ ∞

−∞

(−2t−2)|
n∑

j=1

yje
ixjt|2 exp(ixt) dt,

where we have used the identity stated at the beginning of this proof. We now

need only set x = 0 in this final equation.

Proposition 3.2.2. Let B : R → R be a continuous function such that supp (B)

is contained in the interval [−1, 1] and 0 ≤ B̂(t) ≤ t−2. If n ≥ 2, ‖xj − xk‖ ≥ 1

for j 6= k, and
∑n

j=1 yj = 0, then

n∑

j,k=1

yjyk ‖xj − xk‖ ≤ −2B(0)‖y‖2.

32



Norm estimates for distance matrices

Proof. By Proposition 3.2.1 and properties of Fourier transforms,

n∑

j,k=1

yjyk ‖xj − xk‖ ≤ (2π)−1

∫ ∞

−∞

(−2B̂(t))

n∑

j,k=1

yjyk exp(i(xj − xk)t)dt

= −2
n∑

j,k=1

yjyk B(xj − xk)

= −2B(0)‖y‖2,

where the first inequality follows from the condition B̂(t) ≤ t−2. The last line is a

consequence of supp(B) ⊂ [−1, 1].

Corollary 3.2.3. Let

B(x) =

{
(1 − |x|)/4, if |x| ≤ 1
0, otherwise.

Then B satisfies the conditions of Proposition 3.2.2 and B(0) = 1/4.

Proof. By direct calculation, we find that

B̂(t) =
sin2(t/2)

t2
≤ 1

t2
.

It is clear that the other conditions of Proposition 3.2.2 are satisfied.

We have therefore shown the following theorem to be true.

Theorem 3.2.4. Let (xj)
n
1 be points in R such that n ≥ 2 and ‖xj − xk‖ ≥ 1

when j 6= k. If
∑n

j=1 yj = 0, then

n∑

j,k=1

yjyk ‖xj − xk‖ ≤ −1

2
‖y‖2.

We see that a consequence of this result is the non-singularity of the Euclidean

distance matrix when the points (xj)
n
1 are distinct and n ≥ 2. It is important

to realise that the homogeneity of the Euclidean norm allows us to replace the

condition “‖xj − xk‖ ≥ 1 if j 6= k” by “‖xj − xk‖ ≥ ǫ if j 6= k”. We restate

Theorem 3.2.4 in this form for the convenience of the reader:
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Theorem 3.2.4b. Choose any ǫ > 0 and let (xj)
n
1 be points in R such that n ≥ 2

and ‖xj − xk‖ ≥ ǫ when j 6= k. If
∑n

j=1 yj = 0, then

n∑

j,k=1

yjyk ‖xj − xk‖ ≤ −1

2
ǫ‖y‖2.

We shall now show that this bound is optimal. Without loss of generality, we

return to the case ǫ = 1. We take our points to be the integers 0, 1, . . . , n, so that

the Euclidean distance matrix, An say, is given by

An =




0 1 2 . . . n
1 0 1 . . . n− 1
...

...
. . .

...
n n− 1 n− 2 . . . 0


 .

It is straightforward to calculate the inverse of An:

A−1
n =




(1 − n)/2n 1/2 1/2n
1/2 −1 1/2

1/2 −1
. . .

−1 1/2
1/2n 1/2 (1 − n)/2n



.

Proposition 3.2.5. We have the inequality 2 − (π2/2n2) ≤ ‖A−1
n ‖2 ≤ 2.

Proof. We observe that ‖A−1
n ‖2 ≤ ‖A−1

n ‖1 = 2, establishing the upper bound. For

the lower bound, we focus attention on the (n−1)× (n−1) symmetric tridiagonal

minor of A−1
n formed by deleting its first and last rows and columns, which we

shall denote by Tn. Thus we have

Tn =




−1 1/2
1/2 −1 1/2

1/2 −1
. . .

−1 1/2
1/2 −1



.

Now
‖Tn‖2 = max{yTA−1

n y : yT y = 1 and y1 = yn+1 = 0}

≤ max{yTA−1
n y : yT y = 1}

= ‖A−1
n ‖2,
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so that ‖Tn‖2 ≤ ‖A−1
n ‖2 ≤ 2. But the eigenvalues of Tn are given by

λk = −1 + cos(kπ/n), for k = 1, 2, . . . , n− 1.

Thus ‖Tn‖2 = 1− cos(π − π/n) ≥ 2− π2/2n2, where we have used an elementary

inequality based on the Taylor series for the cosine function. The proposition is

proved.

3.3. The Multivariate Case for the Euclidean Norm

We first prove the multivariate versions of Propositions 3.2.1 and 3.2.2, which gen-

eralize in a very straightforward way. We shall require the fact that the generalized

Fourier transform of ϕ(x) = ‖x‖ in Rd is given by

ϕ̂(t) = −cd‖t‖−d−1,

where

cd = 2dπ(d−1)/2Γ((d+ 1)/2).

This may be found in Jones (1982), Theorem 7.32. We now deal with the analogue

of Proposition 3.2.1.

Proposition 3.3.1. If
∑n

j=1 yj = 0, then

n∑

j,k=1

yjyk ‖xj − xk‖ = −cd(2π)−d

∫

Rd

|
n∑

j=1

yje
ixjt|2‖t‖−d−1 dt. (3.3)

Proof. We define

ĝ(t) = −cd‖t‖−d−1|
n∑

j=1

yje
ixjt|2.

The condition
∑n

j=1 yj = 0 implies this function is uniformly bounded and the de-

cay for large argument is sufficient to ensure absolute integrability. The argument

now follows the proof of Proposition 3.2.1, with obvious minor changes.
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Proposition 3.3.2. Let B : Rd → R be a continuous function such that supp(B)

is contained in the ball {x ∈ Rd : ‖x‖ ≤ 1}, 0 ≤ B̂(t) ≤ ‖t‖−d−1 and B(0) > 0. If

n ≥ 2, ‖xj − xk‖ ≥ 1 for j 6= k, and
∑n

j=1 yj = 0, then

n∑

j,k=1

yjyk ‖xj − xk‖ ≤ −cdB(0)‖y‖2.

Proof. The proof of Proposition 3.2.2 clearly generalizes to this case.

However, to exhibit a function B satisfying the conditions of Proposition

3.3.2 is harder than in the univariate case. We modify a construction of Narcowich

and Ward (1990) and Sun (1990). Let

B0(x) =

{
1, if ‖x‖ ≤ 1/2
0, otherwise.

Then, using Narcowich and Ward (1990), equation 1.10 or [9], Lemma 3.3.1, we

find that

B̂0(t) = (2‖t‖)−d/2J d
2

(‖t‖/2),

where Jk denotes the kth-order Bessel function of the first kind. Further, B̂0 is a

radially symmetric function since B0 is radially symmetric. We now define

B = B0 ∗B0,

so that, by the convolution theorem,

B̂(t) = (B̂0)
2(t)

= (2‖t‖)−dJ2
d
2

(‖t‖/2),

and the behaviour of J0 for large argument provides the inequality

B̂(t) ≤ µd‖t‖−d−1,

for some constant µd. Since the conditions of Proposition 3.3.2 are now easy to

verify when B is scaled by µ−1
d , we see that we are done .
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3.4. Fourier Transforms and Bessel Transforms

Here we relate our technique to the work of Ball (1989) and Narcowich and Ward

(1990, 1991).

Definition 3.4.1. A real sequence (yj)j∈Zd is said to be zero-summing if it is

finitely supported and
∑

j∈Zd yj = 0.

Definition 3.4.2. A function ϕ: [0,∞) → R will be said to be conditionally neg-

ative definite of order 1 on Rd, hereafter shortened to CND1(d), if it is continuous

and, for any points (xj)j∈Zd in Rd and any zero-summing sequence (yj)j∈Zd , we

have
∑

j,k∈Zd

yjykϕ(‖xj − xk‖) ≤ 0.

Such functions were characterized by von Neumann and Schoenberg (1941). For

every positive integer d, let Ωd: [0,∞) → R be defined by

Ωd(r) = ωd−1
−1

∫

Sd−1

cos(ryu) dy,

where u may be any unit vector in Rd, Sd−1 denotes the unit sphere in Rd, and

ωd−1 its (d−1)-dimensional Lebesgue measure. Thus Ωd is essentially the Fourier

transform of the normalized rotation invariant measure on the unit sphere.

Theorem 3.4.3. Let ϕ: [0,∞) → R be a continuous function. A necessary and

sufficient condition that ϕ be a CND1(d) function is that it have the form

ϕ(r) = ϕ(0) +

∫ ∞

0

(1 − Ωd(rt)) t
−2dβ(t),

for every r ≥ 0, where β: [0,∞) → R is a non-decreasing function such that
∫∞

1
t−2 dβ(t) <∞ and β(0) = 0. Furthermore, β is uniquely determined by ϕ.

Proof. The first part of this result is Theorem 7 of von Neumann and Schoenberg

(1941), restated in our terminology. The uniqueness of β is a consequence of

Lemma 2 of that paper.
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It is a consequence of this theorem that there exist constants A and B such that

ϕ(r) ≤ Ar2 +B. For we have

∣∣∣∣
∫ ∞

1

(1 − Ωd(rt)) t
−2 dβ(t)

∣∣∣∣ ≤ 2

∫ ∞

1

t−2 dβ(t) <∞,

using the fact that |Ωd(r)| ≤ 1 for every r ≥ 0. Further, we see that

0 ≤ 1 − Ωd(ρ) = 2ωd−1
−1

∫

Sd−1

sin2(ρut/2) dt ≤ ρ2/2,

which provides the bound

∣∣∣
∫ 1

0

(1 − Ωd(rt)) t
−2 dβ(t)

∣∣∣ ≤ r2
∫ 1

0

1

2
dβ(t) =

1

2
r2β(1).

Thus A = β(1)/2 and B = ϕ(0) + 2
∫∞

1
t−2 dβ(t) suffice. Therefore the function

{ϕ(‖x‖) : x ∈ Rd} is a tempered distribution in the sense of Schwartz (1966) and

possesses a generalized Fourier transform {ϕ̂(‖ξ‖) : ξ ∈ Rd}. There is a rather

simple relation between the generalized Fourier transform and the nondecreasing

function of Theorem 3.4.3 for a certain class of functions. This is our next topic.

Definition 3.4.4. A function ϕ: [0,∞) → R will be termed admissible if it is a

continuous function of algebraic growth which satisfies the following conditions:

1. ϕ̂ is a continuous function on Rd \ {0}.
2. The limit lim ‖ξ‖→0 ‖ξ‖d+1ϕ̂(‖ξ‖) exists.

3. The integral
∫
{‖ξ‖≥1} |ϕ̂(‖ξ‖)| dξ exists.

It is straightforward to prove the analogue of Propositions 3.2.1 and 3.3.1

for an admissible function.

Proposition 3.4.5. Let ϕ: [0,∞) → R be an admissible function and let (yj)j∈Zd

be a zero-summing sequence. Then for any choice of points (xj)j∈Zd in Rd we have

the identity

∑

j,k∈Zd

yjykϕ(‖xj − xk‖) = (2π)−d

∫

Rd

∣∣∣
∑

j∈Zd

yj exp(ixjξ)
∣∣∣
2

ϕ̂(‖ξ‖) dξ. (3.4)
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Proof. Let ĝ:Rd → R be the function defined by

ĝ(ξ) =
∣∣∣
∑

j∈Zd

yj exp(ixjξ)
∣∣∣
2

ϕ̂(‖ξ‖).

Then ĝ is an absolutely integrable function on Rd, because of the conditions on

ϕ and because (yj)j∈Zd is a zero-summing sequence. Thus ĝ is the generalized

transform of
∑

j,k yjykϕ(‖ ·+xj − xk‖), and by standard properties of generalized

Fourier transforms we deduce that

∑

j,k

yjykϕ(‖x+ xj − xk‖) = (2π)−d

∫

Rd

∣∣∣
∑

j∈Zd

yj exp(ixjξ)
∣∣∣
2

ϕ̂(‖ξ‖) exp(ixξ) dξ.

The proof is completed by setting x = 0.

Proposition 3.4.6. Let ϕ: [0,∞) → R be an admissible CND1(d) function. Then

dβ(t) = −(2π)−dωd−1ϕ̂(‖tu‖)td+1 dt,

where u may be any unit vector in Rd.

Proof. Let µ and ν be different integers and let (yj)j∈Zd be a sequence with only

two nonzero elements, namely yµ = −yν = 2−1/2. Choose any point ζ ∈ Rd and

set xµ = 0, xν = ζ, so that equation (3.4) provides the expression

ϕ(0) − ϕ(‖ζ‖) = (2π)−d

∫

Rd

(1 − cos(ζξ)) ϕ̂(‖ξ‖) dξ.

Employing spherical polar coordinates, this integral takes the form

ϕ(0) − ϕ(‖ζ‖) = 2π)−dωd−1

∫ ∞

0

(1 − Ωd(t‖ζ‖)) ϕ̂(‖tu‖)td−1 dt,

where u may be any unit vector in Rd. Setting r = ‖ζ‖, we have

ϕ(r) = ϕ(0) +

∫ ∞

0

(1 − Ωd(rt)) γ(t)t
−2 dt,

where γ(t) = −(2π)−dωd−1ϕ̂(‖tu‖)td+1. Now Theorem 4.2.6 of the following chap-

ter implies that ϕ̂ is a nonpositive function. Thus there exists a nondecreasing
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function β̃: [0,∞) → R such that γ(t) dt = dβ̃(t), and
∫∞

1
t−2 dβ̃(t) is finite and

β̃(0) = 0. But the uniqueness of the representation of Theorem 3.4.3 implies that

β = β̃, that is

dβ(t) = −(2π)−dωd−1ϕ̂(‖tu‖)td+1 dt,

and the proof is complete.

This proposition is useful if we want to calculate β for a particular function

ϕ, since tables of generalized Fourier transforms are readily available.

Example 3.4.7. Let ϕ(r) = (r2+1)1/2. This is a non-negative CND1(d) function

for all d (see Micchelli (1986)). When d = 3, the generalized Fourier transform is

ϕ̂(r) = −4πr−2K2(r). Here K2 is a modified Bessel function which is positive and

smooth in R+, has a pole at the origin, and decays exponentially (See Abramowitz

and Stegun (1970)). Consequently ϕ̂ is a non-negative admissible function. Ap-

plying Theorem 3.4.7 gives the equation

dβ(r) = (2π)−3(4π)r4(4πr−2K2(r))

= (2r2/π)K2(r)dr,

agreeing with Narcowich and Ward (1991), equation 3.12.

3.5. The Least Upper Bound for Subsets of the Integer Grid

In the next chapter we use extensions of the technique provided here to derive the

the following result.

Theorem 3.5.1. Let ϕ: [0,∞) → R be an admissible function that is not identi-

cally zero, let ϕ(0) ≥ 0, and let ϕ be CND1(d) for every positive integer d. Further,

let (xj)j∈Zd be any elements of Zd and let A = (ϕ(‖xj −xk‖))j,k∈N , where N can

be any finite subset of Zd. Then we have the inequality

‖A−1‖ ≤
(∑

k∈Zd

|ϕ̂(‖πe+ 2πk‖)|
)−1

,

where e = [1, . . . , 1]T ∈ Rd and ϕ̂ is the generalized Fourier transform of ϕ.

Moreover, this is the least upper bound valid for all finite subsets of Zd.
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Proof. See Section 4.4 of the thesis.

41



4 : Norm estimates for Toeplitz distance matrices I

4.1. Introduction

The multivariate interpolation problem is as follows: given points (xj)
n
j=1 in Rd

and real numbers (fj)
n
j=1, construct a function s:Rd → R such that s(xk) = fk,

for k = 1, . . . , n. The radial basis function approach is to choose a univariate

function ϕ: [0,∞) → R, a norm ‖ . ‖ on Rd, and to let s take the form

s(x) =
n∑

j=1

yjϕ(‖x− xj‖).

The norm ‖ . ‖ will be the Euclidean norm throughout this chapter. Thus the

radial basis function interpolation problem has a unique solution for any given

scalars (fj)
n
j=1 if and only if the matrix (ϕ(‖xj − xk‖))n

j,k=1 is invertible. Such

a matrix will, as before, be called a distance matrix. These functions provide a

useful and flexible form for multivariate approximation, but their approximation

power as a space of functions is not addressed here.

A powerful and elegant theory was developed by I. J. Schoenberg and oth-

ers some fifty years ago which may be used to analyse the singularity of distance

matrices. Indeed, in Schoenberg (1938) it was shown that the Euclidean dis-

tance matrix, which is the case ϕ(r) = r, is invertible if n ≥ 2 and the points

(xj)
n
j=1 are distinct. Further, extensions of this work by Micchelli (1986) proved

that the distance matrix is invertible for several classes of functions, including the

Hardy multiquadric, the only restrictions on the points (xj)
n
j=1 being that they

are distinct and that n ≥ 2. Thus the singularity of the distance matrix has been

successfully investigated for many useful radial basis functions. In this chapter, we

bound the eigenvalue of smallest modulus for certain distance matrices. Specif-

ically, we provide the greatest lower bound on the moduli of the eigenvalues in

the case when the points (xj)
n
j=1 form a subset of the integers Zd, our method

of analysis applying to a wide class of functions which includes the multiquadric.

More precisely, let N be any finite subset of the integers Zd and let λN
min be the
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smallest eigenvalue in modulus of the distance matrix (ϕ(‖j − k‖))j,k∈N . Then

the results of Sections 3 and 4 provide the inequality

|λN
min| ≥ Cϕ, (4.1.1)

where Cϕ is a positive constant for which an elegant formula is derived. We also

provide a constructive proof that Cϕ cannot be replaced by any larger number,

and it is for this reason that we shall describe inequality (4.1.1) as an optimal

lower bound. Similarly, we shall say that an upper bound is optimal if none of the

constants appearing in the inequality can be replaced by smaller numbers.

It is crucial to our analysis that the distance matrix (ϕ(‖j−k‖))j,k∈N may

be embedded in the bi-infinite matrix (ϕ(‖j−k‖))j,k∈Zd . Such a bi-infinite matrix

is called a Toeplitz matrix if d = 1. We shall use this name for all values of d,

since we use the multivariate form of the Fourier analysis of Toeplitz forms (see

Grenander and Szegő (1984)).

Of course, inequality (4.1.1) also provides an upper bound on the norm

of the inverse of the distance matrices generated by finite subsets of the integers

Zd. This is not the first paper to address the problem of bounding the norms

of inverses of distance matrices and we acknowledge the papers of Ball (1989)

and Narcowich and Ward [1990, 1991], which first interested the author in such

estimates. Their results are not limited to the case when the data points are a

subset of the integers. Instead, they apply when the points satisfy the condition

‖xj − xk‖ ≥ ǫ for j 6= k, where ǫ is a positive constant, and they provide lower

bounds on the smallest modulus of an eigenvalue for several functions ϕ, including

the multiquadric. We will find that these bounds are not optimal, except in the

special case of the Euclidean norm in the univariate case. Further, our bounds

apply to all the conditionally negative definite functions of order 1. The definition

of this class of functions may be found in Section 4.3.

As in the previous section, we make extensive use of the theory of gen-

eralized Fourier transforms, for which our principal reference will still be Jones

(1982). These transforms are precisely the Fourier transforms of tempered distri-
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butions constructed in Schwartz (1966). First, however, Section 2 presents several

theorems which require only the classical theory of the Fourier transform. These

results will be necessary in Section 4.3.

4.2. Toeplitz forms and Theta functions

We require several properties of the Fejér kernel, which is defined as follows. For

each positive integer n, the nth univariate Fejér kernel is the positive trigonometric

polynomial

Kn(t) =

n∑

k=−n

(1 − |k|/n) exp(ikt)

=
sin2 nt/2

n sin2 t/2
.

(4.2.1)

Further, the nth multivariate Fejér kernel is defined by the product

Kn(t1, . . . , td) = Kn(t1)Kn(t2) · · ·Kn(td), t ∈ Rd. (4.2.2)

Lemma 4.2.1. The univariate kernel enjoys the following property: for any con-

tinuous 2π-periodic function f :R → R and for all x ∈ R we have

lim
n→∞

(2π)−1

∫ 2π

0

Kn(t− x)f(t) dt = f(x).

Moreover, we have the equations

(2π)−1

∫ 2π

0

Kn(t) dt = 1 (4.2.3)

and

Kn(t) =
∣∣∣n−1/2

n−1∑

k=0

exp(ikt)
∣∣∣
2

. (4.2.4)

Proof. Most text-books on harmonic analysis contain the first property and (4.2.3).

For example, see pages 89ff, volume I, Zygmund (1979). It is elementary to deduce

(4.2.4) from (4.2.1).

Lemma 4.2.2. For every continuous [0, 2π]d-periodic function f :Rd → R, the

multivariate Fejér kernel gives the convergence property

lim
n→∞

(2π)−d

∫

[0,2π]d
Kn(t− x)f(t) dt = f(x)
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for every x ∈ Rd. Further, Kn is the square of the modulus of a trigonometric

polynomial with real coefficients and

(2π)−d

∫

[0,2π]d
Kn(t) dt = 1.

Proof. The first property is Theorem 1.20 of chapter 17 of Zygmund (1979). The

last part of the lemma is an immediate consequence of (4.2.3), (4.2.4) and the

definition of the multivariate Fejér kernel.

All sequences will be real sequences here. Further, we shall say that a

sequence (aj)Zd := {aj}j∈Zd is finitely supported if it contains only finitely many

nonzero terms. The scalar product of two vectors x and y in Rd will be denoted

by xy.

Proposition 4.2.3. Let f :Rd → R be an absolutely integrable continuous func-

tion whose Fourier transform f̂ is also absolutely integrable. Then for any finitely

supported sequence (aj)Zd , and for any choice of points (xj)Zd in Rd, we have the

identity

∑

j,k∈Zd

ajakf(xj − xk) = (2π)−d

∫

Rd

∣∣∣
∑

j∈Zd

aj exp(ixjξ)
∣∣∣
2

f̂(ξ) dξ.

Proof. The function {∑j,k ajakf(x+ xj − xk) : x ∈ Rd} is absolutely integrable.

Its Fourier transform is given by

[ ∑

j,k∈Zd

ajakf(· + xj − xk)
]∧

(ξ) =
∑

j,k∈Zd

ajak exp(i(xj − xk)ξ)f̂(ξ)

=
∣∣∣
∑

j∈Zd

aj exp(ixjξ)
∣∣∣
2

f̂(ξ), ξ ∈ Rd,

and is therefore absolutely integrable. Therefore the Fourier inversion theorem

states that

∑

j,k∈Zd

ajakf(x+ xj − xk) = (2π)−d

∫

Rd

∣∣∣
∑

j∈Zd

aj exp(ixjξ)
∣∣∣
2

f̂(ξ) exp(ixξ) dξ.

Setting x = 0 produces the stated equation.
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In this dissertation a key rôle will be played by the symbol function

σ(ξ) =
∑

k∈Zd

f̂(ξ + 2πk), ξ ∈ Rd. (4.2.5)

If f̂ ∈ L1(Rd), then σ is an absolutely integrable function on [0, 2π]d and its

defining series is absolutely convergent almost everywhere. These facts are conse-

quences of the relations

∞ >

∫

Rd

|f̂(ξ)| dξ =
∑

k∈Zd

∫

[0,2π]d
|f̂(ξ + 2πk)| dξ =

∫

[0,2π]d

∑

k∈Zd

|f̂(ξ + 2πk)| dξ,

the exchange of integration and summation being a consequence of Fubini’s theo-

rem. If the points (xj)Zd are integers, then we readily deduce the following bounds

on the quadratic form.

Proposition 4.2.4. Let f satisfy the conditions of Proposition 4.2.3 and let

(aj)Zd be a finitely supported sequence. Then we have the identity

∑

j,k∈Zd

ajakf(j − k) = (2π)−d

∫

[0,2π]d

∣∣∣
∑

j∈Zd

aj exp(ijξ)
∣∣∣
2

σ(ξ) dξ. (4.2.6)

Further, letting m = inf{σ(ξ) : ξ ∈ [0, 2π]d} and M = sup{σ(ξ) : ξ ∈ [0, 2π]d}, we

have the bounds

m
∑

j∈Zd

a2
j ≤

∑

j,k∈Zd

ajakf(j − k) ≤M
∑

j∈Zd

a2
j .

Proof. Proposition 4.2.3 implies the equation

∑

j,k∈Zd

ajakf(j − k) =
∑

k∈Zd

(2π)−d

∫

[0,2π]d

∣∣∣
∑

j∈Zd

aj exp(ijξ)
∣∣∣
2

f̂(ξ + 2πk) dξ

= (2π)−d

∫

[0,2π]d

∣∣∣
∑

j∈Zd

aj exp(ijξ)
∣∣∣
2

σ(ξ) dξ,

the exchange of integration and summation being justified by Fubini’s theorem.

For the upper bound, the Parseval theorem yields the expressions

∑

j,k∈Zd

ajakf(j − k) = (2π)−d

∫

[0,2π]d

∣∣∣
∑

j∈Zd

aj exp(ijξ)
∣∣∣
2

σ(ξ) dξ

≤M
∑

j∈Zd

a2
j .
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The lower bound follows similarly and the proof is complete.

The inequalities of the last proposition enjoy the following optimality prop-

erty.

Proposition 4.2.5. Let f satisfy the conditions of Proposition 4.2.3 and suppose

that the symbol function is continuous. Then the inequalities of Proposition 4.2.4

are optimal lower and upper bounds.

Proof. Let ξM ∈ [0, 2π]d be a point such that σ(ξM ) = M , which exists by con-

tinuity of the symbol function. We shall construct finitely supported sequences

{(a(n)
j )j∈Zd : n = 1, 2, . . . } such that

∑
j∈Zd(a

(n)
j )2 = 1, for all n, and

lim
n→∞

∑

j,k∈Zd

a
(n)
j a

(n)
k f(j − k) = M. (4.2.7)

We recall from Lemma 4.2.2 that the multivariate Fejér kernel is the square

of the modulus of a trigonometric polynomial with real coefficients. Therefore

there exists a finitely supported sequence (a
(n)
j )Zd satisfying the relation

∣∣∣
∑

j∈Zd

a
(n)
j exp(ijξ)

∣∣∣
2

= Kn(ξ − ξM ), ξ ∈ Rd. (4.2.8)

Further, the Parseval theorem and Lemma 4.2.2 provide the equations

∑

j∈Zd

(a
(n)
j )2 = (2π)−d

∫

[0,2π]d
Kn(ξ − ξM ) dξ = 1

and

lim
n→∞

(2π)−d

∫

[0,2π]d
Kn(ξ − ξM )σ(ξ) dξ = σ(ξM ) = M.

It follows from (4.2.6) and (4.2.8) that the limit (4.2.7) holds. The lower bound

of Proposition 4.2.4 is dealt with in the same fashion.

The set of functions satisfying the conditions of Proposition 4.2.5 is non-

void. For example, suppose that we have f̂(ξ) = O(‖ξ‖−d−δ), for large ‖ξ‖, where

δ is a positive constant. Then the series defining the symbol function σ converges
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uniformly, by the Weierstrass M-test, and σ is continuous, being a uniformly con-

vergent sum of continuous functions. These remarks apply when f is a Gaussian,

which is the subject of the rest of this section. We shall see that the analysis of

the Gaussian provides the key to many of our results.

Proposition 4.2.6. Let λ be a positive constant and let f(x) = exp(−λ‖x‖2), for

x ∈ Rd. Then f satisfies the conditions of Proposition 4.2.5.

Proof. The Fourier transform of f is the function f̂(ξ) = (π/λ)d/2 exp(−‖ξ‖2/4λ),

which is a standard calculation of the classical theory of the Fourier transform. It

is clear that f satisfies the conditions of Proposition 4.2.3, and that the symbol

function is the expression

σ(ξ) = (π/λ)d/2
∑

k∈Zd

exp(−‖ξ + 2πk‖2/4λ), ξ ∈ Rd. (4.2.9)

Finally, the decay of the Gaussian ensures that σ is continuous, being a uniformly

convergent sum of continuous functions.

This result is of little use unless we know the minimum and maximum

values of the symbol function for the Gaussian. Therefore we show next that

explicit expressions for these numbers may be calculated from properties of Theta

functions. Lemmata 4.2.7 and 4.2.8 address the cases when d = 1 and d ≥ 1

respectively.

Lemma 4.2.7. Let λ be a positive constant and let E1:R → R be the 2π-periodic

function

E1(t) =
∞∑

k=−∞

exp
(
−λ(t+ 2kπ)2

)
.

Then E1(0) ≥ E1(t) ≥ E1(π) for all t ∈ R.

Proof. An application of the Poisson summation formula provides the relation

E1(t) = (4πλ)−1/2
∞∑

k=−∞

e−k2/4λeikt

= (4πλ)−1/2

(
1 + 2

∞∑

k=1

e−k2/4λ cos(kt)

)
.
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This is a Theta function. Indeed, using the notation of Whittaker and Watson

(1927), Section 21.11, it is a Theta function of Jacobi type

ϑ3(z, q) = 1 + 2

∞∑

k=1

qk2

cos(2kz),

where q ∈ C and |q| < 1. Choosing q = e−1/4λ we obtain the relation

E1(t) = (4πλ)−1/2ϑ3(t/2, q).

The useful product formula for ϑ3:

ϑ3(z, q) = G
∞∏

k=1

(1 + 2q2k−1 cos 2z + q4k−2),

where G =
∏∞

k=1(1−q2k), is given in Whittaker and Watson (1927), Sections 21.3

and 21.42. Thus

E1(t) = (4πλ)−1/2G
∞∏

k=1

(1 + 2q2k−1 cos t+ q4k−2), t ∈ R.

Now each term of the infinite product is a decreasing function on the interval

[0, π], which implies that E1 is a decreasing function on [0, π]. Since E1 is an even

2π-periodic function, we deduce that E1 attains its global minimum at t = π and

its maximum at t = 0.

Lemma 4.2.8. Let λ be a positive constant and let Ed:Rd → Rd be the [0, 2π]d-

periodic function given by

Ed(x) =
∑

k∈Zd

exp(−λ‖x+ 2kπ‖2).

Then Ed(0) ≥ Ed(x) ≥ Ed(πe), where e = [1, 1, . . . , 1]T .

Proof. The key observation is the equation

Ed(x) =

d∏

k=1

E1(xk).
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Thus Ed(0) =
∏d

k=1E1(0) ≥ ∏d
k=1E1(xk) = Ed(x) ≥ ∏d

k=1E1(π) = Ed(πe),

using the previous lemma.

These lemmata imply that in the Gaussian case the maximum and minimum

values of the symbol function occur at ξ = 0 and ξ = πe respectively, where

e = [1, . . . , 1]T . Therefore we deduce from formula (4.2.9) that the constants of

Proposition 4.2.4 are the expressions

m = (π/λ)d/2
∑

k∈Zd

exp(−‖πe+ 2πk‖2/4λ) and

M = (π/λ)d/2
∑

k∈Zd

exp(−‖πk‖2/λ).
(4.2.10)

4.3. Conditionally negative definite functions of order 1

In this section we derive the optimal lower bound on the eigenvalue moduli of the

distance matrices generated by the integers for a class of functions including the

Hardy multiquadric.

Definition 4.3.1. A real sequence (yj)Zd is said to be zero-summing if it is finitely

supported and
∑

j∈Zd yj = 0.

Let ϕ: [0,∞) → R be a continuous function of algebraic growth. Thus it is

meaningful to speak of the generalized Fourier transform of the radially symmetric

function {ϕ(‖x‖) : x ∈ Rd}. We denote this transform by {ϕ̂(‖ξ‖) : ξ ∈ Rd},
so emphasizing that it is a radially symmetric distribution, but we note that ϕ̂

depends on d. We shall restrict attention to the collection of functions described

below.

Definition 4.3.2. A function ϕ: [0,∞) → R will be termed admissible if it is a

continuous function of algebraic growth which satisfies the following conditions:

1. ϕ̂ is a continuous function on Rd \ {0}.
2. The limit lim ‖ξ‖→0 ‖ξ‖d+1ϕ̂(‖ξ‖) exists.

3. The integral
∫
{‖ξ‖≥1} |ϕ̂(‖ξ‖)| dξ exists.
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It is straightforward to prove the analogue of Proposition 4.2.3 for an ad-

missible function.

Proposition 4.3.3. Let ϕ: [0,∞) → R be an admissible function and let (yj)Zd

be a zero-summing sequence. Then for any choice of points (xj)Zd in Rd we have

the identity

∑

j,k∈Zd

yjykϕ(‖xj − xk‖) = (2π)−d

∫

Rd

∣∣∣
∑

j∈Zd

yj exp(ixjξ)
∣∣∣
2

ϕ̂(‖ξ‖) dξ. (4.3.1)

Proof. Let ĝ:Rd → R be the function defined by

ĝ(ξ) =
∣∣∣
∑

j∈Zd

yj exp(ixjξ)
∣∣∣
2

ϕ̂(‖ξ‖).

Then ĝ is an absolutely integrable function on Rd, because of the conditions on ϕ

and because (yj)Zd is a zero-summing sequence. Thus ĝ is the generalized trans-

form of
∑

j,k yjykϕ(‖·+xj−xk‖), and by standard properties of generalized Fourier

transforms we deduce that

∑

j,k

yjykϕ(‖x+ xj − xk‖) = (2π)−d

∫

Rd

∣∣∣
∑

j∈Zd

yj exp(ixjξ)
∣∣∣
2

ϕ̂(‖ξ‖) exp(ixξ) dξ.

The proof is completed by setting x = 0.

We come now to the subject that is given in the title of this section.

Definition 4.3.4. Let ϕ: [0,∞) → R be a continuous function. We shall say that

ϕ is conditionally negative definite of order 1 on every Rd, hereafter shortened to

CND1, if we have the inequality

∑

j,k∈Zd

yjykϕ(‖xj − xk‖) ≤ 0,

for every positive integer d, for every zero-summing sequence (yj)Zd and for any

choice of points (xj)Zd in Rd.

Such functions were completely characterized by I. J. Schoenberg (1938).
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Theorem 4.3.5. A continuous function ϕ: [0,∞) → R is CND1 if and only if

there exists a nondecreasing function α: [0,∞) → R such that

ϕ(r) = ϕ(0) +

∫ ∞

0

[1 − exp(−tr2)]t−1dα(t), for r > 0,

and the integral
∫∞

1
t−1 dα(t) exists.

Proof. This is Theorem 6 of Schoenberg (1938).

Thus dα is a positive Borel measure such that

∫ 1

0

dα(t) <∞ and

∫ ∞

1

t−1 dα(t) <∞.

Further, it is a consequence of this theorem that there exist constants A and B

such that ϕ(r) ≤ Ar2 + B, where A and B are constants. In order to prove this

assertion we note the elementary inequalities

∫ ∞

1

[1 − exp(−tr2)]t−1 dα(t) ≤
∫ ∞

1

t−1 dα(t) <∞,

and ∫ 1

0

[1 − exp(−tr2)]t−1 dα(t) ≤ r2
∫ 1

0

dα(t).

Thus A = r2(α(1)−α(0)) and B = ϕ(0)+
∫∞

1
t−1 dα(t) suffice. Therefore we may

regard a CND1 function as a tempered distribution and it possesses a generalized

Fourier transform. The following relation between the transform and the integral

representation of Theorem 4.3.5 will be essential to our needs.

Theorem 4.3.6. Let ϕ: [0,∞) → R be an admissible CND1 function. For ξ ∈
Rd \ {0}, we have the formula

ϕ̂(‖ξ‖) = −
∫ ∞

0

exp(−‖ξ‖2/4t)(π/t)d/2t−1 dα(t). (4.3.2)

Before embarking on the proof of this theorem, we require some ground-

work. We shall say that a function f :Rd \ {0} → R is symmetric if f(−x) = f(x),

for every x ∈ Rd \ {0}.

52



Norm estimates for Toeplitz distance matrices I

Lemma 4.3.7. Let α: [0,∞) → R be a nondecreasing function such that the

integral
∫∞

1
t−1 dα(t) exists. Then the function

ψ(ξ) = −
∫ ∞

0

exp(−‖ξ‖2/4t)(π/t)d/2t−1 dα(t), ξ ∈ Rd \ {0}, (4.3.3)

is a symmetric smooth function, that is every derivative exists.

Proof. For every nonzero ξ, the limit

lim
t→0

exp(−‖ξ‖2/4t)(π/t)d/2t−1 = 0

implies that the integrand of expression (4.3.3) is a continuous function on [0,∞).

Therefore it follows from the inequality

∫ ∞

1

exp(−‖ξ‖2/4t)(π/t)d/2t−1 dα(t) ≤ πd/2

∫ ∞

1

t−1 dα(t) <∞

that the integral is well-defined. Further, a similar argument for nonzero ξ shows

that every derivative of the integrand with respect to ξ is also absolutely inte-

grable for t ∈ [0,∞), which implies that every derivative of ψ exists. The proof is

complete, the symmetry of ψ being obvious.

Lemma 4.3.8. Let f :Rd → R be a symmetric absolutely integrable function such

that ∫

Rd

∣∣∣
∑

j∈Zd

aj exp(ixjt)
∣∣∣
2

f(t) dt = 0,

for every finitely supported sequence (aj)Zd and for any choice of points (xj)Zd .

Then f must vanish almost everywhere.

Proof. The given conditions on f imply that the Fourier transform f̂ is a symmetric

function that satisfies the equation

∑

j,k∈Zd

ajakf̂(xj − xk) = 0,

for every finitely supported sequence (aj)Zd and for all points (xj)Zd in Rd. Let

α and β be different integers and let aα and aβ be the only nonzero elements of
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(aj)Zd . We now choose any point ξ ∈ Rd \ {0} and set xα = 0, xβ = ξ, which

provides the equation

(
aα

aβ

)T(
f̂(0) f̂(ξ)

f̂(ξ) f̂(0)

)(
aα

aβ

)
= 0, for all aα, aβ ∈ R.

Therefore f̂(0) = f̂(ξ) = 0, and since ξ was arbitrary, f̂ can only be the zero

function. Consequently f must vanish almost everywhere.

Corollary 4.3.9. Let g:Rd \ {0} → R be a symmetric continuous function such

that ∫

Rd

∣∣∣
∑

j∈Zd

yj exp(ixjξ)
∣∣∣
2

|g(ξ)| dξ <∞ (4.3.4)

and ∫

Rd

∣∣∣
∑

j∈Zd

yj exp(ixjξ)
∣∣∣
2

g(ξ) dξ = 0, (4.3.5)

for every zero-summing sequence (yj)Zd and for any choice of points (xj)Zd . Then

g(ξ) = 0 for every ξ ∈ Rd \ {0}.

Proof. For any integer k ∈ {1, . . . , d} and for any positive real number λ, let h be

the symmetric function

h(ξ) = g(ξ) sin2 λξk, ξ ∈ Rd \ {0}.

The relation

h(ξ) = g(ξ)
∣∣∣1
2

exp(iλξk) − 1

2
exp(−iλξk)

∣∣∣
2

and condition (4.3.4) imply that h is absolutely integrable.

Let (aj)Zd be any real finitely supported sequence and let (bj)Zd be any

sequence of points in Rd. We define a real sequence (yj)Zd and points (xj)Zd in

Rd by the equation

∑

j∈Zd

yj exp(ixjξ) = sinλξk
∑

j∈Zd

aj exp(ibjξ).
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Thus (yj)Zd is a sequence of finite support. Further, setting ξ = 0, we deduce that
∑

j∈Zd yj = 0, so (yj)Zd is a zero-summing sequence. By condition (4.3.5), we

have

0 =

∫

Rd

∣∣∣
∑

j∈Zd

yj exp(ixjξ)
∣∣∣
2

g(ξ) dξ =

∫

Rd

∣∣∣
∑

j∈Zd

aj exp(ibjξ)
∣∣∣
2

h(ξ) dξ.

Therefore we can apply Lemma 4.3.8 to h, finding that it vanishes almost every-

where. Hence the continuity of g for nonzero argument implies that g(ξ) sin2 λξk =

0 for ξ 6= 0. But for every nonzero ξ there exist k ∈ {1, . . . , d} and λ > 0 such that

sinλξk 6= 0. Consequently g vanishes on Rd \ {0}.

We now complete the proof of Theorem 4.3.6.

Proof of Theorem 4.3.6. Let (yj)Zd be a zero-summing sequence and let (xj)Zd

be any set of points in Rd. Then Theorem 4.3.5 provides the expression

∑

j,k∈Zd

yjykϕ(‖xj − xk‖) = −
∫ ∞

0

( ∑

j,k∈Zd

yjyk exp(−t‖xj − xk‖2)
)
t−1 dα(t),

this integral being well-defined because of the condition
∑

j∈Zd yj = 0. Therefore,

using Proposition 4.2.3 with f(·) = exp(−t‖ · ‖2) in order to restate the Gaussian

quadratic form in the integrand, we find the equation

∑

j,k∈Zd

yjykϕ(‖xj − xk‖)

= −
∫ ∞

0

[
(2π)−d

∫

Rd

∣∣∣
∑

j∈Zd

yj exp(ixjξ)
∣∣∣
2

(π/t)d/2 exp(−‖ξ‖2/4t) dξ
]
t−1 dα(t)

= (2π)−d

∫

Rd

∣∣∣
∑

j∈Zd

yj exp(ixjξ)
∣∣∣
2

ψ(ξ) dξ,

where we have used Fubini’s theorem to exchange the order of integration and

where ψ is the function defined in (4.3.3). By comparing this equation with the

assertion of Proposition 4.3.3, we see that the difference g(ξ) = ϕ̂(‖ξ‖) − ψ(ξ)

satisfies the conditions of Corollary 4.3.9. Hence ϕ̂(‖ξ‖) = ψ(ξ) for all ξ ∈ Rd \ {0}.
The proof is complete.
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Remark. An immediate consequence of this theorem is that the generalized

Fourier transform of an admissible CND1 function cannot change sign.

The appearance of the Gaussian quadratic form in the proof of Theorem

4.3.6 enables us to use the bounds of Lemma 4.2.8, which gives the following result.

Theorem 4.3.10. Let ϕ: [0,∞) → R be an admissible CND1 function and let

(yj)Zd be a zero-summing sequence. Then we have the inequality

∣∣∣
∑

j,k∈Zd

yjykϕ(‖j − k‖)
∣∣∣≥ |σ(πe)|

∑

j∈Zd

y2
j ,

where e = [1, . . . , 1]T .

Proof. Applying (4.3.1) and dissecting Rd into integer translates of [0, 2π]d, we

obtain the equations
∣∣∣
∑

j,k∈Zd

yjykϕ(‖j − k‖)
∣∣∣ = (2π)−d

∫

Rd

∣∣∣
∑

j∈Zd

yj exp(ijξ)
∣∣∣
2

|ϕ̂(‖ξ‖)| dξ

= (2π)−d

∫

[0,2π]d

∣∣∣
∑

j∈Zd

yj exp(ijξ)
∣∣∣
2

|σ(ξ)| dξ,
(4.3.6)

where the interchange of summation and integration is justified by Fubini’s the-

orem, and where we have used the fact that ϕ̂ does not change sign. Here the

symbol function has the usual form (4.2.5). Further, using (4.3.2), we again apply

Fubini’s theorem to deduce the formula

|σ(ξ)| =
∑

k∈Zd

|ϕ̂(‖ξ + 2πk‖)|

=

∫ ∞

0

(∑

k∈Zd

exp(−‖ξ + 2πk‖2/4t)
)

(π/t)d/2t−1dα(t).

It follows from Lemma 4.2.8 that we have the bound

|σ(ξ)| ≥
∫ ∞

0

(∑

k∈Zd

exp(−‖πe+ 2πk‖2/4t)
)

(π/t)d/2t−1dα(t)

= |σ(πe)|.
(4.3.7)

The required inequality is now a consequence of (4.3.6) and the Parseval relation

(2π)−d

∫

[0,2π]d

∣∣∣
∑

j∈Zd

yj exp(ijξ)
∣∣∣
2

dξ =
∑

j∈Zd

y2
j .
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When the symbol function is continuous on Rd \ 2πZd, we can show that

the previous inequality is optimal using a modification of the proof of Proposition

4.2.5. Specifically, we construct a set {(y(n)
j )Zd : n = 1, 2, . . .} of zero-summing

sequences such that limn→∞
∑

j∈Zd(y
(n)
j )2 = 1 and

lim
n→∞

∣∣∣
∑

j,k∈Zd

y
(n)
j y

(n)
k ϕ(‖j − k‖)

∣∣∣= |σ(πe)|,

which implies that we cannot replace |σ(πe)| by any larger number in Theorem

4.3.10.

Corollary 4.3.11. Let ϕ: [0,∞) → R satisfy the conditions of Theorem 4.3.10

and let the symbol function be continuous in the set Rd \ 2πZd. Then the bound

of Theorem 4.3.10 is optimal.

Proof. Let m be an integer such that 4m ≥ d+ 1 and let Sm be the trigonometric

polynomial

Sm(ξ) = [d−1
d∑

j=1

sin2(ξj/2)]2m, ξ ∈ Rd.

Recalling from Lemma 4.2.2 that the multivariate Fejér kernel is the square of the

modulus of a trigonometric polynomial with real coefficients, we choose a finitely

supported sequence (y
(n)
j )Zd satisfying the equations

∣∣∣
∑

j∈Zd

y
(n)
j exp(ijξ)

∣∣∣
2

= Kn(ξ − πe)Sm(ξ), ξ ∈ Rd. (4.3.8)

Further, setting ξ = 0 we see that (y
(n)
j )Zd is a zero-summing sequence. Applying

(4.3.6), we find the relation

∣∣∣
∑

j,k∈Zd

y
(n)
j y

(n)
k ϕ(‖j − k‖)

∣∣∣= (2π)−d

∫

[0,2π]d
Kn(ξ − πe)Sm(ξ) |σ(ξ)| dξ. (4.3.9)

Moreover, because the second condition of Definition 4.3.2 implies that Sm|σ| is a

continuous function, Lemma 4.2.2 provides the equations

lim
n→∞

(2π)−d

∫

[0,2π]d
Kn(ξ − πe)Sm(ξ) |σ(ξ)| dξ = Sm(πe) |σ(πe)| = |σ(πe)|.
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It follows from (4.3.9) that we have the limit

lim
n→∞

∣∣∣
∑

j,k∈Zd

y
(n)
j y

(n)
k ϕ(‖j − k‖)

∣∣∣= |σ(πe)|.

Finally, since Sm is a continuous function, another application of Lemma

4.2.2 yields the equation

lim
n→∞

(2π)−d

∫

[0,2π]d
Kn(ξ − πe)Sm(ξ) dξ = Sm(πe) = 1.

By substituting expression (4.3.8) into the left hand side and employing the Par-

seval relation

(2π)−d

∫

[0,2π]d

∣∣∣
∑

j∈Zd

y
(n)
j exp(ijξ)

∣∣∣
2

dξ =
∑

j∈Zd

(y
(n)
j )2

we find the relation limn→∞
∑

j∈Zd(y
(n)
j )2 = 1.

4.4. Applications

This section relates the optimal inequality given in Theorem 4.3.10 to the spec-

trum of the distance matrix, using an approach due to Ball (1989). We apply the

following theorem.

Theorem 4.4.1. Let A ∈ Rn×n be a symmetric matrix with eigenvalues λ1 ≥
· · · ≥ λn. Let E be any subspace of Rn of dimension m. Then we have the inequality

max{xTAx : xTx = 1, x ⊥ E} ≥ λm+1.

Proof. This is the Courant-Fischer minimax theorem. See Wilkinson (1965), pages

99ff.

For any finite subset N of Zd, let AN be the distance matrix (ϕ(‖j −
k‖))j,k∈N . Further, let the eigenvalues of AN be λ1 ≥ · · · ≥ λ|N |, where |N | is the

cardinality of N , and let λN
min be the smallest eigenvalue in modulus.
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Proposition 4.4.2. Let ϕ: [0,∞) → R be a CND1 function that is not identically

zero. Let ϕ(0) ≥ 0 and let µ be a positive constant such that

∑

j,k∈Zd

yjykϕ(‖j − k‖) ≤ −µ
∑

j∈Zd

y2
j , (4.4.1)

for every zero-summing sequence (yj)Zd . Then for every finite subset N of Zd we

have the bound

|λN
min| ≥ µ.

Proof. Equation (4.4.1) implies that

yTANy ≤ −µ yT y,

for every vector (yj)j∈N such that
∑

j∈N yj = 0. Thus Theorem 4.4.1 implies that

the eigenvalues of AN satisfy −µ ≥ λ2 ≥ · · · ≥ λ|N |, where the subspace E of

that theorem is simply the span of the vector [1, 1, . . . , 1]T ∈ RN . In particular,

0 > λ2 ≥ · · · ≥ λ|N |. This observation and the condition ϕ(0) ≥ 0 provide the

expressions

0 ≤ traceAN = λ1 +

|N |∑

j=2

λj = λ1 −
|N |∑

j=2

|λj |.

Hence we have the relations λN
min = λ2 ≤ −µ. The proof is complete.

We now turn to the case of the multiquadric ϕc(r) = (r2 + c2)1/2, in or-

der to furnish a practical example of the above theory. This is a non-negative

CND1 function (see Micchelli (1986)) and its generalized Fourier transform is the

expression

ϕ̂c(‖ξ‖) = −π−1(2πc/‖ξ‖)(d+1)/2K(d+1)/2(c‖ξ‖),

for nonzero ξ, which may be found in Jones (1982). Here {Kν(r) : r > 0} is a

modified Bessel function which is positive and smooth in R+, has a pole at the

origin, and decays exponentially (Abramowitz and Stegun (1970)). Consequently,

ϕc is a non-negative admissible CND1 function. Further, the exponential decay of

ϕ̂c ensures that the symbol function

σc(ξ) =
∑

k∈Zd

ϕ̂c(‖ξ + 2πk‖) (4.4.2)
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is continuous for ξ ∈ Rd \ 2πZd. Therefore, given any finite subset N of Zd,

Theorem 4.3.10 and Proposition 4.2 imply that the distance matrix AN has every

eigenvalue bounded away from zero by at least

µc =
∑

k∈Zd

|ϕ̂c(‖πe+ 2πk‖)|, (4.4.3)

where e = [1, 1, . . . , 1]T ∈ Rd. Moreover, Corollary 4.3.11 shows that this bound

is optimal.

It follows from (4.4.3) that µc → 0 as c → ∞, because of the exponential

decay of the modified Bessel functions for large argument. For example, in the

univariate case we have the formula

µc = (4c/π)
[
K1(cπ) +K1(3cπ)/3 +K1(5cπ)/5 + · · ·

]
,

and Table 4.1 displays some values of µc. Of course, a practical implication of

this result is that we cannot expect accurate direct solution of the interpolation

equations for even quite modest values of c, at least without using some special

technique.
c Optimal bound

1.0 4.319455 × 10−2

2.0 2.513366 × 10−3

3.0 1.306969 × 10−4

4.0 6.462443 × 10−6

5.0 3.104941 × 10−7

10.0 6.542373 × 10−14

15.0 2.089078 × 10−20

Table 4.1: The optimal bound on the smallest eigenvalue as c→ ∞

The optimal bound is achieved only when the numbers of centres is infi-

nite. Therefore it is interesting to investigate how rapidly |λN
min| converges to the

optimal lower bound as |N | increases. Table 4.2 displays |λN
min| = µc(n), say, for

the distance matrix (ϕc(‖j − k‖))n−1
j,k=0 for several values of n when c = 1. The
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third column lists close estimates of µc(n) obtained using a theorem of Szegő (see

Section 5.2 of Grenander and Szegő (1984)). Specifically, Szegő’s theorem provides

the approximation

µc(n) ≈ σc(π + π/n),

where σc is the function defined in (4.4.2). This theorem of Szegő requires the

fact that the minimum value of the symbol function is attained at π, which is

inequality (4.3.7). Further, it provides the estimates

λk+1 ≈ σc(π + kπ/n), k = 1, . . . , n− 1,

for all the negative eigenvalues of the distance matrix. Figure 4.1 displays the

numbers {−1/λk : k = 2, . . . , n} and their estimates {−1/σ(π + kπ/n) : k =

1, . . . , n − 1} in the case when n = 100. We see that the agreement is excel-

lent. Furthermore, this modification of the classical theory of Toeplitz forms also

provides an interesting and useful perspective on the construction of efficient pre-

conditioners for the conjugate gradient solution of the interpolation equations. We

include no further information on these topics, this last paragraph being presented

as an apéritif to the paper of Baxter (1992c).

n µ1(n) σ1(π + π/n)

100 4.324685 × 10−2 4.324653 × 10−2

150 4.321774 × 10−2 4.321765 × 10−2

200 4.320758 × 10−2 4.320754 × 10−2

250 4.320288 × 10−2 4.320286 × 10−2

300 4.320033 × 10−2 4.320032 × 10−2

350 4.319880 × 10−2 4.319879 × 10−2

Table 4.2: Some calculated and estimated values of λN
min when c = 1
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Figure 4.1. Spectral estimates for a distance matrix of order 100

4.5. A stability estimate

The purpose of this last note is to derive an optimal inequality of the form

∫

Rd

∣∣∣∣∣∣
∑

j∈Zd

yjϕ(‖x− j‖)

∣∣∣∣∣∣

2

dx ≥ Cϕ

∑

j∈Zd

y2
j ,

where (yj)j∈Zd is a real sequence of finite support such that
∑

j∈Zd yj = 0, and

ϕ: [0,∞) → R belongs to a certain class of functions including the multiquadric.

Specifically, this is the class of admissible CND1 functions. These functions have
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generalized Fourier transforms given by

ϕ̂(‖ξ‖) = −
∫ ∞

0

exp(−‖ξ‖2/t) dµ(t), (4.5.1),

where dµ is a positive (but not finite) Borel measure on [0,∞). A derivation of

this expression may be found in Theorem 4.2.6 above.

Lemma 4.5.1. Let (yj)j∈Zd be a zero-summing sequence and let ϕ: [0,∞) → R
be an admissible CND1 function. Then we have the equation

∫

Rd

∣∣∣∣∣∣
∑

j∈Zd

yjϕ(‖x− j‖)

∣∣∣∣∣∣

2

dx = (2π)−d

∫

[0,2π]d
|
∑

j∈Zd

yj exp(ijξ)|2σ(ξ) dξ,

where σ(ξ) =
∑

k∈Zd |ϕ̂(‖ξ + 2πk‖)|2.

Proof. Applying the Parseval theorem and dissecting Rd into copies of the cube

[0, 2π]d, we obtain the equations

∫

Rd

|
∑

j∈Zd

yjϕ(‖x− j‖)|2 dx

= (2π)−d

∫

Rd

|
∑

j∈Zd

yj exp(ijξ)|2|ϕ̂(‖ξ‖)|2 dξ

=
∑

k∈Zd

(2π)−d

∫

[0,2π]d
|
∑

j∈Zd

yj exp(ijξ)|2|ϕ̂(‖ξ + 2πk‖)|2 dξ

= (2π)−d

∫

[0,2π]d
|
∑

j∈Zd

yj exp(ijξ)|2σ(ξ) dξ,

where the interchange of summation and integration is justified by Fubini’s theo-

rem.

If σ(ξ) ≥ m for almost every point ξ in [0, 2π]d, then the import of Lemma

4.5.1 is the bound

∫

Rd

∣∣∣∣∣∣
∑

j∈Zd

yjϕ(‖x− j‖)

∣∣∣∣∣∣

2

dx ≥ m
∑

j∈Zd

y2
j .
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We shall prove that we can takem = σ(πe), where e = [1, 1, . . . , 1]T ∈ Rd. Further,

we shall show that the inequality is optimal if the function σ is continuous at the

point πe.

Equation (4.5.1) is the key to this analysis, just as before. We see that

|ϕ̂(‖ξ‖)|2 =

∫ ∞

0

∫ ∞

0

exp(−‖ξ‖2(t−1
1 + t−1

2 )) dµ(t1) dµ(t2),

whence,

σ(ξ) =

∫ ∞

0

∫ ∞

0

∑

k∈Zd

exp(−‖ξ + 2πk‖2(t−1
1 + t−1

2 )) dµ(t1) dµ(t2), (4.5.2),

where the interchange of summation and integration is justified by Fubini’s theo-

rem.

Now it is proved in Lemma 4.1.8 that

∑

k∈Zd

exp(−λ‖ξ + 2πk‖2) ≥
∑

k∈Zd

exp(−λ‖πe+ 2πk‖2),

for any positive constant λ. Therefore equation (4.5.2) provides the inequality

σ(ξ) ≥
∫ ∞

0

∫ ∞

0

∑

k∈Zd

exp(−‖πe+ 2πk‖2(t−1
1 + t−1

2 )) dµ(t1) dµ(t2),

= σ(πe),

which is the promised value of the lower bound m on σ mentioned above. Thus

we have proved the following theorem.

Theorem 4.5.2. Let (yj)j∈Zd , ϕ and σ be as defined in Lemma 1. Then we have

the inequality

∫

Rd

∣∣∣∣∣∣
∑

j∈Zd

yjϕ(‖x− j‖)

∣∣∣∣∣∣

2

dx ≥ σ(πe)
∑

j∈Zd

y2
j .

The proof that this bound is optimal uses the technique of Theorem 4.2.11.

Theorem 4.5.3. The inequality of Theorem 2 is optimal if σ is continuous at πe.
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Proof. The condition that ϕ be admissible requires the existence of the limit

lim‖ξ‖→0 ‖ξ‖d+1ϕ̂(‖ξ‖).Let m be a positive integer such that 2m ≥ d + 1 and

let us define a sequence {(y(n)
j )j∈Zd : n = 1, 2, . . .} by

∣∣∣∣∣∣
∑

j∈Zd

y
(n)
j exp(ijξ)

∣∣∣∣∣∣

2

=


d−1

d∑

j=1

sin2(ξj/2)




2m

Kn(ξ − πe),

where Kn denotes the multivariate Fejér kernel. The standard properties of the

Fejér kernel needed for this proof are described in Lemma 4.1.2. They allow us to

deduce that (y
(n)
j )j∈Zd is a zero-summing for every n. Further, we see that

∑

j∈Zd

|y(n)
j |2 = (2π)−d

∫

[0,2π]d
Kn(ξ − πe)(d−1

d∑

j=1

sin2(ξj/2))2m dξ

= 1, for n ≥ 4m.

Finally, m has been chosen so that the function

{


d−1

d∑

j=1

sin2(ξj/2)




2m

σ(ξ) : ξ ∈ [0, 2π]d}

is continuous. Therefore, we have

lim
n→∞

∫

Rd

∣∣∣∣∣∣
∑

j∈Zd

yjϕ(‖x− j‖)

∣∣∣∣∣∣

2

dx

= lim
n→∞

(2π)−d

∫

[0,2π]d
Kn(ξ − πe)(d−1

d∑

j=1

sin2(ξj/2))2mσ(ξ) dξ

= σ(πe),

using the fact that σ is continuous at πe and standard properties of the Fejér

kernel.

4.6. Scaling the infinite grid

Here we consider the behaviour of the norm estimate given above when we scale

the infinite regular grid.
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Proposition 4.6.1. Let r be a positive number and let (aj)j∈Zd be a real sequence

of finite support. Then

∑

j,k∈Zd

ajak exp(−‖rj−rk‖2) = (2π)−d

∫

[0,2π]d

∣∣∣
∑

j∈Zd

aj exp ijξ
∣∣∣
2

E(d)
r (ξ) dξ, (4.6.1)

where

E(d)
r (ξ) =

∑

k∈Zd

e−‖rk‖2

exp ikξ, ξ ∈ Rd. (4.6.2)

Proof. Section 4.2 provides the equation

∑

j,k∈Zd

ajak exp(−‖rj − rk‖2)

= (2π)−d

∫

[0,2π]d

∣∣∣
∑

j∈Zd

aj exp ijξ
∣∣∣
2

(π/r2)d/2
∑

k∈Zd

exp(−‖ξ + 2πk‖2/4r2) dξ.

(4.6.3)

Further, the Poisson summation formula gives the relation

(2π)d
∑

k∈Zd

exp(−‖ξ + 2πk‖2/4r2) = (4πr2)d/2
∑

k∈Zd

e−‖rk‖2

exp ikξ. (4.6.4)

Substituting (4.6.4) into (4.6.3) yields equations (4.6.1) and (4.6.2).

The functions E
(1)
r and E

(d)
r are related in a simple way.

Lemma 4.6.2. We have the expression

E(d)
r (ξ) =

d∏

k=1

E(1)
r (ξk). (4.6.5)

Proof. This is a straightforward consequence of (4.6.2).

Applying the theta function formulae of Section 4.2 yields the following

result.

Lemma 4.6.3.

E(1)
r (ξ) =

∞∏

k=1

(1 − e−2kr2

)(1 + 2e−(2k−1)r2

cos ξ + e−(4k−2)r2

). (4.6.6)
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Proof. The Theta function θ3 of Jacobi type is given by

θ3(z, q) = 1 + 2

∞∑

k=1

qk2

cos 2kz, q, z ∈ C, |q| < 1,

=
∞∏

k=1

(1 − q2k)(1 + 2q2k−1 cos 2z + q4k−2),

(4.6.7)

which equations are discussed in greater detail in Section 4.2. Setting q = e−r2

we

have the expressions

E(1)
r (ξ) = θ3(ξ/2, q) =

∞∏

k=1

(1− e−2kr2

)(1+2e−(2k−1)r2

cos ξ+ e−(4k−2)r2

). (4.6.8)

The proof is complete.

Now Section 4.3 provides the inequality

∑

j,k∈Zd

ajak exp(−‖rj − rk‖2) ≥ E(d)
r (πe)

∑

j∈Zd

a2
j , (4.6.9)

where e = [1, . . . , 1]T ∈ Rd. Using equation (4.6.6), we see that

E(1)
r (π) =

∞∏

k=1

(1 − e−2kr2

)(1 − 2e−(2k−1)r2

+ e−(4k−2)r2

)

=

∞∏

k=1

(1 − e−2kr2

)(1 − e−(2k−1)r2

)2,

(4.6.10)

which implies that {E(π)
r : r > 0} is an increasing function. Further, it is a conse-

quence of (4.6.5) that {E(d)
r (πe) : r > 0} is also an increasing function. We state

these results formally.

Theorem 4.6.4. Let r > s > 0. Then we have the inequality

inf
∑

j,k∈Zd

ajak exp(−‖rj − rk‖2) ≥ inf
∑

j,k∈Zd

ajak exp(−‖sj − sk‖2), (4.6.11)

where the infima are taken over the set of real sequences of finite support.
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In fact we extend the given analysis to a class of functions including the

multiquadric. The appropriate definitions and theorems form Section 4.3, but the

key result is Theorem 4.3.6: Under suitable conditions, the function ϕ: [0,∞) → R
possesses the generalized Fourier transform

ϕ(‖ξ‖) = −
∫ ∞

0

exp(−‖ξ‖2/4t)t−1 dµ(t), (4.6.11)

where

ϕ(r) = ϕ(0) +

∫ ∞

0

(1 − e−r2t)t−1 dµ(t), (4.6.12)

and µ is a positive Borel measure such that
∫ 1

0
dµ(t) <∞ and

∫∞

1
t−1 dµ(t) <∞.

Now the function ϕr:x 7→ ϕ(‖rx‖) has the Fourier transform

ϕ̂r(‖ξ‖) = ϕ̂(‖ξ‖/r)r−d. (4.6.13)

Further, the associated symbol function is defined by the equation

σr(ξ) =
∑

k∈Zd

|ϕ̂r(‖ξ + 2πk‖)|, (4.6.14)

and so (4.6.13) implies the expression

σr(ξ) =

∫ ∞

0

r−d
∑

k∈Zd

exp(−‖ξ + 2πk‖2/4tr2)(π/t)d/2t−1 dµ(t). (4.6.15)

Using the Poisson summation formula, we have

(2π)d
∑

k∈Zd

exp(−‖ξ + 2πk‖2/4tr2) = (4tr2π)d/2
∑

k∈Zd

e−‖k‖2tr2

eikξ. (4.6.16)

Consequently we have

r−d(π/t)d/2
∑

k∈Zd

exp(−‖ξ + 2πk‖2/4tr2) =
∑

k∈Zd

e−‖k‖2r2teikξ = E
(d)

rt1/2
(ξ),

(4.6.18)

providing the equation

σr(πe) =

∫ ∞

0

E
(d)

rt1/2
(πe)t−1 dµ(t), (4.6.18)

and so {σr(πe) : r > 0} is an increasing function.
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Appendix

I do not like stating integral representations such as Theorem 4.3.5 without in-

cluding some explicit examples. Therefore this appendix calculates dα for ϕ(r) = r

and ϕ(r) = (r2 + c2)1/2, where c is positive and we are using the notation of 4.3.5.

For ϕ(r) = r the key integral is

Γ(−1

2
) =

∫ ∞

0

(
e−u − 1

)
u−3/2 du, (A1)

which is derived in Whittaker and Watson (1927), Section 12.21. Making the sub-

stitution u = r2t in (A1) and using the equations π1/2 = Γ(1/2) = −Γ(−1/2)/2

we have

−(4π)1/2 = r−1

∫ ∞

0

(
e−r2t − 1

)
t−3/2 dt,

that is

r =

∫ ∞

0

(
1 − e−r2t

)
t−1 (4πt)−1/2 dt. (A2)

Thus the Borel measure is dα1(t) = (4πt)−1/2 dt and
∫ 1

0
dα1(t) =

∫∞

1
t−1 dα1(t) =

π1/2.

The representation for the multiquadric is an easy consequence of (A2).

Substituting (r2 + c2)1/2 and c for r in (A2) we obtain

(r2 + c2)1/2 =

∫ ∞

0

(
1 − e−(r2+c2)t

)
t−1 (4πt)−1/2 dt (A3)

and

c =

∫ ∞

0

(
1 − e−c2t

)
t−1 (4πt)−1/2 dt, (A4)

respectively. Subtracting (A4) from (A3) provides the formula

(r2 + c2)1/2 = c+

∫ ∞

0

(
1 − e−r2t

)
t−1 e−c2t(4πt)−1/2 dt. (A5)

Hence the measure is dα2(t) = e−c2t(4πt)−1/2 dt.
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5.1. Introduction

Let ϕ:Rd → R be an even continuous function of at most polynomial growth. As-

sociated with this function is a symmetric bi-infinite multivariate Toeplitz matrix

Φ = (ϕ(j − k))j,k∈Zd . (5.1.1)

Every finite subset I = (ij)
n
j=1 of Zd determines a finite submatrix of Φ given by

ΦI := (ϕ(ij −k k))
n
j,k=1 . (5.1.2)

We are interested in upper bounds on the ℓ2-norm of the inverse matrix Φ−1, that

is the quantity

‖Φ−1
I ‖ = 1

/
min{‖x‖2 : ‖ΦIx‖2 = 1, x ∈ RI}, (5.1.3)

where ‖x‖2
2 =

∑
j∈I x

2
j for x = (xj)j∈I . The type of bound we seek follows the

pattern of results in the previous chapter. Specifically, we let ϕ̂ be the distributional

Fourier transform of ϕ in the sense of Schwartz (1966), which we assume to be a

measurable function on Rd. We let e := (1, . . . , 1)T ∈ Rd and set

τϕ̂ :=
∑

j∈Zd

|ϕ̂(πe+ 2πj)| (5.1.4)

whenever the right hand side of this equation is meaningful. Then, for a certain

class of radially symmetric functions, we proved in Chapter 4 that

‖Φ−1
I ‖ ≤ 1/τϕ̂ (5.1.5)

for every finite subset I of Zd. Here we extend this bound to a wider class of

functions which need not be radially symmetric. For instance, we show that (5.1.5)

holds for the class of functions

ϕ(x) = (‖x‖1 + c)γ , x ∈ Rd,
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where ‖x‖1 =
∑d

j=1 |xj | is the ℓ1-norm of x, c is non-negative, and 0 < γ < 1.

Our analysis develops the methods of Chapter 4. However, here we empha-

size the importance of certain properties of Pólya frequency functions and Pólya

frequency sequences (due to I. J. Schoenberg) in order to obtain estimates like

(5.1.5).

In Section 2 we consider Fourier transform techniques which we need to

prove our bound. Further, the results of this section improve on the treatment

of the last chapter, in that the condition of admissibility (see Definition 5.3.2) is

shown to be unnecessary. Section 3 contains a discussion of the class of functions

ϕ for which we will prove the bound (5.1.4). The final section contains the proof

of our main result.

5.2. Preliminary facts

We begin with a rather general framework. Let ϕ:Rd → R be a continuous func-

tion of polynomial growth. Thus ϕ possesses a distributional Fourier transform

in the sense of Schwartz (1966). We shall assume ϕ̂ is almost everywhere equal

to a Lebesgue measurable function on Rd, that is we assume ϕ̂ to be the sum

of a measurable function and a tempered distribution whose support is a set of

Lebesgue measure zero. Given a nonzero real sequence (yj)j∈Zd of finite support

and points (xj)j∈Zd in Rd, we introduce the function F :Rd → R given by

F (x) =
∑

j,k∈Zd

yjykϕ(x+ xj − xk), x ∈ Rd. (5.2.1)

Thus

F (0) =
∑

j,k∈Zd

yjykϕ(xj − xk), (5.2.2)

which is the quadratic form whose study is the object of much of this dissertation.

We observe that the Fourier transform of F is the tempered distribution

F̂ (ξ) =
∣∣∣
∑

j∈Zd

yje
ixjξ
∣∣∣
2

ϕ̂(ξ), ξ ∈ Rd. (5.2.3)
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Further, if F̂ is an absolutely integrable function, then we have the equation

F (0) = (2π)−d

∫

Rd

F̂ (ξ) dξ, (5.2.4)

since F is the inverse distributional Fourier transform of F̂ and this coincides with

the classical inverse transform when F̂ ∈ L1(Rd). In other words, we have the

equation

∑

j,k∈Zd

yjykϕ(xj − xk) = (2π)−d

∫

Rd

∣∣∣
∑

j∈Zd

yje
ixjξ
∣∣∣
2

ϕ̂(ξ) dξ (5.2.5)

when F̂ is absolutely integrable. If we make the further assumption that ϕ̂ is one-

signed almost everywhere on Rd, and the points (xj)j∈Zd form a subset of the

integers Zd, then it is possible to improve (5.2.5). First observe that dissecting Rd

into 2π-integer translates of the cube [0, 2π]d provides the relations

∑

j,k∈Zd

yjykϕ(j − k) = (2π)−d

∫

Rd

∣∣∣
∑

j∈Zd

yje
ijξ
∣∣∣
2

ϕ̂(ξ) dξ

=
∑

k∈Zd

(2π)−d

∫

[0,2π]d

∣∣∣
∑

j∈Zd

yje
ijξ
∣∣∣
2

ϕ̂(ξ + 2πk) dξ

= (2π)−d

∫

[0,2π]d

∣∣∣
∑

j∈Zd

yje
ijξ
∣∣∣
2

σ(ξ) dξ,

(5.2.6)

where

σ(ξ) =
∑

k∈Zd

ϕ̂(ξ + 2πk), ξ ∈ Rd, (5.2.7)

and the monotone convergence theorem justifies the exchange of summation and

integration. Further, we see that another consequence of the condition that ϕ̂ be

one-signed is the bound ∣∣∣
∑

j∈Zd

yje
ijξ
∣∣∣
2

|ϕ̂(ξ)| <∞

for almost every point ξ ∈ [0, 2π]d, because the left hand side of (5.2.6) is a

fortiori finite. This implies that σ is almost everywhere finite, since the set of all

zeros of a nonzero trigonometric polynomial has measure zero. This last result

is well-known, but we include its short proof for completeness. Following Rudin
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(1973), we shall say that a continuous function f : Cd → C is an entire function of d

complex variables if, for every point (w1, . . . , wd) ∈ Cd and for every j ∈ {1, . . . , d},
the mapping

C ∋ z 7→ f(w1, . . . , wj−1, z, wj+1, . . . , wd)

is an entire function of one complex variable.

Lemma 5.2.1. Given complex numbers (aj)
n
j=1 and a set of distinct points (xj)n

1

in Rd, we let p:Rd → C be the function

p(ξ) =
n∑

j=1

aje
ixjξ, ξ ∈ Rd.

Then p enjoys the following properties:

(i) p is identically zero if and only if aj = 0, 1 ≤ j ≤ n.

(ii) p is nonzero almost everywhere unless aj = 0, 1 ≤ j ≤ n.

Proof.

(i) Suppose p is identically zero. Choose any j ∈ {1, . . . , n} and let fj :Rd → R be

a continuous function of compact support such that fj(x
k) = δjk for 1 ≤ k ≤ n.

Then

aj =
n∑

k=1

akfj(x
k) = (2π)−d

∫

Rd

n∑

k=1

ake
ixkξ f̂j(ξ) dξ = 0.

The converse is obvious.

(ii) Let f : Cd → C be an entire function and let

Z = {x ∈ Rd : f(x) = 0}.

If voldZ is a set of positive Lebesgue measure in Rd, then we shall prove that f is

identically zero, which implies the required result.

We proceed by induction on the dimension d. If d = 1 and vol1Z > 0,

then f is an entire function of one complex variable with uncountably many zeros.

Such a function must vanish everywhere, because every uncountable subset of C
possesses a limit point. Now suppose that the result is true for d − 1 for some

d ≥ 2. Fubini’s theorem provides the relation

0 < voldZ =

∫

Rd−1

vol1Z(x2, . . . , xd) dx2 . . . dxd,
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where

Z(x2, . . . , xd) = {x1 ∈ R : (x1, . . . , xd) ∈ Z}.

Thus there is a set, X say, in Rd−1 of positive (d − 1)-dimensional Lebesgue

measure such that vol1Z(x2, . . . , xd) is positive for every (x2, . . . , xd) ∈ X, and

therefore the entire function C ∋ z 7→ f(z, x2, . . . , xd) vanishes for all z ∈ C,

because Z(x2, . . . , xd) is an uncountable set. Thus, choosing any z1 ∈ C, we see

that the entire function of d− 1 complex variables defined by

(z2, . . . , zd) 7→ f(z1, z2, . . . , zd), (z2, . . . , zd) ∈ Cd−1,

vanishes for all (z2, . . . , zd) in X, which is a set of positive (d − 1)- dimensional

Lebesgue measure. By induction hypothesis, we deduce that

f(z1, z2, . . . , zd) = 0 for all z2, . . . , zd ∈ C,

and since z1 can be any complex number, we conclude that f is identically zero.

Therefore the lemma is true.

We can now derive our first bounds on the quadratic form (5.2.2). For

any measurable function g: [0, 2π]d → R, we recall the definitions of the essential

supremum

ess sup g = inf{c ∈ R : g(x) ≤ c for almost every x ∈ [0, 2π]d} (5.2.8)

and the essential infimum

ess inf g = sup{c ∈ R : g(x) ≥ c for almost every x ∈ [0, 2π]d}. (5.2.9)

Thus (5.2.6) and the Parseval relation provide the inequalities

ess inf σ
∑

j∈Zd

y2
j ≤

∑

j,k∈Zd

yjykϕ(xj − xk) ≤ ess sup σ
∑

j∈Zd

y2
j . (5.2.10)

Let V be the vector space of real sequences (yj)j∈Zd of finite support for which

the function F̂ of (5.2.3) is absolutely integrable. We have seen that (5.2.10) is

valid for every element (yj)j∈Zd of V . Of course, at this stage there is no guarantee

that V 6= {0} or that the bounds are finite. Nevertheless, we identify below a case

when the bounds (5.2.10) cannot be improved. This will be of relevance later.
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Proposition 5.2.2. Let P be a nonzero trigonometric polynomial such that the

principal ideal I generated by P , that is the set

I = {PT : T a real trigonometric polynomial}, (5.2.11)

consists of trigonometric polynomials whose Fourier coefficient sequences are ele-

ments of V . Further, suppose that there is a point η at which σ is continuous and

P (η) 6= 0. Then we can find a sequence {(y(n)
j )j∈Zd : n = 1, 2, . . .} in V such that

lim
n→∞

∑

j,k∈Zd

y
(n)
j y

(n)
k ϕ(j − k)

/∑

j∈Zd

[y
(n)
j ]2 = σ(η). (5.2.12)

Proof. We recal Section 4 and recall that the nth degree tensor product Fejér

kernel is defined by

Kn(ξ) :=
d∏

j=1

sin2 nξj/2

n sin2 ξj/2
=
∣∣∣n−d/2

∑

k∈Zd

0≤k<en

eikξ
∣∣∣
2

=: |Ln(ξ)|2, ξ ∈ Rd, (5.2.13)

where e = (1, . . . , 1)T ∈ Rd and Ln(ξ) = n−d/2
∑

0≤k<en e
ikξ. Then the function

P (·)Ln(·−η) is a member of I and we choose (y
(n)
j )j∈Zd to be its Fourier coefficient

sequence. The Parseval relation provides the equation

∑

j∈Zd

[y
(n)
j ]2 = (2π)−d

∫

[0,2π]d
P 2(ξ)Kn(ξ − η) dξ (5.2.14)

and the approximate identity property of the Fejér kernel (Zygmund (1988), p.86)

implies that

P 2(η) = lim
n→∞

(2π)−d

∫

[0,2π]d
P 2(ξ)Kn(ξ − η) dξ

= lim
n→∞

∑

j∈Zd

[y
(n)
j ]2.

(5.2.15)

Further, because σ is continuous at η, we also have the relations

P 2(η)σ(η) = lim
n→∞

(2π)−d

∫

[0,2π]d
P 2(ξ)Kn(ξ − η)σ(ξ) dξ

= lim
n→∞

∑

j,k∈Zd

y
(n)
j y

(n)
k ϕ(j − k),

(5.2.16)
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the last line being a consequence of (5.2.6). Hence (5.2.15) and (5.2.16) provide

equation (5.2.12).

Corollary 5.2.3. If σ attains its essential infimum (resp. supremum) at a point

of continuity, and if we can find a trigonometric polynomial P satisfying the con-

ditions of Proposition 5.2.2, then the lower (resp. upper) bound of (5.2.10) cannot

be improved.

Proof. This is an obvious consequence of Proposition 5.2.2.

We now specialize this general setting to the following case.

Definition 5.2.4. Let G:Rd → R be a continuous absolutely integrable function

such that G(0) = 1 for which the Fourier transform is non-negative and absolutely

integrable. Further, we require that there exist non-negative constants C and κ

for which

|1 −G(x)| ≤ C‖x‖κ, x ∈ Rd. (5.2.17)

We let G denote the class of all such functions G.

Clearly the Gaussian G(x) = exp(−‖x‖2) provides an example of such a

function. The next lemma mentions some salient properties of G which do not,

however, require (5.2.17).

Lemma 5.2.5. Let G ∈ G.

(i) G is a symmetric function, that is

G(x) = G(−x), x ∈ Rd. (5.2.18)

(ii)

|G(x)| ≤ 1, x ∈ Rd. (5.2.19)

(iii) G is a positive definite function in the sense of Bochner. In other words, for

any real sequence (yj)j∈Zd of finite support, and for any points (xj)j∈Zd in

Rd, we have
∑

j,k∈Zd

yjykG(xj − xk) ≥ 0. (5.2.20)
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Proof.

(i) Since Ĝ is real-valued we have

2i

∫

Rd

G(x) sinxξ dx = Ĝ(ξ) − Ĝ(−ξ) ∈ R, ξ ∈ Rd,

which is a contradiction unless both sides vanish. Thus Ĝ is a symmetric

function. However, G must inherit this symmetry, by the Fourier inversion

theorem.

(ii) The non-negativity of Ĝ provides the relations

|G(x)| =
∣∣∣(2π)−d

∫

Rd

Ĝ(ξ)e−ixξ dξ
∣∣∣ ≤ (2π)−d

∫

Rd

Ĝ(ξ) dξ = G(0) = 1.

(iii) The condition Ĝ ∈ L1(Rd) implies the validity of (5.2.5) for ϕ replaced by

G, whence

∑

j,k∈Zd

yjykG(xj − xk) = (2π)−d

∫

Rd

∣∣∣
∑

j∈Zd

yje
ixjξ
∣∣∣
2

Ĝ(ξ) dξ ≥ 0,

as required.

We remark that the first two parts of Lemma 5.2.5 are usually deduced from

the requirement that G be a positive definite function in the Bochner sense (see

Katznelson (1976), p.137). We have presented our material in this order because

it is the non-negativity condition on Ĝ which forms our starting point.

Given any G ∈ G, we define the set A(G) of functions of the form

ϕ(x) = c+

∫ ∞

0

[1 −G(t1/2x)]t−1 dα(t), x ∈ Rd, (5.2.21)

where c is a constant and α: [0,∞) → R is a non-decreasing function such that

∫ ∞

1

t−1 dα(t) <∞ and

∫ 1

0

tκ/2−1 dα(t) <∞. (5.2.22)

Let us show that (5.2.21) is well-defined. Inequality (5.2.19) implies the

bound ∫ ∞

1

∣∣∣1 −G(t1/2x)
∣∣∣t−1 dα(t) ≤ 2

∫ ∞

1

t−1 dα(t) <∞.
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Moreover, applying condition (5.2.17) we obtain

∫ 1

0

∣∣∣1 −G(t1/2x)
∣∣∣t−1 dα(t) ≤ C‖x‖κ

∫ 1

0

tκ/2−1 dα(t) <∞. (5.2.23)

Therefore the integral of (5.2.21) is finite and ϕ is a function of polynomial growth.

A simple application of the dominated convergence theorem reveals that ϕ is also

continuous, so that we may view it as a tempered distribution.

The following definition is convenient.

Definition 5.2.6. We shall say that a real sequence (yj)j∈Zd of finite support is

zero-summing if
∑

j∈Zd yj = 0.

An important property of A(G) is that it consists of conditionally negative

definite functions of order 1 on Rd, that is whenever ϕ ∈ A(G)

∑

j,k∈Zd

yjykϕ(xj − xk) ≤ 0 (5.2.24)

for every zero-summing sequence (yj)j∈Zd and for any points (xj)j∈Zd in Rd.

Indeed, (5.2.21) provides the equation

∑

j,k∈Zd

yjykϕ(xj − xk) = −
∫ ∞

0

∑

j,k∈Zd

yjykG(t1/2(xj − xk)) t−1 dα(t), (5.2.25)

and the right hand side is non-positive because G is positive definite in the Bochner

sense (Lemma 5.2.5 (iii)).

We now fix attention on a particular element G ∈ G and a function ϕ ∈
A(G).

Theorem 5.2.7. Let (yj)j∈Zd be a zero-summing sequence that is not identically

zero. Then, for any points (xj)j∈Zd in Rd, we have the equation

∑

j,k∈Zd

yjykϕ(xj − xk) = −(2π)−d

∫

Rd

∣∣∣
∑

j∈Zd

yje
ixjξ
∣∣∣
2

H(ξ) dξ, (5.2.26)

where

H(ξ) =

∫ ∞

0

Ĝ(ξ/t1/2)t−d/2−1 dα(t), ξ ∈ Rd. (5.2.27)

Furthermore, this latter integral is finite for almost every ξ ∈ Rd.
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Proof. Applying the Fourier inversion theorem to G in (5.2.25), we obtain

∑

j,k∈Zd

yjykϕ(xj − xk)

= −(2π)−d

∫ ∞

0

∫

Rd

∣∣∣
∑

j∈Zd

yj exp(it1/2ηxj)
∣∣∣
2

Ĝ(η)t−1 dη dα(t)

= −(2π)−d

∫ ∞

0

∫

Rd

∣∣∣
∑

j∈Zd

yje
ixjξ
∣∣∣
2

Ĝ(ξ/t1/2)t−d/2−1 dξ dα(t),

(5.2.28)

where we have used the substitution ξ = t1/2η. Because the integrand in the last

line is non-negative, we can exchange the order of integration to obtain (5.2.26).

Of course the left hand side of (5.2.26) is finite, which implies that the integrand of

(5.2.26) is an absolutely integrable function, and hence finite almost everywhere.

But, by Lemma 5.2.1, |∑j yje
ixjξ|2 6= 0 for almost every ξ ∈ Rd if the sequence

(yj)j∈Zd is non-zero. Therefore H is finite almost everywhere.

Corollary 5.2.8. The hypotheses of Theorem 5.2.7 imply the equation

F (x) = −(2π)−d

∫

Rd

∣∣∣
∑

j∈Zd

yje
ixjξ
∣∣∣
2

H(ξ)eixξ dξ, x ∈ Rd, (5.2.29)

where F is given by (5.2.1). Consequently, ϕ̂(ξ) = −H(ξ) for almost every ξ ∈ Rd,

that is

ϕ̂(ξ) = −
∫ ∞

0

Ĝ(ξ/t1/2)t−d/2−1 dα(t). (5.2.30)

Proof. It is straightforward to deduce the relation

F (x) = −(2π)−d

∫ ∞

0

∫

Rd

∣∣∣
∑

j∈Zd

yje
ixjξ
∣∣∣
2

eixξĜ(ξ/t1/2)t−d/2−1 dξ dα(t),

which is analogous to (5.2.28). Now the absolute value of this integrand is precisely

the integrand in the second line of (5.2.28). Thus we may apply Fubini’s theorem

to exchange the order of integration, obtaining (5.2.29).

Next, we prove that ξ 7→ −|∑j yje
ixjξ|2H(ξ) is the Fourier transform of

F . Indeed, let ψ:Rd → R be any smooth function whose partial derivatives enjoy

supra-algebraic decay. It is sufficient (see Rudin (1973)) to show that
∫

Rd

ψ̂(x)F (x) dx = −
∫

Rd

ψ(ξ)
∣∣∣
∑

j∈Zd

yje
ixjξ
∣∣∣
2

H(ξ) dξ.
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Applying (5.2.29) and Fubini’s theorem, we get

∫

Rd

ψ̂(x)F (x) dx = −(2π)−d

∫

Rd

∫

Rd

ψ̂(x)
∣∣∣
∑

j∈Zd

yje
ixjξ
∣∣∣
2

eixξH(ξ) dξ dx

= −
∫

Rd

∣∣∣
∑

j∈Zd

yje
ixjξ
∣∣∣
2

H(ξ)

(
(2π)−d

∫

Rd

ψ̂(x)eixξ dx

)
dξ

= −
∫

Rd

∣∣∣
∑

j∈Zd

yje
ixjξ
∣∣∣
2

H(ξ)ψ(ξ) dξ,

which establishes (5.2.30). However, we already know that the Fourier transform

F̂ (ξ) is almost everywhere equal to |∑j yje
ixjξ|2ϕ̂(ξ). By Lemma 5.2.1, we know

that
∑

j yje
ixjξ 6= 0 for almost all ξ ∈ Rd, which implies that ϕ̂ = −H almost

everywhere.

5.3. Pólya frequency functions

For every real sequence (aj)
∞
j=1 and any non-negative constant γ such that 0 <

γ +
∑∞

j=1 a
2
j <∞, we set

E(z) = e−γz2

∞∏

j=1

(1 − a2
jz

2), z ∈ C. (5.3.1)

This is an entire function which is nonzero in the vertical strip

|ℜz| < ρ := 1/ sup{|aj | : j = 1, 2, . . .}.

It can be shown (Karlin (1968), Chapter 5) that there exists a continuous function

Λ:R → R such that

∫

R

Λ(t)e−zt dt =
1

E(z)
, |ℜz| < ρ. (5.3.2)

This function Λ is what Schoenberg (1951) calls a Pólya frequency function. We

have restricted ourselves to functions Λ which are even, that is

Λ(t) = Λ(−t), t ∈ R. (5.3.3)
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Also, E(0) = 1 implies that ∫

R

Λ(t) dt = 1. (5.3.4)

According to (5.3.1) the Fourier transform of Λ is given by

Λ̂(ξ) =
1

E(iξ)
=

e−γξ2

∏∞
j=1(1 + a2

jξ
2)
, ξ ∈ R. (5.3.5)

We see that Λ(·)/Λ(0) is a member of the set G described in Definition 5.2.4 for

d = 1, and therefore Lemma 5.2.5 is applicable. In particular,

|Λ(t)| ≤ Λ(0), t ∈ R. (5.3.6)

However, much more than (5.3.6) is true. Schoenberg (1951) proved that

det(Λ(xj − yk))n
j,k=1 ≥ 0 (5.3.7)

whenever x1 < · · · < xn and y1 < · · · < yn. This fact will be used in an essential

way in Section 5.4. For the moment we use it to improve (5.3.6) to

Λ(t) ∈ [0,Λ(0)], t ∈ R. (5.3.8)

Let P denote the class of functions Λ:R → R that satisfy (5.3.2) for some γ ≥ 0

and sequence (aj)
∞
j=1 satisfying 0 < γ +

∑∞
j=1 a

2
j < ∞. For any positive a the

function

Sa(t) =
1

2|a|e
−|t/a|, t ∈ R, (5.3.9)

is in P since ∫

R

Sa(t)e−zt dt =
1

1 − a2z2
, |ℜz| < 1/a. (5.3.10)

Let E = {Sa : a > 0}. These are the only elements of P that are not in C2(R),

because all other members of P have the property that Λ̂(t) = O(t−4) as |t| → ∞.

Hence there exists a constant κ such that

|Λ(0) − Λ(t)| ≤ κt2, for t ∈ R and Λ ∈ P \ E , (5.3.11)

or

|Λ(0) − Λ(t)| ≤ κ|t|, t ∈ R, Λ ∈ E . (5.3.12)
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We note also that every element of P decays exponentially for large argument (see

Karlin (1968), p. 332).

We are now ready to define the multivariate class of functions which interest

us. Choose any Λ1, . . . ,Λd ∈ P and define

G(x) =
d∏

j=1

Λj(xj)

Λj(0)
, x = (x1, . . . , xd) ∈ Rd. (5.3.13)

According to (5.3.11) and (5.3.12), there is a constant C ≥ 0 such that

1 −G(x) ≤ C‖x‖2
2, (5.3.14)

when Λj /∈ E for every factor Λj in (5.3.11). However, if Λj ∈ E for every j, then

we only have

1 −G(x) ≤ C‖x‖2, (5.3.15)

for some constant C. We are unable to study the general behaviour at this time.

Remarking that the Fourier transform of G is given by

Ĝ(ξ) =
d∏

j=1

Λ̂j(ξj)

Λj(0)
, ξ = (ξ1, . . . , ξd) ∈ Rd, (5.3.16)

we conclude that G is a member of the class G of Definition 5.2.4. Moreover, we can

now construct the set A(G). To this end, let α: [0,∞) → R be a non-decreasing

function such that ∫ ∞

1

t−1 dα(t) <∞, (5.3.17)

and for any constant c ∈ R define ϕ: [0,∞) → R by (5.2.21). Thus we see that as

long as we require the measure dα to satisfy the extra condition

∫ 1

0

t−1/2 dα(t) <∞ (5.3.18)

whenever one of the factors in (5.3.11) is an element of E , then ϕ is a continuous

function of polynomial growth and the results of Section 2 apply. We let C denote

the class of all such functions, for all G ∈ G.
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Let us note that C contains the following important subclass of functions.

In 1938, I. J. Schoenberg proved that a continuous radially symmetric function

ϕ:Rd → R is conditionally negative definite of order 1 on every Rd if and only if

it has the form

ϕ(x) = ϕ(0) +

∫ ∞

0

(
1 − exp(−t‖x‖2)

)
t−1 dα(t), x ∈ Rd,

where α: [0,∞) → R is a non-decreasing function satisfying (5.3.17). In this case,

the Gaussian is clearly of the form (5.3.13), implying that we do indeed have a

subclass of C. Thus we have established Theorem 5.2.7 and Corollary 5.2.8 under

weaker conditions than those assumed in Chapter 4.

Our class C also contains functions of the form

ϕ(x) = c+

∫ ∞

0

(
1 − exp(−t1/2‖x‖1)

)
t−1 dα(t), x ∈ Rd,

where α: [0,∞) → R is a non-decreasing function satisfying (5.3.17) and (5.3.18),

and ‖x‖1 =
∑d

j=1 |xj | for x = (x1, . . . , xd) ∈ Rd. For instance, using the easily

verified formula

γ

Γ(1 + 2γ)

∫ ∞

0

(
1 − e−t1/2σ

)
tγ−1e−δt1/2

dt = δ−2γ − (δ + σ)−2γ ,

which is valid for δ ≥ 0 and −1/2 < γ < 0, we see that ϕ(x) = (δ + ‖x‖1)
τ , for

δ ≥ 0 and 0 < τ < 1, is in our class C.

Although it is not central to our interests in this section, we will discuss

some additional properties of the Fourier transform of a function ϕ ∈ C. First,

observe that (5.3.5) implies that Λ̂ is a decreasing function on [0,∞) for every Λ

in P. Consequently every G ∈ G satisfies the inequality Ĝ(ξ) ≤ Ĝ(η) for ξ ≥ η ≥ 0.

This property is inherited by the function H of (5.2.27), that is

H(ξ) ≤ H(η) whenever ξ ≥ η ≥ 0, (5.3.19)

which allows us to strengthen Theorem 5.2.7.

Proposition 5.3.1. H is continuous on (R \ {0})d.
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Proof. We first show that H is finite on (R\{0})d. We already know that ϕ̂ = −H
almost everywhere, which implies that every set of positive measure contains a

point at which H is finite. In particular, let δ be a positive number and set Uδ =

{ξ ∈ Rd : 0 < ξj < δ, j = 1, . . . , d}. Thus there is a point η ∈ Uδ such that

H(η) < ∞. Applying (5.3.19) and recalling that H is a symmetric function, we

deduce the inequality

H(ξ) ≤ H(η) <∞, ξ ∈ Fδ, (5.3.20)

where Fδ := {ξ ∈ Rd : |ξj | ≥ δ, j = 1, . . . , d }. Since δ > 0 is arbitrary, we see

that H is finite in (R \ {0})d.

To prove that H is continuous in Fδ, let (ξn)∞n=1 be a convergent sequence

in Fδ with limit ξ∞. By (5.3.20), the functions

{t 7→ Ĝ(ξnt
−1/2)t−d/2−1 : n = 1, 2, . . .}

are absolutely integrable on [0,∞) with respect to the measure dα. Moreover, they

are dominated by the dα-integrable function t 7→ Ĝ(ηt−1/2)t−d/2−1. Finally, the

continuity of Ĝ provides the equation

lim
n→∞

Ĝ(ξnt
−1/2)t−d/2−1 = Ĝ(ξ∞t

−1/2)t−d/2−1, t ∈ [0,∞),

and thus limn→∞H(ξn) = H(ξ∞) by the dominated convergence theorem. Since

δ was an arbitrary positive number, we conclude that H is continuous on (R \
{0})d.

The remainder of this section requires a distinction of cases. The first case

(Case I) is the nicest. This occurs when every factor Λj in (5.3.13) has a posi-

tive exponent γj in the Fourier transform formula (5.3.5). We let Case II denote

the contrary case. Our investigation of Case II is not yet complete, so we shall

concentrate on Case I for the remainder of this section.

For Case I we have the bound

Ĝ(ξ) ≤ e−(γ1ξ2

1
+···+γdξ2

d), ξ ∈ Rd,
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which implies the limit

lim
t→0

Ĝ(ξt−1/2)t−d/2−1 = 0, ξ 6= 0.

Thus the function t 7→ Ĝ(ξt−1/2)t−d/2−1 is continuous for t ∈ [0,∞) when ξ is

nonzero, which implies that

∫ 1

0

Ĝ(ξt−1/2)t−d/2−1 dα(t) <∞, ξ 6= 0.

Moreover, since

∫ ∞

1

Ĝ(ξt−1/2)t−d/2−1 dα(t) ≤
∫ ∞

1

t−1 dα(t) <∞,

we have H(ξ) <∞ for every ξ ∈ Rd \ {0}. Finally, a simple extension of the proof

of Proposition 5.3.1 shows that H is continuous on Rd \ {0}.
In fact, we can prove that for H ∈ C∞(Rd \ {0}) in Case I. We observe

that it is sufficient to show that every derivative of Ĝ(ξt−1/2)t−d/2−1 with respect

to ξ is an absolutely integrable function with respect to the measure dα on [0,∞),

because then we are justified in differentiating under the integral sign. Next, the

form of Ĝ implies that we only need to show that every derivative of Λ̂, where Λ̂ is

given by (5.3.13) and γ > 0, enjoys faster than algebraic decay for large argument.

To this end we claim that for every C < ρ := 1/ sup{|aj | : j = 1, 2, . . .} there is a

constant D such that

∣∣∣Λ̂(ξ + iη)
∣∣∣ ≤ De−γξ2

, ξ ∈ R, |η| ≤ C. (5.3.21)

To verify the claim, observe that when |η| ≤ C ≤ |ξ| we have the inequalities

∣∣∣e−γ(ξ+iη)2
∣∣∣ ≤ eC2γe−γξ2

and |1 + a2
j (ξ + iη)2| ≥ 1 + a2

j (ξ
2 − η2) ≥ 1.

Thus, setting M = max{|Λ̂(ξ + iη)|eγξ2

: |ξ| ≤ C, |η| ≤ C}, we conclude that

D := max{M, eC2γ} is suitable in (5.3.21). Finally, we apply the Cauchy integral

formula to estimate the kth derivative. We have

Λ̂(k)(ξ) =
1

2πi

∫

Γ

Λ̂(ζ)

(ζ − ξ)k+1
dζ,
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where Γ : [0, 2π] → C is given by Γ(t) = reit and r < C is a constant. Consequently

we have the bound

∣∣∣Λ̂(k)(ξ)
∣∣∣ ≤ (D/αk)e−γ min{(ξ−r)2,(ξ+r)2}, ξ ∈ R,

and the desired supra-algebraic decay is established. We now state this formally.

Proposition 5.3.2. In Case I, the function H of (5.2.27) is smooth for nonzero

argument.

Next, to identify −H with ϕ̂ on Rd \ {0} in Case I, we let ψ:Rd → R be a

smooth function whose support is a compact subset of Rd \ {0}. By definition we

have

〈ϕ̂, ψ〉 =

∫

Rd

ψ̂(x)ϕ(x) dx, (5.3.22)

where 〈·, ·〉 denotes the action of a tempered distribution on a test function (see

Schwartz (1966)). Substituting the expression for ϕ given by (5.2.21) into the right

hand side of (5.3.22) and using the fact that

0 = ψ(0) = (2π)−d

∫

Rd

ψ̂(ξ) dξ (5.3.23)

gives

〈ϕ̂, ψ〉 = −
∫

Rd

(∫ ∞

0

ψ̂(x)(1 −G(t1/2x))t−1 dα(t)

)
dx.

We want to swap the order of integration here. This will be justified by Fubini’s

theorem if we can show that

∫

Rd

(∫ ∞

0

|ψ̂(x)|(1 −G(t1/2x))t−1 dα(t)

)
dx <∞. (5.3.24)

We defer the proof of (5.3.24) to Lemma 5.3.3 below and press on. Swapping the

order of integration and recalling (5.3.23) yields

〈ϕ̂, ψ〉 = −
∫ ∞

0

(∫

Rd

ψ̂(x)G(t1/2x) dx

)
t−1 dα(t)

= −
∫ ∞

0

(∫

Rd

ψ(ξ)Ĝ(ξt−1/2) dξ

)
t−d/2−1 dα(t)
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using Parseval’s relation in the last line. Once again, we want to swap the order of

integration and, as before, this is justified by Fubini’s theorem if a certain integral

is finite, specifically

∫ ∞

0

(∫

Rd

|ψ(ξ)| Ĝ(ξt−1/2) dξ

)
t−d/2−1 dα(t) <∞. (5.3.25)

The proof of (5.3.25) will also be found in Lemma 5.3.3 below. After swapping the

order of integration we have

〈ϕ̂, ψ〉 = −
∫

Rd

ψ(ξ)H(ξ) dξ, (5.3.26)

which implies that ϕ̂ = −H in Rd \ {0}.

Lemma 5.3.3. Inequalities (5.3.24) and (5.3.25) are valid in Case I.

Proof. For (5.3.24), we have

∫

Rd

(∫ ∞

0

|ψ̂(x)|(1 −G(t1/2x))t−1 dα(t)

)
dx

≤
∫

Rd

(
κ

∫ 1

0

|ψ̂(x)|‖x‖2 dα(t)

)
dx+

∫

Rd

(∫ ∞

1

|ψ̂(x)|t−1 dα(t)

)
dx

= κ(α(1) − α(0))

∫

Rd

|ψ̂(x)|‖x‖2 dx+

(∫ ∞

1

t−1], dα(t)

)(∫

Rd

|ψ̂(x)| dx
)

<∞,

recalling that ψ̂ must enjoy faster than algebraic decay because ψ is a smooth

function.

For (5.3.25), the substitution η = ξt−1/2 provides the integral

I :=

∫ ∞

0

(∫

Rd

|ψ(ηt1/2)|Ĝ(η) dη

)
t−1 dα(t).

Now there is a constant D such that |ψ(y)| ≤ D‖y‖2 for every y ∈ Rd, because

the support of ψ is a closed subset of Rd \ {0}. Hence

I ≤
∫ 1

0

D

(∫

Rd

Ĝ(η)‖η‖2 dη

)
dα(t) + (2π)dG(0)‖ψ‖∞

∫ ∞

1

t−1 dα(t)

<∞.

The proof is complete.
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5.4. Lower bounds on eigenvalues

Let ϕ:Rd → R be a member of C and let (yj)j∈Zd be a zero-summing sequence.

An immediate consequence of (5.2.26) is the equation

∑

j,k∈Zd

yjykϕ(j − k) = (2π)−d

∫

Rd

∣∣∣
∑

j∈Zd

yje
ijξ
∣∣∣
2

ϕ̂(ξ) dξ, (5.4.1)

where ϕ̂(ξ) = −H(ξ) for almost all ξ ∈ Rd and H is given by (5.2.27). Moreover,

(5.2.6) is valid, that is

∑

j,k∈Zd

yjykϕ(j − k) = (2π)−d

∫

[0,2π]d

∣∣∣
∑

j∈Zd

yje
ijξ
∣∣∣
2

σ(ξ) dξ, (5.4.2)

where σ is given by (5.2.7). Applying (5.2.30), we have

|σ(ξ)| =
∑

k∈Zd

∣∣∣ϕ̂(ξ + 2πk)
∣∣∣

=

∫ ∞

0

∑

k∈Zd

Ĝ(t−1/2(ξ + 2πk)) t−d/2−1 dα(t).
(5.4.3)

As in Section 2, we consider essential upper and lower bounds on σ. Let us begin

this study by fixing t > 0 and analysing the function

τ(ξ) =
∑

k∈Zd

Ĝ(t−1/2(ξ + 2πk)), ξ ∈ Rd. (5.4.4)

By (5.3.14), we have

τ(ξ) =

d∏

j=1

Ej(ξj)

Λj(0)
, ξ ∈ Rd, (5.4.5)

where

Ej(x) =
∑

k∈Z

Λ̂j((x+ 2πk)t−1/2), x ∈ R, j = 1, . . . , d. (5.4.6)

We now employ the following key lemma.

Lemma 5.4.1. Let Λ ∈ P and let

E(x) =
∑

k∈Z

Λ̂((x+ 2πk)t−1/2), x ∈ R.

Then E is an even function and E(0) ≥ E(x) ≥ E(y) ≥ E(π) for every x and y

in R with 0 ≤ x ≤ y ≤ π.
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Proof. The exponential decay of Λ and the absolute integrability of Λ̂ imply that

the Poisson summation formula is valid, which gives the relation

E(x) = t1/2
∑

k∈Z

Λ(kt1/2)eikx, x ∈ R. (5.4.7)

Now the sequence ak := Λ(kt1/2), k ∈ Z, is an even, exponentially decaying

Pólya frequency sequence, that is every minor of the Toeplitz matrix (aj−k)j,k∈Z

is non-negative definite (and we see that this is a consequence of (5.3.7)). By

a result of Edrei (1953),
∑

k∈Z akz
k is a meromorphic function on an annulus

{z ∈ C : 1/R ≤ |z| ≤ R}, for some R > 1, and enjoys an infinite product expansion

of the form

∑

k∈Z

akz
k = Ceλ(z+z−1)

∞∏

j=1

(1 + αjz)(1 + αjz
−1)

(1 − βjz)(1 − βjz−1)
, z 6= 0, (5.4.8)

where C ≥ 0, λ ≥ 0, 0 < αj , βj < 1 and
∑∞

j=1 αj + βj <∞. Hence

E(x) = Ct1/2e2λ cos x
∞∏

j=1

1 + 2αj cosx+ α2
j

1 − 2βj cosx+ β2
j

, x ∈ R. (5.4.9)

Observe that each term in the product is an even function which is decreasing on

[0, 2π], which provides the required inequality.

In particular, Ej(x) ≥ Ej(π) for j = 1, . . . , d, where Ej is given by (5.4.6).

Hence

τ(ξ) ≥ τ(πe), ξ ∈ Rd, (5.4.10)

and applying (5.4.3) we get

|σ(ξ)| ≥ |σ(πe)|, ξ ∈ Rd. (5.4.11)

We now come to our principal result.

Theorem 5.4.2. Let (yj)j∈Zd be a zero-summing sequence and let ϕ ∈ C. Then

we have the inequality

∣∣∣
∑

j,k∈Zd

ykykϕ(j − k)
∣∣∣ ≥ |σ(πe)|

∑

j∈Zd

y2
j . (5.4.12)
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Proof. Equation (5.4.2) and the Parseval relation provide the inequality

∣∣∣
∑

j,k∈Zd

ykykϕ(j − k)
∣∣∣ ≥ |σ(πe)|(2π)−d

∫

[0,2π]d

∣∣∣
∑

j∈Zd

yje
ijξ
∣∣∣
2

dξ = |σ(πe)|
∑

j∈Zd

y2
j ,

as in inequality (5.2.10).

Of course, we are interested in showing that (5.4.12) cannot be improved,

that is |σ(πe)| cannot be replaced by a larger number independent of (yj)j∈Zd .

Recalling Proposition 5.2.2, this is true if σ is continuous at πe. In fact, we can

use Lemma 5.4.1 to prove that σ is continuous everywhere in the set (0, 2π)d. We

first collect some necessary preliminary results.

Lemma 5.4.3. The function τ given by (5.4.4) is continous for every t > 0 and

satisfies the inequality

τ(ξ) ≤ τ(η) for 0 ≤ η ≤ ξ ≤ πe. (5.4.13)

Furthermore,

τ(πe+ ξ) = τ(πe− ξ) for all ξ ∈ (−π, π)d. (5.4.14)

Proof. The definition of G, (5.4.5) and (5.4.7) provide the Fourier series

τ(ξ) = td/2
∑

k∈Zd

G(kt1/2)eikξ, ξ ∈ Rd, (5.4.15)

and the exponential decay of G implies the uniform convergence of this series.

Hence τ is continuous, being the uniform limit of the finite sections of (5.4.15).

Applying the product formula (5.4.5) and Lemma 5.4.1, we obtain (5.4.13)

and (5.4.14).

Proposition 5.4.4. σ is continuous on (0, 2π)d.

Proof. Equation (5.4.2) implies that
∣∣∣
∑

j∈Zd yje
ijξ
∣∣∣
2

|σ(ξ)| < ∞ for almost every

ξ ∈ [0, 2π]d. Consequently, σ is finite almost everywhere, by Lemma 5.2.1. Thus

every non-empty open subset of [0, 2π]d contains a point at which σ is finite.
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Specifically, let δ ∈ (0, π) and define the closed set Kδ := [δ, 2π − δ]d. Thus the

open set [0, 2π]d \Kδ contains a point, η say, for which

∞ > |σ(η)| =

∫ ∞

0

∑

k∈Zd

Ĝ((η + 2πk)t−1/2) t−d/2−1 dα(t). (5.4.16)

Let us show that σ is continuous in Kδ. To this end, choose any convergent se-

quence (ξn)∞n=1 in Kδ and let ξ∞ denote its limit. We must prove that

lim
n→∞

σ(ξn) = σ(ξ∞).

Now Lemma 5.4.3 and (5.4.16) supply the bound

|σ(ξn)| ≤ |σ(η)| <∞, n = 1, 2, . . . ,

that is the functions

{t 7→
∑

k∈Zd

Ĝ((ξn + 2πk)t−1/2)t−d/2−1 dα(t) : n = 1, 2, . . . }

are absolutely integrable on [0,∞) with respect to the measure dα. Moreover,

they are dominated by the absolutely integrable function t 7→ ∑
k∈Zd Ĝ((η +

2πk)t−1/2)t−d/2−1. However, the continuity of τ proved in Lemma 5.4.3 allows to

deduce that

lim
n→∞

∑

k∈Zd

Ĝ((ξn + 2πk)t−1/2)t−d/2−1 =
∑

k∈Zd

Ĝ((ξ∞ + 2πk)t−1/2)t−d/2−1,

for all positive t. Thus the dominated convergence theorem implies that σ(ξn) →
σ(ξ∞) as n tends to infinity. Since δ ∈ (0, π) was arbitrary, we conclude that σ is

continuous in all of (0, 2π)d.

Corollary 5.4.5. Inequality (5.4.12) cannot be improved for ϕ ∈ C if we can find

a trigonometric polynomial P satisfying the conditions of Proposition 5.2.2 at the

point πe.

Proof. We simply apply Proposition 5.5.2.
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5.5. Total positivity and the Gaussian cardinal function

This material is not directly related to the earlier sections of this chapter, but

it does use a total positivity property to deduce an interesting fact concerning

infinity norms of Gaussian distance matrices generated by infinite regular grids.

Let λ be a positive constant and let ϕ:R → R be the Gaussian

ϕ(x) = exp(−λx2), x ∈ R. (5.5.1)

It is known (see Buhmann (1990)) that there exists a real sequence (ck)k∈Z such

that
∑

k∈Z c
2
k <∞ and the function χ:R → R given by

χ(x) =
∑

k∈Z

ckϕ(x− k), x ∈ R, (5.5.2)

satisfies the equation

χ(j) = δ0j , j ∈ Z.

Thus χ is the cardinal function of interpolation for the Gaussian radial basis

function.

Proposition 5.5.1. The coefficients (ck)k∈Z of the cardinal function χ alternate

in sign, that is (−1)kck ≥ 0 for every integer k.

Proof. For each non-negative integer n, we let

An = (ϕ(j − k))n
j,k=−n. (5.5.3)

Now An is an invertible totally positive matrix, which implies that A−1
n enjoys

the “chequerboard” property, that is the elements of the inverse matrix satisfy

(−1)j+k(A−1
n )jk ≥ 0, for j, k = −n, . . . , n. In particular, if we let

c
(n)
k = (A−1

n )0k, k = −n, . . . , n, (5.5.4)

then (−1)kc
(n)
k ≥ 0 and the definition of A−1

n provides the equations

n∑

k=−n

c
(n)
k ϕ(j − k) = δ0j , j = −n, . . . , n. (5.5.5)
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In other words, the function χn:R → R defined by

χn(x) =

n∑

k=−n

c
(n)
k ϕ(x− k), x ∈ R, (5.5.6)

provides the cardinal function of interpolation for the finite set {−n, . . . , n}.
Now Theorem 9 of Buhmann and Micchelli (1991) provides the following

useful fact relating the coefficients of χn and χ:

lim
n→∞

c
(n)
k = ck, k ∈ Z.

Thus the property (−1)kc
(n)
k ≥ 0 implies the required condition (−1)kck ≥ 0.

We now consider the bi-infinite symmetric Toeplitz matrix A = (ϕ(j −
k))j,k∈Z as a bounded linear operator A: ℓp(Z) → ℓp(Z) when p ≥ 1. Thus A−1 =

(cj−k)j,k∈Z , where the (cj)j∈Z are given by (5.5.2), and a theorem of Buhmann

(1990) provides the equation

ck = (2π)−1

∫ 2π

0

1

σ(ξ)
e−ikξ dξ, k ∈ Z, (5.5.7)

where

σ(ξ) =
∑

k∈Z

ϕ̂(ξ + 2πk), ξ ∈ R. (5.5.8)

Therefore, using standard results of Toeplitz operator theory (Grenander and

Szegő (1984)), we obtain the expression

‖A−1‖2 = max{ 1

σ(ξ)
: ξ ∈ [0, 2π]}.

Applying Lemma 4.2.7, we get

‖A−1‖2 =
1

σ(π)
=
∑

k∈Z

(−1)kck. (5.5.9)

But Proposition 5.5.1 and the symmetry of A provide the relations

‖A−1‖1 = ‖A−1‖∞ =
∑

k∈Z

|ck| =
∑

k∈Z

(−1)kck, (5.5.10),
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so that A−1 provides a nontrivial linear operator on ℓp(Z), for p = 1, 2, and

∞, whose norms agree on each of these sequence spaces. Further, we recall that

log ‖A−1‖p is a convex function of 1/p for p ≥ 1, which is a consequence of the

Riesz-Thorin theorem (Hardy et al (1952), pp. 214, 219). Hence we have proved

the interesting fact that ‖A−1‖p = ‖A−1‖1 for all p ≥ 1.

In the multivariate case, the cardinal function is given by expressions anal-

ogous to (5.5.2) and (5.5.7). Specifically, we let ϕ(x) = exp(−λ‖x‖2), x ∈ Rd, and

then χ:Rd → Rd is defined by

χ(x) =
∑

k∈Zd

c
(d)
k ϕ(x− k), x ∈ Rd, (5.5.11)

where

c
(d)
k = (2π)−d

∫

[0,2π]d

1

σ(d)(ξ)
e−ikξ dξ, k = (k1, . . . , kd) ∈ Zd, (5.5.12)

and

σ(d)(ξ) =
∑

k∈Zd

ϕ̂(ξ + 2πk). (5.5.13)

The key point is that ϕ is a tensor product of univariate functions, which implies

the relation

σ(d)(ξ) =
d∏

j=1

σ(ξj), ξ = (ξ1, . . . , ξd) ∈ Rd, (5.5.14)

where σ is given by (5.5.8). Consequently the coefficients of the multivariate cardi-

nal function are related to those of the univariate cardinal function by the formula

c
(d)
k =

d∏

j=1

ckj , k = (k1, . . . , kd) ∈ Zd. (5.5.15)

In particular, the following corollary is an immediate consequence of Proposition

5.5.1.

Corollary 5.5.2. (−1)k1+···+kdc
(d)
k ≥ 0 for every integer k = (k1, . . . , kd) ∈ Zd.
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6 : Norm Estimates and Preconditioned Conjugate Gradients

6.1. Introduction

Let n be a positive integer and let An be the symmetric Toeplitz matrix given by

An = (ϕ(j − k))
n
j,k=−n , (6.1.1)

where ϕ:R → R is either a Gaussian (ϕ(x) = exp(−λx2) for some positive con-

stant λ) or a multiquadric (ϕ(x) = (x2 + c2)1/2 for some real constant c). In this

section we construct efficient preconditioners for the conjugate gradient solution

of the linear system

Anx = f, f ∈ R2n+1, (6.1.2)

when ϕ is a Gaussian, or the augmented linear system

Anx+ ey = f,

eTx = 0,
(6.1.3)

when ϕ is a multiquadric. Here e = [1, 1, . . . , 1]T ∈ R2n+1 and y ∈ R. Sec-

tion 6.2 describes the construction for the Gaussian and Section 6.3 deals with

the multiquadric. Of course, we exploit the Toeplitz structure of An to perform

a matrix-vector multiplication in O(n log n) operations whilst storing O(n) real

numbers. Further, we shall see numerically that the number of iterations required

to achieve a solution of (6.1.2) or (6.1.3) to within a given tolerance is independent

of n.

Our method applies to many other radial basis functions, such as the inverse

multiquadric (ϕ(x) = (x2 + c2)−1/2) and the thin plate spline (ϕ(x) = x2 log |x|).
However, we concentrate on the Gaussian and the multiquadric because they ex-

hibit most of the important features of our approach in a concrete setting. Similarly

we only touch briefly on the d-dimensional analogue of (6.1.1), that is

A(d)
n = (ϕ(j − k))j,k∈[−n,n]d . (6.1.4)
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We shall still callA
(d)
n a Toeplitz matrix. Moreover the matrix-vector multiplication

A(d)
n x =


 ∑

k∈[−n,n]d

ϕ(‖j − k‖)xk




j∈[−n,n]d

, (6.1.5)

where ‖ · ‖ is the Euclidean norm and x = (xj)j∈[−n,n]d , can still be calculated in

O(N logN) operations, where N = (2n+1)d, whilst requiring O(N) real numbers

to be stored. This trick is a simple extension of the Toeplitz matrix-vector multi-

plication method when d = 1, but seems to be less familiar for d greater than one.

This will be dealt with in detail in Baxter (1992c).

6.2. The Gaussian

Our treatment of the preconditioned conjugate gradient (PCG) method follows

Section 10.3 of Golub and Van Loan (1989), and we begin with a general descrip-

tion. We let n be a positive integer and A ∈ Rn×n be a symmetric positive definite

matrix. For any nonsingular symmetric matrix P ∈ Rn×n and b ∈ Rn we can use

the following iteration to solve the linear system PAPx = Pb.

Algorithm 6.2.1. Choose any x0 in Rn. Set r0 = Pb− PAPx0 and d0 = r0.

For k = 0, 1, 2, . . . do begin

ak = rT
k rk/d

T
k PAPdk

xk+1 = xk + akdk

rk+1 = rk − akPAPdk

bk = rT
k+1rk+1/r

T
k rk

dk+1 = rk+1 + bkdk

Stop if ‖rk+1‖ or ‖dk+1‖ is sufficiently small.

end.

In order to simplify Algorithm 6.2.1 define

C = P 2, ξk = Pxk, rk = Pρk and δk = Pdk. (6.2.1)

Substituting in Algorithm 6.2.1 we obtain the following method.
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Algorithm 6.2.2. Choose any ξ0 in Rn. Set ρ0 = b−Aξ0, δ0 = Cρ0.

For k = 0, 1, 2, . . . do begin

ak = ρT
kCρk/δ

T
k Aδk

ξk+1 = ξk + akδk

ρk+1 = ρk − akAδk

bk = ρT
k+1Cρk+1/ρ

T
kCρk

δk+1 = Cρk+1 + bkδk

Stop if ‖ρk+1‖ or ‖δk+1‖ is sufficiently small.

end.

It is Algorithm 6.2.2 that we shall consider as our PCG method in this

section, and we shall call C the preconditioner. We see that the only restriction

on C is that it must be a symmetric positive definite matrix, but we observe that

the spectrum of CA should consist of a small number of clusters, preferably one

cluster concentrated at one. At this point, we also mention that the condition

number of CA is not a reliable guide to the efficacy of our preconditioner. For

example, consider the two cases when (i) CA has only two different eigenvalues,

say 1 and 100, 000, and (ii) when CA has eigenvalues uniformly distributed in

the interval [1, 100]. The former has the larger condition number but, in exact

arithmetic, the answer will be achieved in two steps, whereas the number of steps

can be as high as n in the latter case. Thus the term “preconditioner” is sometimes

inappropriate, although its usage has become standard.

We can shed no light on the problem of constructing preconditioners for

the general case.Accordingly, we let A be the matrix An of (6.1.1) and let ϕ(x) =

exp(−x2). Thus An is positive definite and can be embedded in the bi-infinite

symmetric Toeplitz matrix

A∞ = (ϕ(j − k))j,k∈Z . (6.2.2)

The classical theory of Toeplitz operators (see, for instance, Grenander and Szegő

(1984)) and the work of Section 4 provide the relations

Sp An ⊂ Sp A∞ = [σ(π), σ(0)] ⊂ (0,∞), (6.2.3)
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where σ is the symbol function

σ(ξ) =
∑

k∈Z

ϕ̂(ξ + 2πk), ξ ∈ R. (6.2.4)

Further, Theorem 9 of Buhmann and Micchelli (1991) allows us to conclude that,

for any fixed integers j and k, we have

lim
n→∞

(A−1
n )j,k = (A−1

∞ )j,k. (6.2.5)

It was equations (6.2.3) and (6.2.5) which led us to investigate the possibility of

using some of the elements of A−1
n for a relatively small value of n to construct

preconditioners for AN , where N may be much larger than n. Specifically, let us

choose integers 0 < m ≤ n and define the sequence

cj = (A−1
n )j0, j = −m, . . . ,m. (6.2.6)

We now let CN be the (2N + 1) × (2N + 1) banded symmetric Toeplitz matrix

CN =




c0 . . . cm
...

. . .
. . .

cm
. . . cm

...
cm . . . c0




. (6.2.7)

We claim that, for sufficiently large m and n, CN provides an excellent pre-

conditioner when A = AN in Algorithm 6.2.2. Before discussing any theoreti-

cal motivation for this choice of preconditioner, we present an example. We let

n = 64, m = 9 and N = 32, 768. Constructing An and calculating the elements

{(A−1
n )j0 : j = 0, 1, . . . ,m} we find that




c0
c1
...
c9


 =




1.4301 × 100

−5.9563 × 10−1

2.2265 × 10−1

−8.2083 × 10−2

3.0205 × 10−2

−1.1112 × 10−2

4.0880 × 10−3

−1.5039 × 10−3

5.5325 × 10−4

−2.0353 × 10−4




. (6.2.8)
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FIGURE 6.1: The symbol function for C∞.

Now CN can be embedded in the bi-infinite Toeplitz matrix C∞ defined by

(C∞)jk =

{
cj−k, |j − k| ≤ m,
0, |j − k| > m,

(6.2.9)

and the symbol for this operator is the trigonometric polynomial

σC∞
(ξ) =

m∑

j=−m

cje
ijξ, ξ ∈ R. (6.2.10)

In Figure 6.1 we display a graph of σC∞
for 0 ≤ ξ ≤ 2π, and it is clearly a

positive function. Thus the relations

Sp CN ⊂ Sp C∞ = {σC∞
(ξ) : ξ ∈ [0, 2π]} ⊂ (0,∞) (6.2.11)
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imply that CN is positive definite. Hence it is suitable to use CN as the precon-

ditioner in Algorithm 6.2.2. Our aim in this example is to compare this choice

of preconditioner with the use of the identity matrix as the preconditioner. To

this end, we let the elements of the righthandside vector b of Algorithm 6.2.2 be

random real numbers uniformly distributed in the interval [−1, 1]. Applying Al-

gorithm 6.2.2 using the identity matrix as the preconditioner provides the results

of Table 6.1. Table 6.2 contains the analogous results using (6.2.7) and (6.2.8).

In both cases the iterations were stopped when the residual vector satisfied the

bound ‖rk+1‖/‖b‖ < 10−13. The behaviour shown in the tables is typical; we find

that the number of steps required is independent of N and b.

Iteration Error

1 2.797904 × 101

10 1.214777 × 10−2

20 1.886333 × 10−6

30 2.945903 × 10−10

33 2.144110 × 10−11

34 8.935534 × 10−12

Table 6.1: No preconditioning

Iteration Error

1 2.315776 × 10−1

2 1.915017 × 10−3

3 1.514617 × 10−7

4 1.365228 × 10−11

5 1.716123 × 10−15

Table 6.2: Using (6.2.7) and (6.2.8) as the preconditioner

Why should (6.2.7) and (6.2.8) provide a good preconditioner? Let us con-

sider the bi-infinite Toeplitz matrix C∞A∞. The spectrum of this operator is given
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by

Sp C∞A∞ = {σC∞
(ξ)σ(ξ) : ξ ∈ [0, 2π]}, (6.2.12)

where σ is given by (6.2.4) and σC∞
by (6.2.10). Therefore in order to concentrate

Sp C∞A∞ at unity we must have

σC∞
(ξ)σ(ξ) ≈ 1, ξ ∈ [0, 2π]. (6.2.13)

In other words, we want σC∞
to be a trigonometric polynomial approximating the

continuous function 1/σ. Now if the Fourier series of 1/σ is given by

σ−1(ξ) =
∑

j∈Z

γje
ijξ, ξ ∈ R, (6.2.14)

then its Fourier coefficients (γj)j∈Z are the coefficients of the cardinal function χ

for the integer grid, that is

χ(x) =
∑

j∈Z

γjϕ(x− j), x ∈ R, (6.2.15)

and

χ(k) = δ0k, k ∈ Z. (6.2.16)

(See, for instance, Buhmann (1990).) Recalling (6.2.5), we deduce that one way

to calculate approximate values of the coefficients (γj)j∈Z is to solve the linear

system

Anc
(n) = e0, (6.2.17)

where e0 = (δj0)
n
j=−n ∈ R2n+1. This observation is not new; indeed Buhmann

and Powell (1990) used precisely this idea to calculate approximate values of the

cardinal function χ. We now set

cj = c
(n)
j , 0 ≤ j ≤ m, (6.2.18)

and we observe that the symbol function σ for the Gaussian is a theta function

(see Section 4.2). Thus σ is a positive continuous function whose Fourier series is

absolutely convergent. Hence 1/σ is a positive continuous function and Wiener’s

101



Preconditioned conjugate gradients

lemma (Rudin (1973)) implies the absolute convergence, and therefore the uniform

convergence, of its Fourier series. We deduce that the symbol function σC∞
can

be chosen to approximate 1/σ to within any required accuracy. More formally we

have the

Lemma 6.2.3. Given any ǫ > 0, there are positive integers m and n0 such that

∣∣∣σ(ξ)
m∑

j=−m

c
(n)
j eijξ − 1

∣∣∣ ≤ ǫ, ξ ∈ [0, 2π],

for every n ≥ n0, where c(n) = (c
(n)
j )n

j=−n is given by (6.2.17).

Proof. The uniform convergence of the Fourier series for σ implies that we can

choose m such that

∣∣∣σ(ξ)

m∑

j=−m

γje
ijξ − 1

∣∣∣ ≤ ǫ, ξ ∈ [0, 2π].

By (6.2.5), we can also choose n0 such that |γj − c
(n)
j | ≤ ǫ for j = −m, . . . ,m and

n ≥ n0. Then we have

∣∣∣σ(ξ)

m∑

j=−m

c
(n)
j eijξ − 1

∣∣∣ ≤
∣∣∣σ(ξ)

m∑

j=−m

γje
ijξ − 1

∣∣∣+ σ(ξ)
∣∣∣

m∑

j=−m

(γj − c
(n)
j )eijξ|

≤ ǫ[1 + (2m+ 1)σ(0)],

remembering from Chapter 4 that 0 < σ(π) ≤ σ(ξ) ≤ σ(0). Since ǫ is arbitrary

the lemma is true.

6.3. The Multiquadric

The multiquadric interpolation matrix

A =
(
ϕ(‖xj − xk‖)

)n

j,k=1
,

where ϕ(r) = (r2 + c2)1/2 and (xj)
n
j=1 are points in Rd, is not positive definite.

We recall from Chapter 2 that it is almost negative definite, that is for any real

numbers (yj)
n
j=1 satisfying

∑
yj = 0 we have

n∑

j,k=1

yjykϕ(‖xj − xk‖) ≤ 0. (6.3.1)
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Furthermore, inequality (6.3.1) is strict whenever n ≥ 2 and the points (xj)
n
j=1 are

all different, and we shall assume this for the rest of the section. In other words,

A is negative definite on the subspace < e >⊥, where e = [1, 1, . . . , 1]T ∈ Rn.

Of course we cannot apply Algorithms 6.2.1 and 6.2.2 in this case. However

we can use the almost negative definiteness of A to solve a closely related linearly

constrained quadratic programming problem:

minimize
1

2
ξTAξ − bT ξ

subject to eT ξ = 0,

(6.3.2)

where b can be any element of Rn. It can be shown that the standard theory of

Lagrange multipliers guarantees the existence of a unique pair of vectors ξ∗ ∈ Rn

and η∗ ∈ Rm satisfying the equations

Aξ∗ + eη∗ = b

and eT ξ∗ = 0,
(6.3.3)

where η∗ is the Lagrange multiplier vector for the constrained optimization prob-

lem (6.3.2). We do not go into further detail on this point because the nonsingu-

larity of the matrix (
A e
eT 0

)
(6.3.4)

is well-known (see, for instance, Powell (1990)). Instead we observe that one way

to solve (6.3.3) is to apply the following modification of Algorithm 6.2.1 to (6.3.2).

Algorithm 6.3.1. Let P be any symmetric n× n matrix such that kerP = 〈e〉.

Set x0 = 0, r0 = Pb− PAPx0, d0 = r0.

For k = 0, 1, 2, . . . do begin

ak = rT
k rk/d

T
k PAPdk

xk+1 = xk + akdk

rk+1 = rk − akPAPdk

bk = rT
k+1rk+1/r

T
k rk

dk+1 = rk+1 + bkdk
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Stop if ‖rk+1‖ or ‖dk+1‖ is sufficiently small.

end.

We observe that Algorithm 6.3.1 solves the linearly constrained optimiza-

tion problem

minimize
1

2
xTPAPx− bTPx

subject to eTx = 0.

(6.3.5)

Moreover, the following elementary lemma implies that the solutions ξ∗of (6.3.3)

and x∗ of (6.3.5) are related by the equations ξ∗ = Px∗.

Lemma 6.3.2. Let S be any symmetric n × n matrix and let K = kerS. The

S : K⊥ → K⊥ is a bijection. In other words, given any b ∈ K⊥ there is precisely

one a ∈ K⊥ such that

Sa = b. (6.3.6)

Proof. For any n× n matrix M we have the equation

Rn = kerM ⊕ Im MT .

Consequently the symmetric matrix S satisfies

Rn = kerS ⊕ Im S,

whence Im S = K⊥. Hence for every b ∈ K⊥ there exists α ∈ Rn such that

Sα = b. Now we can write α = a + β, where a ∈ K⊥ and β ∈ K are uniquely

determined by α. Thus Sa = Sα = b, and (6.3.6) has a solution. If a′ ∈ K⊥ also

satifies (6.3.6), then their difference a− a′ lies in the intersection K ∩K⊥ = {0},
which settles the uniqeuness of a.

Setting P = S and K = 〈e〉 in Lemma 6.3.2 we deduce that there is exactly

one x∗ ∈ 〈e〉⊥ such that

PAPx∗ = Pb,

and PAP is negative definite when restricted to the subspace 〈e〉⊥. Follwing the

development of Section 6.2, we define

C = P 2, ξk = Pxk, and δk = Pdk, (6.3.7)

104



Preconditioned conjugate gradients

as in equation (6.2.1). However we cannot define ρk by (6.2.1) because P is singular.

One solution, advocated by Dyn, Levin and Rippa (1986), is to use the recurrence

for (ρk) embodied in Algorithm 6.2.1 without further ado.
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Algorithm 6.3.3a. Choose any ξ0 in 〈e〉⊥. Set ρ0 = b−Aξ0 and δ0 = Cρ0.

For k = 0, 1, 2, . . . do begin

ak = ρT
kCρk/δ

T
k Aδk

ξk+1 = ξk + akδk

ρk+1 = ρk − akAδk

bk = ρT
k+1Cρk+1/ρ

T
kCρk

δk+1 = Cρk+1 + bkδk

Stop if ‖ρk+1‖ or ‖δk+1‖ is sufficiently small.

end.

However this algorithm is unstable in finite precision arithmetic, as we shall

see in our main example below. One modification that sucessfully avoids instability

is to force the condition

ρk ∈ 〈e〉⊥, (6.3.8)

to hold for all k. Now Lemma 6.3.2 implies the existence of exactly one vector ρk ∈
〈e〉⊥ for which Pρk = rk. Therefore, defining Q to be the orthogonal projection

onto 〈e〉⊥, that is Q : x 7→ x− e(eTx)/(eT e), we obtain

Algorithm 6.3.3b. Choose any ξ0 in 〈e〉⊥. Set ρ0 = Q(b−Aξ0), δ0 = Cρ0.

For k = 0, 1, 2, . . . do begin

ak = ρT
kCρk/δ

T
k Aδk

ξk+1 = ξk + akδk

ρk+1 = Q(ρk − akAδk)

bk = ρT
k+1Cρk+1/ρ

T
kCρk

δk+1 = Cρk+1 + bkδk

Stop if ‖ρk+1‖ or ‖δk+1‖ is sufficiently small.

end.

We see that the only restriction on C is that it must be a non-negative

definite symmetric matrix such that kerC = 〈e〉. It is easy to construct such a
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matrix given a positive definite symmetric matrix D by adding a rank one matrix:

C = D − (De)(De)T

eTDe
. (6.3.9)

The Cauchy-Schwarz inequality implies that xTCx ≥ 0 with equality if and only

if x ∈ 〈e〉. Of course we do not need to form C explicitly, since C : x 7→ Dx −
(eTDx/eTDe)De. Before constructing D we consider the spectral properties of

A∞ = (ϕ(j − k))j,k∈Z in more detail.

A minor modification to Proposition 5.2.2 yields the following useful result.

We recall the definition of a zero-summing sequence from Definition 4.3.1 and that

of the symbol function from (5.2.7).

Proposition 6.3.4. For every η ∈ (0, 2π) we can find a set {(y(n)
j )j∈Z : n =

1, 2, . . .} of zero-summing sequences such that

lim
n→∞

∑

j,k∈Z

y
(n)
j y

(n)
k ϕ(j − k)

/∑

j∈Z

[y
(n)
j ]2 = σ(η). (6.3.10)

Proof. We adopt the proof technique of Proposition 5.2.2. For each positive integer

n we define the trigonometric polynomial

Ln(ξ) = n−1/2
n−1∑

k=0

eikξ, ξ ∈ R,

and we recall from Section 4.2 that

Kn(ξ) =
sin2 nξ/2

n sin2 ξ/2
= |Ln(ξ)|2 , (6.3.11)

whereKn is the nth degree Fejér kernel. We now choose (y
(n)
j )j∈Z to be the Fourier

coefficients of the trigonometric polynomial ξ 7→ Ln(ξ − η) sin ξ/2, which implies

the relation ∣∣∣
∑

j∈Z

y
(n)
j eijξ

∣∣∣
2

= sin2 ξ/2 Kn(ξ − η),

and we see that (y
(n)
j )j∈Z is a zero-summing sequence. By the Parseval relation

we have
∑

j∈Z

[y
(n)
j ]2 = (2π)−1

∫ 2π

0

sin2 ξ/2 Kn(ξ − η) dξ (6.3.12)
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and the approximate identity property of the Fejér kernel (Zygmund (1988), p.

86) implies that

sin2 η/2 = lim
n→∞

(2π)−1

∫ 2π

0

sin2 ξ/2 Kn(ξ − η) dξ

= lim
n→∞

∑

j∈Z

[y
(n)
j ]2.

Further, because σ is continuous on (0, 2π) (see Section 4.4), we have

sin2 η/2 σ(η) = lim
n→∞

(2π)−1

∫ 2π

0

sin2 ξ/2 Kn(ξ − η)σ(ξ) dξ

= lim
n→∞

∑

j,k∈Z

y
(n)
j y

(n)
k ϕ(j − k),

the last line being a consequence of (4.3.6).

Thus we have shown that, just as in the classical theory of Toeplitz op-

erators (Grenander and Szegő (1984)), everything depends on the range of val-

ues of the symbol function σ. Because σ inherits the double pole that ϕ̂ enjoys

at zero, we have σ: (0, 2π) 7→ (σ(π),∞). In Figure 6.2 we display the function

[0, 2π] ∋ ξ 7→ 1/σ(ξ).

Now let m be a positive integer and let (dj)
m
j=−m be an even sequence of

real numbers. We define a bi-infinite banded symmetric Toeplitz matrix D∞ by

the equations

(D∞)jk =

{
dj−k, |j − k| ≤ m,
0, otherwise .

(6.3.13)

Thus (D∞A∞)jk = ψ(j − k) where ψ(x) =
∑m

l=−m dlϕ(x− l). Further

∑

j,k∈Z

yjykψ(j − k) = (2π)−1

∫ 2π

0

∣∣∣
∑

j∈Z

yje
ijξ
∣∣∣
2

σD∞
(ξ)σ(ξ) dξ. (6.3.14)

Now the function ξ 7→ σD∞
(ξ)σ(ξ) is continuous for ξ ∈ (0, 2π), so the argument

of Proposition 6.3.4 also shows that, for every η ∈ (0, 2π), we can find a set

{(y(n)
j )j∈Z : n = 1, 2, . . . } of zero-summing sequences such that

lim
n→∞

∑

j,k∈Z

y
(n)
j y

(n)
k ψ(j − k)

/∑

j∈Z

[y
(n)
j ]2 = σD∞

(η)σ(η). (6.3.15)
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Figure 6.2: The reciprocal symbol function 1/σ for the multiquadric.

A good preconditioner must ensure that {σD∞
(ξ)σ(ξ) : ξ ∈ (0, 2π)} is a

bounded set. Because of the form of σD∞
we have the equation

m∑

j=−m

dj = 0. (6.3.16)

Moreover, as in Section 6.2, we want the approximation

σD∞
(ξ)σ(ξ) ≈ 1, ξ ∈ (0, 2π), (6.3.17)

and we need σD∞
to be a non-negative trigonometric polynomial which is positive

almost everywhere, which ensures that every one of its principal minors is positive

definite.
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Recalling Theorem 9 of Buhmann and Micchelli (1991), we let

c
(n)
j = −

(
A−1

n

)
j0
, j = −m, . . . ,m, (6.3.18)

and to subtract a multiple of the vector [1, . . . , 1]T ∈ R2m+1 from (c
(n)
j )m

j=−m to

form a new vector (dj)
m
j=−m satisfying

∑m
j=−m dj = 0. Recalling that c

(n)
j ≈ γj

for suitable m and n, where

σ−1(ξ) =
∑

j∈Z

γje
ijξ, ξ ∈ R, (6.3.19)

and
∑

j∈Z γj = 0 (since σ inherits the double pole of ϕ̂ at zero), we hope to achieve

(6.3.17). Fortunately, in several cases, we find that σD∞
is negative on (0, 2π), so

that σD∞
needs no further modifications. Unfortunately we cannot explain this

lucky fact at present, but perhaps one should not always look a mathematical gift

horse in the mouth. Therefore let n = 64 and m = 9. Direct calculation yields




c0
c1
...
c9


 = −




−6.8219 × 100

4.9588 × 100

−2.0852 × 100

7.2868 × 10−1

−2.5622 × 10−1

8.8267 × 10−1

−3.1071 × 10−2

1.0626 × 10−2

−3.7923 × 10−3

1.2636 × 10−3




, (6.3.20)

and we then obtain

−




c0
c1
...
c9


 =




−6.8220 × 100

4.9587 × 100

−2.0852 × 100

7.2863 × 10−1

−2.5626 × 10−1

8.8224 × 10−1

−3.1113 × 10−2

1.0583 × 10−2

−3.8350 × 10−3

1.2210 × 10−3




. (6.3.21)
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Figures 6.3 and 6.4 display the functions σD∞
and ξ 7→ σD∞

(ξ)/ sin2(ξ/2) on the

domain [0, 2π] respectively. The latter is clearly a positive function, which implies

that the former is positive on the open interval (0, 2π).

Thus, given

AN =
(
ϕ(j − k)

)N

j,k=−N

for any N ≥ n, we let DN be any (2N + 1)× (2N + 1) principal minor of D∞ and

define the preconditioner CN by the equation

CN = DN − (DNe)(DNe)
T

eTDNe
, (6.3.22)

where e = [1, . . . , 1]T ∈ R2N+1. We reiterate that we actually compute the matrix-

vector product CNx by the operations x 7→ DNx− (eTDNx/e
TDNe)e rather than

by storing the elements of CN in memory.

CN provides an excellent preconditioner. Tables 6.3 and 6.4 illustrate its

use when Algorithm 6.3.3b is applied to the linear system

ANx+ ey = b,

eTx = 0,
(6.3.23)

when N = 2, 048 and N = 32, 768 respectively. Here y ∈ R, e = [1, . . . , 1]T ∈
R2N+1 and b ∈ R2N+1 consists of pseudo-random real numbers uniformly dis-

tributed in the interval [−1, 1]. Again, this behaviour is typical and all our numer-

ical experiments indicate that the number of steps is independent of N . We remind

the reader that the error shown is ‖ρk+1‖, but that the iterations are stopped when

either ‖ρk+1‖ or ‖δk+1‖ is less than 10−13‖b‖, where we are using the notation of

Algorithm 6.3.3b.

It is interesting to compare Table 6.3 with Table 6.5. Here we have chosen

m = 1, and the preconditioner is essentially a multiple of the second divided

difference preconditioner advocated by Dyn, Levin and Rippa (1986). Indeed, we

find that d0 = 7.8538 and d1 = d−1 = −3.9269. We see that its behaviour is clearly

inferior to the preconditioner generated by choosing m = 9. Furthermore, this is

to be expected, because we are choosing a smaller finite section to approximate
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the reciprocal of the symbol function. However, because σD∞
(ξ) is a multiple of

sin2 ξ/2, this preconditioner still possesses the property that {σD∞
(ξ)σ(ξ) : ξ ∈

(0, 2π)} is a bounded set of real numbers.

Iteration Error

1 3.975553 × 104

2 8.703344 × 10−1

3 2.463390 × 10−2

4 8.741920 × 10−3

5 3.650521 × 10−4

6 5.029770 × 10−6

7 1.204610 × 10−5

8 1.141872 × 10−7

9 1.872273 × 10−9

10 1.197310 × 10−9

11 3.103685 × 10−11

Table 6.3: Preconditioned CG – m = 9, n = 64, N = 2, 048

Iteration Error

1 2.103778 × 105

2 4.287497 × 100

3 5.163441 × 10−1

4 1.010665 × 10−1

5 1.845113 × 10−3

6 3.404016 × 10−3

7 3.341912 × 10−5

8 6.523212 × 10−7

9 1.677274 × 10−5

10 1.035225 × 10−8

11 1.900395 × 10−10

Table 6.4: Preconditioned CG – m = 9, n = 64, N = 32, 768
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It is also interesting to compare the spectra of CnAn for n = 64 and m = 1

and m = 9. Accordingly, Figures 6.5 and 6.6 display all but the largest nonzero

eigenvalues of CnAn for m = 1 and m = 6 respectively. The largest eigenvalues

are 502.6097. and 288.1872, respectively, and these were omitted from the plots in

order to reveal detail at smaller scales. We see that the clustering of the spectrum

when m = 9 is excellent.

Iteration Error

1 2.645008 × 104

10 8.632419 × 100

20 9.210298 × 10−1

30 7.695337 × 10−1

40 3.187051 × 10−5

50 5.061053 × 10−7

60 7.596739 × 10−9

70 1.200700 × 10−10

73 3.539988 × 10−11

74 1.992376 × 10−11

Table 6.5: Preconditioned CG – m = 1, n = 64, N = 8, 192

The final topic in this section demonstrates the instability of Algorithm

6.3.3a when compared with Algorithm 6.3.3b. We refer the reader to Table 6.6,

where we have chosen m = 9, n = N = 64, and setting b = [1, 4, 9, . . . , N2]T . The

iterations for Algorithm 6.3.3b, displayed in Table 6.7, were stopped at iteration

108. For Algorithm 6.3.3a, iterations were stopped when either ‖ρk+1‖ or ‖δk+1‖
became smaller than 10−13‖b‖. It is useful to display the norm of ‖δk‖ rather than

‖ρk‖ in this case. We see that the two algorithms almost agree on the early inter-

ations, but that Algorithm 6.3.3a soon begins cycling, and no convergence seems

to occur. Thus when ρk can leave the required subspace due to finite precision

arithmetic, it is possible to attain non-descent directions.
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Iteration ‖δk‖ – 6.3.3a ‖δk‖ – 6.3.3b

1 4.436896 × 104 4.436896 × 104

2 2.083079 × 102 2.083079 × 102

3 2.339595 × 100 2.339595 × 100

4 1.206045 × 10−1 1.206041 × 10−1

5 1.698965 × 10−3 1.597317 × 10−3

6 6.537466 × 10−2 6.512586 × 10−2

7 1.879294 × 10−4 9.254943 × 10−6

8 2.767714 × 10−2 1.984033 × 10−7

9 3.453789 × 10−4

10 1.914126 × 10−3

20 4.628447 × 10−1

30 3.696474 × 10−0

40 8.061922 × 10+3

50 2.155310 × 100

100 3.374467 × 10−1

101 1.121903 × 100

102 1.920517 × 10−1

103 3.772007 × 10−2

104 3.170231 × 10−2

105 2.612073 × 10−1

106 2.236274 × 100

107 8.875137 × 10−1

108 1.823607 × 10−1

Table 6.5: Algorithms 6.3.3a & b – m = 1, n = 64, N = 64, b = [1, 4, . . . , N2]T .
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Figure 6.3: The function σD∞
.
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Figure 6.4: The function ξ 7→ σD∞
(ξ)/ sin2(ξ/2).
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Figure 6.5: The spectrum of CnAn for m = 1 and n = 64.
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Figure 6.6: The spectrum of CnAn for m = 9 and n = 64.
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7 : On the asymptotic cardinal function for the multiquadric

7.1. Introduction

The radial basis function approach to interpolating a function f :Rd → R on the

integer lattice Zd is as follows. Given a continuous univariate function ϕ: [0,∞) →
R, we seek a cardinal function

χ(x) =
∑

j∈Zd

ajϕ(‖x− j‖), x ∈ Rd, (7.1.1)

that satisfies

χ(k) = δ0,k, k ∈ Zd.

Therefore

If(x) =
∑

j∈Zd

f(j)χ(x− j), x ∈ Rd, (7.1.2)

is an interpolant to f on the integer lattice whenever (7.1.2) is well defined. Here

‖ · ‖ is the Euclidean norm on Rd. This approach provides a useful and flexible

family of approximants for many choices of ϕ, but here we concentrate on the

Hardy multiquadric ϕc(r) = (r2 + c2)1/2. For this function, Buhmann (1990) has

shown that a cardinal function χc exists and its Fourier tranform is given by the

equation

χ̂c(ξ) =
ϕ̂c(‖ξ‖)∑

k∈Zd ϕ̂c(‖ξ + 2πk‖) , ξ ∈ Rd, (7.1.3)

where {ϕ̂c(‖ξ‖) : ξ ∈ Rd} is the generalized Fourier transform of {ϕc(‖x‖) :

x ∈ Rd}. Further, χc possesses a classical Fourier transform (see Jones (1982) or

Schwartz (1966)). In this chapter, we prove that χ̂c enjoys the following property:

lim
c→∞

χ̂c(ξ) =

{
1, ξ ∈ (−π, π)d,
0, ξ /∈ [−π, π]d,

(7.1.4)

which sheds new light on the approximation properties of the multiquadric as c→
∞. For example, in the case d = 1, (7.1.4) implies that limc→∞ χc(x) = sinc(x),

providing a perhaps unexpected link with sampling theory and the classical theory

of the Whittaker cardinal spline. Further, our work has links with the error analysis
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of Buhmann and Dyn (1991) and illuminates the explicit calculation of Section 4

of Powell (1991). It may also be compared with the results of Madych and Nelson

(1990) and Madych (1990), because these papers present analogous results for

polyharmonic cardinal splines.

7.2. Some properties of the multiquadric

The generalized Fourier transform of ϕc is given by

ϕ̂c(‖ξ‖) = −π−1(2πc/‖ξ‖)(d+1)/2K(d+1)/2(c‖ξ‖), (7.2.1)

for nonzero ξ ∈ Rd (see Jones (1982)). Here {Kν(r) : r > 0} are the modified

Bessel functions, which are positive and smooth in R+, have a pole at the origin,

and decay exponentially (see Abramowitz and Stegun (1970)). There is an integral

representation for these modified Bessel functions (Abramowitz and Stegun (1970),

equation 9.6.23) which transforms (7.2.1) into a highly useful formula for ϕ̂c:

ϕ̂c(‖ξ‖) = −λdc
d+1

∫ ∞

1

exp(−cx‖ξ‖)(x2 − 1)d/2 dx, (7.2.2)

where λd = πd/2/Γ(1 + d/2). A simple consequence of (7.2.2) is the following

lemma, which bounds the exponential decay of ϕ̂c.

Lemma 7.2.1. If ‖ξ‖ > ‖η‖ > 0, then

|ϕ̂c(‖ξ‖)| ≤ exp[−c(‖ξ‖ − ‖η‖)] |ϕ̂c(‖η‖)|.

Proof. Applying (7.2.2), we obtain

|ϕ̂c(‖ξ‖)| = λdc
d+1

∫ ∞

1

exp[−cx(‖ξ‖ − ‖η‖)] exp(−cx‖η‖) (x2 − 1)d/2 dx

≤ exp(−c(‖ξ‖ − ‖η‖)) |ϕ̂c(‖η‖)|,

providing the desired bound.

We now prove our main result. We let I:Rd → R be the characteristic

function of the cube [−π, π]d, that is

I(ξ) =

{
1, ξ ∈ [−π, π]d,
0, ξ /∈ [−π, π]d.
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Proposition 7.2.2. Let ξ be any fixed point of Rd. We have

lim
c→∞

χ̂c(ξ) = I(ξ),

if ‖ξ‖∞ 6= π, that is ξ does not lie in the boundary of [−π, π]d.

Proof. First, suppose that ξ /∈ [−π, π]d. Then there exists a nonzero integer k0

such that ‖ξ + 2πk0‖ < ‖ξ‖, and Lemma 7.2.1 provides the bounds

|ϕ̂c(‖ξ‖)| ≤ exp[−c(‖ξ‖ − ‖ξ + 2πk0‖)]|ϕ̂c(‖ξ + 2πk0‖)|

≤ exp[−c(‖ξ‖ − ‖ξ + 2πk0‖)]
∑

k∈Zd

|ϕ̂c(‖ξ + 2πk‖)|.

Thus, applying (7.1.3) and remembering that ϕ̂c does not change sign, we have

0 ≤ χ̂c(ξ) ≤ exp[−c(‖ξ‖ − ‖ξ + 2πk0‖)], ξ /∈ [−π, π]d. (7.2.3)

The upper bound of (7.2.3) converges to zero as c→ ∞, which completes the proof

for this range of ξ.

Suppose now that ξ ∈ (−π, π)d. Further, we shall assume that ξ is nonzero,

because we know that χ̂c(0) = 1 for all values of c. Then ‖ξ + 2πk‖ > ‖ξ‖, for

every nonzero integer k ∈ Zd. Now (7.1.3) provides the expression

χ̂c(ξ) =
(
1 +

∑

k∈Zd\{0}

∣∣∣ ϕ̂c(‖ξ + 2πk‖)
ϕ̂c(‖ξ‖)

∣∣∣
)−1

. (7.2.4)

We shall show that

lim
c→∞

∑

k∈Zd\{0}

∣∣∣∣
ϕ̂c(‖ξ + 2πk‖)

ϕ̂c(‖ξ‖)

∣∣∣∣ = 0, ξ ∈ (−π, π)d, (7.2.5)

which, together with (7.2.4), implies that limc→∞ χ̂c(ξ) = 1.

Now Lemma 7.2.1 implies that

∑

k∈Zd\{0}

∣∣∣∣
ϕ̂c(‖ξ + 2πk‖)

ϕ̂c(‖ξ‖)

∣∣∣∣ ≤
∑

k∈Zd\{0}

exp[−c(‖ξ + 2πk‖ − ‖ξ‖)], (7.2.6)
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and each term of the series on the right converges to zero as c → ∞, since ‖ξ +

2πk‖ > ‖ξ‖ for every nonzero integer k. Therefore we need only deal with the tail

of the series. Specifically, we derive the equation

lim
c→∞

∑

‖k‖≥2‖e‖

exp[−c(‖ξ + 2πk‖ − ‖ξ‖)] = 0, (7.2.7)

where e = [1, 1, . . . , 1]T . Now, if ‖k‖ ≥ 2‖e‖, then

‖ξ + 2πk‖ − ‖ξ‖ ≥ 2π(‖k‖ − ‖e‖) ≥ π‖k‖,

remembering that we have ‖ξ‖ ≤ π‖e‖. Hence

∑

‖k‖≥2‖e‖

exp[−c(‖ξ + 2πk‖ − ‖ξ‖)] ≤
∑

‖k‖≥2‖e‖

exp(−πc‖k‖). (7.2.8)

It is a simple exercise to prove that the series
∑

‖k‖≥2‖e‖ exp(−π‖k‖) is convergent.

Therefore, given any ǫ > 0, there exists a positive number R ≥ 1 such that

∑

‖k‖≥2R‖e‖

exp(−π‖k‖) ≤ ǫ.

Consequently, when c ≥ ⌈R⌉ we have the inequality

∑

‖k‖≥2‖e‖

exp(−πc‖k‖) ≤
∑

‖k‖≥2R‖e‖

exp(−π‖k‖) ≤ ǫ,

which establishes (7.2.5). The proof is complete.

7.3. Multiquadrics and entire functions of exponential type π

Definition 7.3.1 Let f ∈ L2(Rd). We shall say that f is a function of exponential

type A if its Fourier transform f̂ is supported by the cube [−A,A]d. We shall denote

the set of all functions of exponential type A by EA(Rd).

We remark that the Paley-Wiener theorem implies that f may be extended

to an entire function on Cd satisfying a certain growth condition at infinity (see

Stein and Weiss (1971), pages 108ff), although we do not need this result.
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Lemma 7.3.2. Let f ∈ Eπ(Rd)∩L2(Rd) be a continuous function. Then we have

the equation
∑

k∈Zd

f̂(ξ + 2πk) =
∑

k∈Zd

f(k) exp(−ikξ), (7.3.1)

the second series being convergent in L2(Rd).

Proof. Let

g(ξ) =
∑

k∈Zd

f̂(ξ + 2πk), ξ ∈ Rd.

At any point ξ ∈ Rd, this series contains at most one nonzero term, because of

the condition on the support of f̂ . Hence g is well defined. Further, we have the

relations ∫

[−π,π]d
|g(ξ)|2 dξ =

∫

Rd

|f̂(ξ)|2 dξ <∞,

since the Parseval theorem implies that f̂ is an element of L2(Rd). Thus g ∈
L2([−π, π]d) and its Fourier series

g(ξ) =
∑

k∈Zd

gk exp(ikξ),

is convergent in L2([−π, π]d). The Fourier coefficients are given by the expressions

gk = (2π)−d

∫

[−π,π]d
f̂(ξ) exp(−ikξ) dξ = (2π)−d

∫

Rd

f̂(ξ) exp(−ikξ) dξ = f(−k),

where the final equation uses the Fourier inversion theorem for L2(Rd). The proof

is complete.

We observe that an immediate consequence of the lemma is the convergence

of the series
∑

k∈Zd [f(k)]2, by the Parseval theorem.

For the following results, we shall need the fact that χc ∈ L2(Rd), which is

a consequence of the analysis of Buhmann (1990).

Lemma 7.3.3. Let f ∈ Eπ(Rd) ∩ L2(Rd) be a continuous function. For each

positive integer n, we define the function

Ŝn
c f(ξ) =


 ∑

‖k‖1≤n

f(k) exp(−ikξ)


 χ̂c(ξ), ξ ∈ Rd. (7.3.2)

Then {Sn
c f : n = 1, 2, . . .} forms a Cauchy sequence in L2(Rd).
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Proof. Let Qn:Rd → R be the trigonometric polynomial

Qn(ξ) =
∑

‖k‖1≤n

f(k) exp(−ikξ), (7.3.3)

so that Ŝn
c f(ξ) = Qn(ξ)χ̂c(ξ). It is a consequence of Lemma 7.3.2 that this se-

quence of functions forms a Cauchy sequence in L2([−π, π]d). Indeed, we shall

prove that for m ≥ n we have

‖Ŝm
c f − Ŝn

c f‖L2(Rd) ≤ ‖Qm −Qn‖L2([−π,π]d), (7.3.4)

so that the sequence of functions {Ŝn
c f : n = 1, 2, . . .} is a Cauchy sequence in

L2(Rd).

Now Fubini’s theorem provides the relation

‖Ŝm
c f − Ŝn

c f‖2
L2(Rd) =

∫

Rd

|Qm(ξ) −Qn(ξ)|2 χ̂2
c(ξ) dξ

=

∫

[−π,π]d
|Qm(ξ) −Qn(ξ)|2


∑

l∈Zd

χ̂2
c(ξ + 2πl)


 dξ.

(7.3.5)

However, (7.1.3) gives the bound
∑

l∈Zd

χ̂2
c(ξ + 2πl) =

∑

l∈Zd

ϕ̂2
c(‖ξ + 2πl‖)

/
(
∑

k∈Zd

ϕ̂c(‖ξ + 2πk‖))2

≤ 1,

(7.3.6)

which, together with (7.3.5), yields inequality (7.3.4).

Thus we may define

Ŝcf(ξ) = χ̂c(ξ)
∑

k∈Zd

f(k) exp(−ikξ), (7.3.7)

and the series is convergent in L2(Rd). Applying the inverse Fourier transform

term by term, we obtain the useful equation

Scf(x) =
∑

k∈Zd

f(k)χc(x− k), x ∈ Rd.

Theorem 7.3.4. Let f ∈ Eπ(Rd) ∩ L2(Rd) be a continuous function. We have

lim
c→∞

Scf(x) = f(x),

and the convergence is uniform on Rd.

124



On the asymptotic cardinal function for the multiquadric

Proof. We have the equation

Scf(x) − f(x) = (2π)−d

∫

Rd

∑

k∈Zd

f̂(ξ + 2πk) (χ̂c(ξ) − I(ξ)) exp(ixξ) dξ.

Thus we deduce the bound

|Scf(x) − f(x)|

≤ (2π)−d

∫

[−π,π]d
|f̂(ξ)|

∑

k∈Zd

∣∣∣χ̂c(ξ + 2πk) − I(ξ + 2πk)
∣∣∣ dξ

= (2π)−d

∫

[−π,π]d
|f̂(ξ)|


1 − χ̂c(ξ) +

∑

k∈Zd\{0}

χ̂c(ξ + 2πk)


 dξ,

(7.3.8)

using the fact that χ̂c is non-negative, and we observe that this upper bound is

independent of x. Therefore we prove that the upper bound converges to zero as

c→ ∞.

Applying (7.1.3), we obtain the relation

∑

k∈Zd\{0}

χ̂c(ξ + 2πk) = 1 − χ̂c(ξ), (7.3.9)

whence

|Scf(x) − f(x)| ≤ 2(2π)−d

∫

[−π,π]d
|f̂(ξ)|(1 − χ̂c(ξ)) dξ. (7.3.10)

Now f̂ ∈ L2([−π, π]d) implies f̂ ∈ L1([−π, π]d), by the Cauchy-Schwartz inequal-

ity. Further, Proposition 7.2.2 gives the limit limc→∞ χ̂c(ξ) = 1, for ξ ∈ (−π, π)d,

and we have 0 ≤ 1 − χ̂c(ξ) ≤ 1, by (7.1.3). Therefore the dominated convergence

theorem implies that

lim
c→∞

(2π)−d

∫

[−π,π]d
|f̂(ξ)|(1 − χ̂c(ξ)) dξ = 0.

The proof is complete.
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7.4. Discussion

Section 4 of Powell (1991) provides an explicit calculation that is analogous to the

proof of Theorem 7.3.4 when f(x) = x2. Of course, this function does not satisfy

the conditions of Theorem 7.3.4. Therefore extensions of this result are necessary,

but the final form of the theorem is not clear at present.

Theorem 7.3.4 encourages the use of large c for certain functions. Indeed,

it suggests that large c will provide high accuracy interpolants for univariate func-

tions that are well approximated by integer translates of the sinc function. Thus, in

exact arithmetic, a large value of c should be useful whenever the function is well

approximated by the Whittaker cardinal series. However, we recall that the linear

systems arising when c is large can be rather ill-conditioned. Indeed, in Chapter

4 we proved that the smallest eigenvalue of the interpolation matrix generated by

a finite regular grid converges to zero exponentially quickly as c → ∞. We refer

the reader to Table 4.1 for further information. Therefore special techniques are

required for the effective use of large c.
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8 : Conclusions

There seems to be no interest in using non-Euclidean norms for radial basis

functions at present, possibly because of the poor approximation properties of

the ℓ1-norm ‖ · ‖1 reported by several workers. Thus Chapter 2 does not seem

to have any practical applications yet. However, it may be useful to use p-norms

(1 < p < 2), or functions of p-norms, when there is a known preferred direction

in the underlying function, because radial basis functions based on the Euclidean

norm can perform poorly in this context. On a purely theoretical note, we observe

that the construction of Section 2.4 can be applied to any norm enjoying the

symmetries of the cube.

The greatest weakness – and the greatest strength – of the norm estimates

of Chapters 3–6 lies in their dependence on regular grids. However, we note that

the upper bounds on norms of inverses apply to sets of centres which can be

arbitrary subsets of a regular grid. In other words, contiguous subsets of grids are

not required. Furthermore, we conjecture that a useful upper bound on the norm

of the inverse generated by an arbitrary set of centres with minimal separation

distance δ (that is ‖xj − xk‖ ≥ δ > 0 if j 6= k) will be provided by the upper

bound for the inverse generated by a regular grid of spacing δ.

Probably the most important practical finding of this dissertation is that

the number of steps required by the conjugate gradient algorithm can be indepen-

dent of the number of centres for suitable preconditioners. We hope to discover

preconditioners with this property for arbitrary sets of centres.

The choice of constant in the multiquadric is still being investigated (see, for

instance, Kansa and Carlson (1992)). Because the approximation of band-limited

functions is of some practical importance, our findings may be highly useful. In

short, we suggest using as large a value of the constant as the condition number

allows. Hence there is some irony in our earlier discovery that the condition number

of the interpolation matrix can increase exponentially quickly as the constant

increases.

Let us conclude with the remark that radial basis functions are extremely
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rich mathematical objects, and there is much left to be discovered. It is our hope

that the strands of research initiated in this thesis will enable some of these future

discoveries.
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