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1 Introduction

In this short course we will first introduce the basics of C++ language syntax,
variable types and control flow. Next will come the important object oriented
programming concepts of encapsulation and polymorphism. The purpose of
these programming techniques is to conveniently package data storage and
computational functionality, and to make code easily reusable. Most of the
time spent on pure programming language issues will therefore be focussed
on classes and their design.

However, programming techniques are only a means to an end: we are inter-
ested in applications of numerical methods in finance, and will be spending
the remainder of the time on linear algebra methods, and random number
generation.

We will also be drawing on code from other sources; although methods used
for solving linear equations are interesting, you might not want to write a
class to solve this problem before starting on anything else. In particular,
there are good libraries available in the public domain for all common linear
algebra tasks (e.g. Cholesky factorisation, solving linear equations), so we
will not be dealing with how to solve these problems in this course. (If you
look at some of the code we discuss, you will see why!)

It is important to note that this course cannot be an exhaustive survey of the
C++ language or of object oriented programming techniques; the language is
a large and complex one! However, we will give sufficient information about
the background issues to enable you to get started on the numerical/financial
side of things which is after all the focus of this course.

Compilers

Some possible compilers and development environments are:

1. Windows: Visual C++ 2010 Express is a very good compiler with
a visually oriented debugger. This can be downloaded for free from
Microsoft, along with SQL server.

2. Linux: GNU compiler. Free, but has a liberal attitude to language
standards. (Called g++ on Linux.)
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Useful Books

There are many books on C++, but not very many good ones. We recom-
mend the following as being about the best available:

1. C++ Primer, Lippman and Lajoie, 4th Edition, Addison Wesley, 2005.
This is probably about the best beginner/intermediate book on C++
and is fine for self-teaching.

2. The C++ Programming Language, Stroustrup, 3rd Edition, Addison
Wesley, 1997. Written by the inventor of C++, this book contains
everything you will ever want to know about C++ and quite a lot
more besides. It is heavy going, though, until you are comfortable with
the basics.

3. C++: The Core Language, by G. Satir and D. Brown, published by
O’Reilly. This is a particularly good book if you already have some C
experience.

4. Introducing C++ for Scientists, Engineers and Mathematicians, second
edition, by D. M. Capper. Published in paperback by Springer. this
book is oriented almost entirely towards scientific computing methods
and is not about general language issues.

5. Numerical Recipes in C++: The Art of Scientific Programming, by
W. H. Press, S. A. Teukolsky, W. T. Vetterling and B. P. Flannery,
published by Cambridge University Press. This book is a source of
implementations of many useful numerical methods, but any recom-
mendation has to be strongly qualified. The design of the code in the
book could at best be described as average, contains many bugs and
in no way should be taken as examples of good programming practice.
However, there are still things worth “borrowing.”

When you have a good grasp of language basics, and are confident with the
principle and practice of using classes, the following book will be of great
interest:

Design patterns: elements of reusable object-oriented software by E. Gamma,
R. Helm, R. Johnson, and J. Vlissides, Addison Wesley (1995).
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Part I

The C++ Language

2 Language Basics

Note that there is far more to the language than is covered in this brief
section; this part of the course is just a “getting started” survey of the most
important principles.

All C++ programs must contain one and only one function called main, and
it is best to put this into a file called main.cpp. This is the function which
is called by the operating system when a binary executable is run. The form
of main() should be as follows

int main()

{

// code goes in here

return 0;

}

any text after the // characters on a line is a comment (i.e. is ignored). The
main function must have an int return value, which can be used to indicate
exit status from the program; the example shown here returns the value 0.
A semi-colon is required at the end of each line of code. Code in C++ is
divided up into so-called blocks; these are deliniated by curly brackets. All
of the code in main() has to be enclosed in curly brackets.

In addition, you will notice that there are other commands which are gen-
erally needed to main main() work. Firstly, there are #include statements
which tell the compiler to use the interfaces of various parts of the language
standard library. In addition, the statement using namespace std; is re-
quired to make the standard library available. It might seem that something
here is redundant, but both are necessary for historical reasons (namespaces
are a relatively recent addition to the language).
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2.1 Variable Types and IO

2.1.1 Numbers

For the examples in this section (and many further on) the statements re-
quired before the declaration of the main() function should be added as
follows:

#include <iostream>

using namespace std;

int main()

{

// ...

return 0;

}

In numerical analysis we are mostly interested in numbers and there are
various ways in which they can be represented. The most commonly used are
integers (signed and unsigned) and double precision floating point variables
(called double for short). The following code fragments declare some of these
variables and then show how basic input and output is performed in C++.

int i = 1, j;

cout << "int variable types " << i << " " << j << endl;

unsigned int m, n = 0;

cout << "unsigned int types " << m << " " << n << endl;

double x, y = 234.432;

cout << "double types " << x << " " << y << endl;

An important issue that one can see from running this example is that all
variables must have values set (i.e. be initialised) before being used, other-
wise the values they contain will be unpredictable.

It is also extremely important to note that the computer does arithmetic
with finite precision. Integer variables are represented by 4 bytes (so the
maximum value of a variable of type unsigned int is 232−1), and a variable
of type double is represented using 8 bytes of memory. There is another type
of floating point variable called float which uses only 4 bytes of memory,
which is nowhere near enough for numerical work; float should never be
used for numerical analysis.

In the previous bits of code, the cout represents standard output for the
system (the ’c’ stands for “console”), and the << characters send whatever is
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on their right to output. This output appears on the command line interface
(in the CBX environment this is the window at the bottom). Similarly, cin
can be used as standard input to get data from the command line interface,
as follows:

double x;

cout << "Enter a number : ";

cin >> x;

cout << endl << "You typed: " << x << endl;

2.1.2 Strings

Another important variable type which is part of the standard library of
C++ is the string class. We have been using this already, since anything
enclosed in double quotes is a string, but string variables can be declared in
the exactly the same way:

string oString;

oString = "a value for the string";

cout << oString << endl;

The notation in naming the variable (oString) should be read as “object of
type string.” You will need to use the statement

#include <string>

in order to use the string class.

2.1.3 Boolean variables

A variable of type bool can be used to represent the values true or false,
and is generally used in logical decision making (see the section on logical
operations below). For example

bool bVar01 = false;

bool bVar02 = true;

although one can output these, they are only really useful when combined
with the logical operations and control structures outlined below.
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2.2 Operations On Variables

2.2.1 Arithmetic operations

All of the ususal arithmetic operations apply to the variable types just de-
scribed. For example,

int i1 = 10, i2 = 20;

double x1 = 1.234, x2 = 3.432;

cout << "x1 * x2 = " << x1 * x2 << endl;

cout << "x1 / x2 = " << x1 / x2 << endl;

cout << "i1 - i2 = " << i1 - i2 << endl;

Now some operations with variables of type unsigned int

unsigned int j1 = 1, j2 = 100;

cout << "j1 - j2 = " << j1 - j2 << endl;

Does the output here make sense? Here is another example where the reason
for the output might not be entirely obvious:

unsigned int k1 = 3, k2 = 2;

cout << "k1 / k2 = " << k1 / k2 << endl;

We would expect the output here to be a decimal number; however, we have
been given the integer part of the expected result. This is of course what is
supposed to happen, but remember that integer variables can only represent
integer values so using them in numerical analysis is to be done with care!

Now suppose that we wanted to evaluate an expression involving variables
of type double and int and get not what the compiler thinks we should get,
but the mathematically correct answer instead. There is of course a way to
do this:

int m1 = 3, m2 = 7;

cout << "m1 / m2 = "

<< static_cast<double>(m1) / static_cast<double>(m2)

<< endl ;

what we have done here is to use what is called a cast. This is an operation
which tells the compiler to take the value of a variable but use it as if it were
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actually using another type. In this case, we have got integer variables, but
we are telling the compiler to perform the arithmetic as if the values were
stored in variables of type double.

We can go in the other direction as well, and cast a double to type int, for
example

double w = 3.321;

cout << "value = " << static_cast<int>(w) << endl;

where the fractional part of the double variable has been ignored. Note that
casting a variable does not affect the value which that variable stores; it only
affects how it is used.

The style of casting just described is a recent addition to C++, and in a
good deal of older code, you will often see a different syntax:

double g = 123.321;

cout << "(int) cast of g = " << (int)g << endl;

where the variable type to be cast to is written in round brackets. This
approach is still valid, but the newer method described above should always
be used.

Important Point: Whenever you see arithmetic operations which incorpo-
rate variables of different types, be very careful that it means what you think
it means.

2.2.2 Operator shorthand

The language contains a couple of shorthand idioms which are commonly
used. Firstly,

unsigned int iValue = 10;

iValue++;

cout << "iValue = " << iValue << endl;

iValue--;

cout << "iValue = " << iValue << endl;

where the value of the variable has been incremented (using ++) and then
decremented (using --). That is, these operations are the same as the state-
ments
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iValue = iValue + 1;

iValue = iValue - 1;

These operators can also be put in front of the variable upon which they
are to operate; try this and see what the difference is. Secondly, we have a
shorthand using other arithmetic operators

double dX = 123.456, dY = 10.0;

dX *= dY;

dY += 3.5;

cout << "dX = " << dX << "; dY = " << dY << endl;

where the operation *= should be read as “multiply and assign”, and +=

should be read as “add and assign”, and could be written out in full as

dX = dX * dY;

dY = dY + 3.5;

This shorthand also works with other operators.

2.2.3 Logical operations

We also have a set of logical operations in order to compare values of vari-
ables. For example,

double x = 1.0, y = 2.0;

bool b01, b02, b03, b04;

b01 = (x == y); // test for equality

b02 = (x != y); // test for inequality

b03 = (x <= y); // test for x leq y

b04 = (x > y); // test x gt y

The result of one of these logical operations (in this case upon two double

variables) is a Boolean value; in this case, the value of b01 will be false

and the value of b02 will be true. The following examples perform logical
operations upon Boolean values as arguments,

b03 = (b01 && b02); // logical AND

b04 = (b02 || b04); // logical OR

and we can of course test Boolean variables for (in)equality as well. The !

operator is logical NOT, that is changes true to false and visa versa, for
example we might write
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b01 = !b02;

and if b02 is true then b01 will be assigned to false in this example.

One final point is that we can also apply the logical AND/OR operations to
number variables such as unsigned int or double. These are interpreted as
meaning true if they are non-zero, and false if they are zero.

2.3 The Mathematics Library

There are many mathematical functions built into the language, which can
be accessed in any code provided that the statements

#include <cmath>

using namespace std;

are incorporated into the header of the file in question. A few examples are
sqrt() (square root), abs() (absolute value), various trigonometric func-
tions, and many more.

For some reason, the value of π is not built in, but values of many constants
can be easily obtained

double dPI = acos(-1.0);

double dE = exp(1.0);

double dR2 = sqrt(2.0);

2.4 Control Structures

2.4.1 Looping

The most commonly used looping structure has the following form

unsigned int nLoop = 10;

for (unsigned int iLoop=0; iLoop<nLoop; iLoop++)

{

// code to be executed in the loop

}

the for keyword is followed by three expressions in round brackets seper-
ated by semi-colons. The first of these initialises the loop, the second must
evaluate to true for an iteration of the loop to take place, and the third is
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executed at the end of every iteration. Each iteration of the loop executes
the code in the block immediately following the for statement. If brackets
are not used to deliniate a block of code, then only the next line of code will
be executed at each iteration.

In this example, the loop is initialised by setting iLoop=0, and if iLoop<nLoop
is true then an iteration will take place. At the end of each iteration, the
expression iLoop++ is executed (meaning iLoop=iLoop+1), incrementing the
value of the looping variable.

In general the for statement has the structure

for ( <exp1> ; <exp2> ; <exp3> ) { }

consisting of three expressions separated by semi-colons. The first initialises
the loop, the second has to evaluate to true in order for an iteration to be
executed, and the third is executed at the end of each iteration. Note that
the test of <exp2> is made before an iteration, therefore the looping code
may never be executed.

One can exit from any loop using the break keyword, for example

if (iLoop >= 2)

break;

could be used in the first example using the for loop given above.

There are other looping structures which are less commonly used;

while ( <exp> ) { }

do { }

while ( <exp> );

in both cases, the code enclosed in curly brackets is executed if the <exp>

evaluates to true. However, the difference between the two approaches is
apparent if one considers when the expression <exp> is tested. In the first
case, the expression is tested at the beginning of the loop, and so the code
may never be executed. In the second case, the expression is tested at the
end of the loop, so the looping code will always be executed at least once.

2.4.2 Decision making using if

The if statement is the most commonly used decision making mechanism,
and has the following form
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if ( <exp> )

{

// code executed if <exp> is true

}

where if the <exp> enclosed in round brackets evaluates to true then the
following block of code is executed.

Sets of decisions can be put together, and we might also use Boolean data
types as well, for example

bool bVal;

double x = 123.123, y = 345.432;

bVal = (x >= y);

if (bVal)

{

// perform task A

}

else

{

// perform task B

}

or using else if we can have more than two possibilities, as follows:

if (x <= 2.0) { }

else if (x <= 4.0) { }

else { }

2.4.3 Decision making using switch

This comes under “possible, but not recommended.”

The switch statement can be used to select one of several tasks from a list
of possibilities which are selected according to the value of some specified
variable

unsigned int iTestValue;

// do something with iTestvalue here

switch (iTestValue)

{
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case 1:

cout << "Task 1 here" << endl;

break;

case 2:

cout << "Task 2 here" << endl;

break;

case 3:

cout << "Task 3 here" << endl;

break;

default:

cout << "Default task here" << endl;

break;

}

The name of the variable upon which to switch is specified in round brackets
(and it must be of integer type), and the special values specified by the
programmer are given in each of the case statements, all of which must be
enclosed in curly brackets to make a block of code as usual. Note that each
of the case statements is followed by a colon, not a semi-colon.

The break statements cause the program to exit from the switch block of
code when a particular case has completed, but do not have to be present.
However, if the break statements are not used, then every bit of code from
the first case which is found to be true until the end of the switch will be
executed. Consider the following example

unsigned int iP = 1;

switch (iP)

{

case 1:

cout << "task 1" << endl;

case 2:

cout << "task 2" << endl;

}

Finally, note that the default case does exactly what it says; if a break is not
encountered beforehand, then the default task will be performed, irrespective
of the value of the switch variable. It does not have to be included, but is
usually a good idea to have some kind of default behaviour for cases which
are not specified.
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2.5 Pointers and Memory

From the point of view of the programmer, the machine’s memory (RAM) is
a linear list of bytes, each of which is numbered, starting at zero and going
up to some maximum value

0, 1, 2, 3, . . . , n− 2, n− 1,

The number referring to a byte is called its address. On a 32-bit machine, the
variable type representing memory addresses is a 32-bit unsigned int and
has a maximum value of 232 − 1 = 4294967295. Thus the maximum amount
of memory you can physically have on a 32-bit machine is about 4Gb. (On
a 64-bit machine, the theoretical maximum would be ≈ 1.8 × 1019, not far
off the number of atoms in the computer.)

You can access what’s at byte m by using a variable name, or what is called
a “pointer.”

A pointer is a special kind of variable which contains the value of the memory
address of another variable, in units of bytes. The type of the variable to
which the pointer refers also has to be specified:

double x = 1.0; // variable of type double

double *pD; // pointer to double

the & operator means “take the address of”, and the operator * means “value
at a pointer address.” For example the following code sets the pointer equal
to the address of the variable, and then gives some output:

pD = &x;

cout << "value of pD = " << pD << endl;

cout << "value at pD = " << *pD << endl;

There are many uses for pointers, but we are mainly concerned with memory
allocation and management. Suppose that instead of creating a variable of
type double we wish to have an array of variables (which can be thought of
as a vector). The standard way of doing this in C++ is as follows:

double *pA = NULL; // initialise a pointer to NULL

unsigned int nArray = 100; // length of the array

pA = new double[nArray]; // allocate memory to pointer

// do something

// with the array

delete [] pA; // delete the memory

pA = NULL; // reset the pointer to NULL
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The new operator allocates memory and returns a pointer to the location
used (remember that a pointer is a memory address). When new is called
with a number in square brackets [nArray] as its argument, it allocates that
number of variables and returns the pointer address of the first of these.
These variables are located in a contiguous piece of memory and, and with
the array allocated in the previous example may be used as follows:

for (unsigned int iLoop=0; iLoop<nArray; iLoop++)

{

pA[iLoop] = 0.0; // set some values

cout << iLoop << " " << pA[iLoop] << endl;

}

The operators new and delete can also be called without the square brackets
in which case only one variable of the specified type will be created. We will
be using this approach later on.

Although not required, it is good programming practice to initialise all
pointer values to NULL (which means 0) and to always test pointer values
(to make sure they are not equal to NULL) before they are used.

Very Important Point (A): When memory is allocated using the new

operator, it must always be released from the program again using delete.
If this is not done then repeated calls to new will allocate the computer’s
memory to the program without it being released, resulting in what is called
a memory leak.

Very Important Point (B): If the memory was allocated using new [] (to
allocate an array) then it must be released using delete [] (to release an
array); similarly, if new was called without the square brackets argument (to
allocate a single variable of the specified type), so too must delete. Calls to
new and delete on a particular pointer must match.

2.5.1 Arrays and pointer arithmetic

Suppose that we have an array created using a pointer and the new operator
in the way that was just described. The elements of this array were referred
to by using the square brackets operator, and for an array that consists of
nArray elements, the index should go from 0 to nArray-1. This seems like a
peculiar way to index array elements, but these is a very good reason for it.

Consider the creation of the array in the way just described:

unsigned int nArray = 100;
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double *pA = new double [nArray];

The pointer is of course a memory address, and after the call to the new

operator, it contains the address of the first element of the array. Therefore,
this element can be accessed by the statement

*pA = 10.0; // set the first element of the array

How can we now make the pointer refer to the next element of the array?
The answer is to increment the pointer

pA++; // increment the pointer

*pA = 20.0; // set the second element

So the operation pA++ is the same as saying pA = pA + 1, but if the ac-
tual pointer values were to be printed out, then we would see something
interesting. Try the following, using the double pointer as defined above

cout << "pointer value before " << pA << endl;

pA++;

cout << "pointer value after " << pA << endl;

and the two numbers which are output here should differ by 8. The reason
for this is that in incrementing the pointer we have stepped from one array
element to the next; these array elements are variables of type double, each
of which occupies 8 bytes of memory; thus in stepping from one element to
the next, the memory address will have increased by 8.

Note that although the pointer value is given in bytes, when we increment
or decrement a pointer, the units which are used correspond to the size of
the variables to which the pointer refers. This is why the type of the pointer
is important, and why it has to be specified when the pointer is declared.

We can also increment the pointer value by more than unity, and write
something like

pA = pA + n; // n is some integer variable

and again the number by which we increment the pointer will be interpreted
as the number of variables of the specified type to step over, not a number
of bytes. Recalling that the value which is stored at a given memory address
can be read by using the * operator, we can use the statements
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double x;

x = *pA;

x = *(pA+1);

where the first of these means “read the value stored at pA.” The second of
these means “read the value stored at pA+1” where this is the next variable
of type double stored in memory (8 bytes along from the first).

Similarly, we can access any double variable by referring to its location with
respect to pA in the following way

x = *(pA+n);

In the code examples above, the n-th array element can be accessed using the
square brackets operator where we type pA[n] where the variable n traverses
the range 0 to nArray-1. The meaning of the array index n and the reason
why it has this range will now become clear.

The index n is the offset from the beginning of the array, and so the first
element of the array will be found at pA[0], the next at pA[1] and so on.
The equivalent statements in terms of the * operator are

pA[0] same as *pA or *(pA+0) first array element

pA[1] same as *(pA+1) second array element

and in general then, for the n-th array element,

pA[n] same as *(pA+n)

where the index n goes from 0 to nArray-1. The statements *(pA+n) and
pA[n] are referring to the same array element.

It also makes sense that we can decrement a pointer, and the meaning is the
obvious one; for example

unsigned int iArray = 10;

unsigned int *pI = new unsigned int [iArray];

pI = pI + iArray;

pI--;

// now use *pI

Furthermore, we can add or subtract pointers remembering at all times that
the arithmetic is done in units of the size of the variables to which the pointers
refer.
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variable 1 variable 2 variable 3 variable 4

(8 bytes for each double variable)

1 2 3 4 5 6 7 8

*pA *(pA+1) *(pA+2) *(pA+3)
(syntax to access variables)

pA[0] pA[1] pA[2] pA[3]

6 6 6 6

pA pA+1 pA+2 pA+3 (syntax for memory
addresses)

? ? ? ?

-

Figure 1: An array of double variables, created by the statement “double
*pA = new double [4];”. Each of the variables is stored in 8 bytes of mem-
ory (illustrated for the first element of the array only). The memory address
of the first byte of storage associated with each of the variables are pA+n

where the index n runs through [0, 1, 2, 3]. To read (or set) the values we use
the syntax *(pA+n) or pA[n].

2.5.2 More on arrays

(A) You can define a 2-dimensional array if you like, but this involves some
extra fiddling. An easy way to manage a 2-d array using a 1-d array is by
storing the 2-d array in rows one after the other. For example,

unsigned int iRows = 10, iCols = 20;

double *pA = new double [iRows*iCols];

and just indexing along the 1-d array. Thus the (i, j)-th element of the matrix
is obtained by writing

x = pA[i*iCols + j];

and we might loop over the whole array in the following fashion

for (unsigned int i=0; i<iRows; i++)

for (unsigned int j=0; j<iCols; j++)

pA[i*iCols + j] = 0.0;
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(B) A genuine 2-d array can be allocated and used as follows

double **pArray = new double* [iRows];

for (unsigned int i=0; i<iRows; i++)

pArray[i] = new double [iCols];

and element access is performed in the intuitive way

for (unsigned int i=0; i<iRows; i++)

for (unsigned int j=0; j<iCols; j++)

pArray[i][j] = 0.0;

But you have to make sure that it’s all deleted again in the correct order

for (unsigned int i=0; i<iRows; i++)

delete [] pArray[i];

delete [] pArray;

I prefer the first technique because it is easier to follow and involves less
typing, both of which are assets in this game.

2.6 Functions

A function is a way of breaking up bits of a program into smaller more con-
venient parts, or packaging some task which must be performed repeatedly
to avoid duplicating material in source code. Here is a simple example

double TestFunction01(double x, double y)

{

double z = sqrt(x*x + y*y);

return z;

}

The function header consists of the type of the return value (double in this
case), the function name (TestFunction01), and the list of arguments of the
function enclosed in round brackets (two double variables). The function
body is enclosed in curly brackets (like any other block of code), and contains
the code to be executed when the function is called. The return value of the
function is just the norm of a vector in two dimensions. Here is a code
fragment showing how to call the function



2 LANGUAGE BASICS 19

double a = 1.0, b = 1.23, c;

c = TestFunction01(a, b);

So return values and arguments of functions must be either variable types
supported by the language or predefined class types. One thing that it is
very important to understand about function calls is demonstrated by the
following function which appears to change the values of its arguments

void TestFunction02(double a, double b)

{

a = 2.0 * a;

b = 2.0 * b;

}

and if we were to call this function from main() as follows,

double x = 1.0, y = 2.0;

TestFunction02(x, y);

cout << "x = " << x

<< "; y = " << y << endl;

the output might not be quite what one expects. The reason for this is
simple: when a function is called, new variables are created which are copies
of the argument list. It is these temporary copies which are used during the
function call, and only exist for the duration of the function call. Thus any
changes which are made to the arguments of a function will not be noticed
from the point of view of the calling program.

Therefore in the example using TestFunction02, even though the function
alters the values of the arguments, when we output the values of x and y

after the function call, there is no change. As a matter of nomenclature, this
process is referred to as “calling by value,” that is, the values of arguments
are copied.

What if we want a function which will alter the values of its arguments in
such a way that the values will be changed in the calling program? Even if we
didn’t want to change the argument, suppose that it was an object containing
a 50Mb image, or six months’ worth of tick data; we wouldn’t want to have
temporary copies created since this would be inefficient in memory usage
(allocating memory and creating copies of objects can also slow things down
dramatically).

Important Point: By default, function calls in C++ are call-by-value.
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2.6.1 Pointers and function calls

The first way of dealing with this is to use a pointer to a variable instead of
the variable itself as an argument. A modifed version of the previous example
would look like

void TestFunction02_Mod01(double *a, double *b)

{

*a = 2.0 * (*a);

*b = 2.0 * (*b);

}

When this version of the function is called, we have to give the addresses of
the variables we wish to alter as follows

TestFunction02_Mod01(&x, &y);

cout << "x = " << x

<< "; y = " << y << endl;

2.6.2 Call by reference

C++ provides a better way of doing the same thing, which is to call by
reference. This is almost the same as using pointers, but the syntax is easier,
and our next version of the function will be

void TestFunction02_Mod02(double &x, double &y)

{

x = 2.0 * x;

y = 2.0 * y;

}

and when this version of the function is called, we do not have to use the &

(address of) operator, since it is done automatically

TestFunction02_Mod02(x, y);

cout << "x = " << x

<< "; y = " << y << endl;

Important Point: If you want to change the argument of a function, use
call by reference.
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2.6.3 The const keyword

In the previous section, we described how calling by reference (or using a
pointer) allows us to change the argument of a function. The second advan-
tage of this is that temporary copies of arguments to the function call will
not be created, so duplication of large amounts of memory can be avoided.
However, suppose we have an argument to a function which uses a lot of
memory (thus we wish to avoid copying it) but which the function call must
not change? There is a way of ensuring that a function call cannot change
an argument which is given as a reference.

Suppose we have function which requires a variable of type double as argu-
ment; consider the following two definitions of the function prototype (inter-
face):

void Test(double dValue) void Test(const double &dValue)

{ {

// function body // function body

} }

Superficially they do the same thing. They each accept a double argument
and cannot change that argument with respect to the calling program. How-
ever, when the one of the left is called, the argument will be copied, an 8-byte
double variable. When the version on the right is called, the argument of the
function is actually a memory address, which on a 32-bit computer will be
4-byte number (probably an unsigned int). So although these two versions
of the function prototype appear to do the same thing, the version on the
right is to be preferred, because it is more efficient.

Thus the const keyword should be used when we have an argument to a
function which is large (and we wish to avoid temporary copies), and we
do not want it to be changed by the function call. This ensures that the
argument cannot be changed, even accidentally.

3 Classes

3.1 First Example

One of the most important concepts in modern programming is that of en-
capsulation, which means taking data which we are processing or performing
computations with, and insulating it where possible from the rest of the pro-



3 CLASSES 22

gramme. We wish to prevent anything being done with the data which we
do not explicitly allow.

The way in which this is done in C++ is using a class, which is a sort
of container into which we can place anything. The class also can contain
methods (another name for functions) which allow us to access the class data
members and perform operations upon them. A class is used in a program
in much the same way as we use other simple data types such as double, but
since we can use class methods as well, they are much more versatile.

class Test01

{

private:

double dVal; // a class data member

public:

void SetVal(double x) // a class method

{

dVal = x;

};

double GetVal() // another class method

{

return dVal;

};

void PerformOperation() // another class method

{

dVal = sqrt(dVal);

};

};

and here are some code examples of how to use this class, which should be
put into main(),

double x = 1.5, y = 2.5;

// create an instance of Test01; call class methods

Test01 oTest01_01;

oTest01_01.SetVal(x);

oTest01_01.PerformOperation();

// now create a second instance of Test01; call class methods

Test01 oTest01_02;

oTest01_02.SetVal(y);

oTest01_02.PerformOperation();
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// finally, let’s look at some output

cout << "First object value = " << oTest01_01.GetVal() << endl

<< "Second object value = " << oTest01_02.GetVal() << endl;

So what is going on? The line of code Test01 oTest01 01; creates an
instance of the class Test01.

The next two lines of code call the class methods for the object oTest01 01.
The operator . (i.e. the dot) indicates membership of an object, thus when
we say oTest01 01.SetVal() we are calling the method SetVal() for the
object oTest01 01.

Next, we create another instance of Test01, called oTest01 02, and then call
a couple of the class methods. The final line of code outputs the values that
are stored by each object.

Each instance of the class has its own copy of the data member dVal. The
keywords private and public determine how data members and methods
can be accessed from outside of the class object. If the data member dVal
were in the public storage class, then we would be able to access it using
code like

oTest01_01.dVal = 12.34;

instead of calling the methods SetVal() and GetVal(). Although this seems
simpler, it would violate the idea of encapsulation, whereby the class interface
controls access to the class data members. In a simple case like Test01 this
doesn’t matter, but for more complex classes it definitely does.

3.2 Nomenclature

There is specific terminology associated with creating variables (or objects).
For example, where a variable or object is created by something like

Test01 oTest01_01;

we say that an “instance” of type Test01 has been created, and the object
creation process is referred to as “instantiation.” The object oTest01 01 is
referred to as an instance of the class Test01, or alternatively an object of
type Test01.

Note that instantiation can also be performed through pointers, using the
new operator as discussed in the previous section, and we will be using this
approach later on.
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3.3 The Constructor and Destructor

Although not mentioned until now, when an object is instantiated, a class
method called the constructor is called. This method has the same name
as the class itself, but does not have a return value. It could be used for
example to set default values for class data members, or perform some op-
erations necessary for initialisation. In the case of Test01 above we did not
explicitly define the constructor, in which case the compiler creates a default
implementation.

Similarly, when an object is destroyed, another class method called the de-
structor is called. This has the same name as the class but prepended with
the ~ symbol. In the examples we have looked at so far, none of the objects
have been explicitly destroyed by code we have written, but this is happening
nonetheless when the end of the main() function is reached.

Now we will define a class which creates and stores an arbitrary number of
double variables as an array. It will contain data members to deal with mem-
ory storage, a default constructor to initialise them, and a second version of
the constructor which allocates some memory. We will also need a destructor
which will release the memory allocated when the object is destroyed.

class Test02

{

private:

double *pData; // class data member

unsigned int iSize; // class data member

public:

Test02() // the default constructor

{

pData = NULL;

iSize = 0;

};

Test02(unsigned int iS) // an overloaded constructor

{

pData = new double [iS];

iSize = iS;

};

~Test02() // the destructor

{

if (iSize != 0)

delete [] pData;

};
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unsigned int GetSize() // class method

{

return iSize;

};

};

Note that in C++ we can have two or more methods with the same name,
such as the default and overloaded constructors from this example, and the
compiler decides which one you want by the list of arguments. Here is some
code to go in main() to illustrate the Test02 class, and some comments as
to what is happening.

unsigned int iMemory = 100;

// create an instance of Test02; call the default constructor

Test02 oTest02_01;

// create a couple more; call the overloaded constructor

Test02 oTest02_02(iMemory), oTest02_03(2*iMemory);

// get some output

cout << "oTest02_01.GetSize() = " << oTest02_01.GetSize() << endl

<< "oTest02_02.GetSize() = " << oTest02_02.GetSize() << endl

<< "oTest02_03.GetSize() = " << oTest02_03.GetSize() << endl;

We create three instances of Test02, one calling the default constructor and
two calling the overloaded constructor which takes an unsigned int as its
single argument. In the output line, each of these instances returns the size of
their memory storage, and we can see that the one created using the default
constructor of course has size zero. The objects will be destroyed and their
destructors called when the end of main() is reached.

This class has a couple of limitations, in that if the default constructor is
called the memory size is stuck at zero, and in any case we cannot access the
memory stored in the objects. But that’s not the point of this example, and
we will return to these issues shortly.

Now we shall create instances of Test02 through use of pointers and the new
operator

// declare a couple of pointers

Test02 *pT02_01, *pT02_02;
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// create instances of Test02

pT02_01 = new Test02;

pT02_02 = new Test02(iMemory);

// get some output

cout << "pT02_01->GetSize() = " << pT02_01->GetSize() << endl

<< "pT02_02->GetSize() = " << pT02_02->GetSize() << endl;

// now we must destroy the objects

delete pT02_01;

delete pT02_02;

The way in which the instances of Test02 have been created has changed,
and we are using the new operator explicitly to create objects which are
now accessed through the pointers pT02 01 and pT02 02. When objects are
created in this way, we must call the delete operator when we have finished
with them.

Important point: Note the syntax for calling class methods when the object
is accessed through a pointer, using the -> operator. This refers to a member
of an object (method or data), accessed though a pointer to that object.

3.4 The Assignment Operator and Copy Constructor

Given two objects of the same type, we can assign one to the other. Suppose
that we do that with the two instances of a class type Object, which contains
a pointer data member to which the constructor allocates some memory. Ap-
propriately, when the destructor is called for this class, the delete operator
is called on this pointer.

Object Object01, Object02; // create two objects

Object01 = Object02; // assignment

Object01 = Object01; // self-assignment

By default, this assignment (or copying) process will copy exactly bit-for-bit
the object on the right hand side to the one on the left. The value of the
pointer data member of the class will copied and will now have the same value
in both of these instances. See Figure 2 for an illustration of this process.

Suppose that the program reaches the end of main(), and the destructors
are called for all instances of this class. The delete operator will be called
when these instances are destroyed. However, remember that the pointer
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Object01

pA=234700; -

Object02

pA=235300; -

Object02

pA=234700;
?

������������*

������������*

������������*

������������* 6666
Object02 = Object01HH

Object Object02(Object01)

Figure 2: Incorrect assignment and copy construction. See text for explana-
tion.

data member of the two instances now have the same value (that is, point to
the same chunk of memory) because of the assignment.

Therefore what will happen is that the delete operator will be called twice
with the same pointer value as argument. This will result in what the lan-
guage standards rather euphemistically call “undefined behaviour.” When-
ever you see this term used, it means something bad will happen.

In addition, we also need to think about what has happened to the memory
allocated to Object02; is has not disappeared, and remains allocated to the
program. However, any reference to it has been lost, and there is now no
way it can be accessed; more ominously, it cannot be deleted.

Similarly, when an object is created by copying another instance of the same
class (so-called copy construction), the default behaviour is that an exact
bitwise copy of the object is made.

Object Object01; // create Object01

Object Object02(Object01); // copy construction

Again, we end up with two objects which contain pointers to the same mem-
ory. (This is also illustrated in Figure 2.)

This default behaviour for copying of objects or copy construction is clearly
not sensible if pointers and allocation of memory are involved. The next two
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sections describe the appropriate solution to this problem in C++.

3.4.1 The assignment operator

When an assignment between two class objects takes place, we are actu-
ally calling a class method, represented by the = symbol, which is called the
assignment operator. In the above example, the default behaviour for assign-
ment is not appropriate. This problem is solved by creating a new version of
the class method to perform the assignment operation.

We now return the the class Test02; the appropriate implementation of the
assignment operator is as follows:

Test02& operator=(const Test02& oRHS)

{

if (this != &oRHS)

{

delete [] pData;

iSize = oRHS.iSize;

pData = new double [iSize];

for (unsigned int iData=0; iData<iSize; iData++)

pData[iData] = oRHS.pData[iData];

}

return *this;

};

The first line of the method consists of three parts: the return value which
is Test02&, that is, a reference to type Test02; the name of the operator
which has to be preceded by the appropriate keyword, operator=; and the
argument of the operator, the object on the right hand side. Note the use of
a const reference here!

The body of the function consists of three parts: firstly, we delete the memory
which is currently pointed to by pData, the data member of the LHS. We
then copy iSize from the RHS, allocate new memory to pData to hold the
number of values given by the new value of iSize, and then copy the values
over. Finally, the return *this; statement returns the object assigned.
Every object in C++ has data member called this which is a pointer to
itself. Figure 3 illustrates the correct assignment proceedure.

Note that the code which does the work in the assignment operator is enclosed
inside the following block
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if (this != &oRHS) { }

which is a test to guard against self-assignment. Suppose that we were to
write a line of code which assigns an object to itself

oTest02_01 = oTest02_01;

which is perfectly OK (although nothing should happen). But what would
happen if the guard against self-assignment was not present? Firstly, the
memory storage of the object on the left-hand-side would be deleted; then
new memory would be allocated for the object on the left-hand-side; then we
would attempt to copy the data stored in the object on the right-hand-side...
but the data stored in the object on the right-hand-side has already been
deleted. So an assignment operator must always test against self-assignment.

Finally, notice that if the sizes of the memory storage on the left and right
hand sides of the assignment are the same, then the memory in the object on
the left hand side does not have to be deleted and then created again with a
different size. The code for assignment can therefore have the form

Test02& operator=(const Test02& oRHS)

{

if (this != &oRHS)

{

if (iSize != oRHS.iSize)

{

delete [] pData;

iSize = oRHS.iSize;

pData = new double [iSize];

}

for (unsigned int iData=0; iData<iSize; iData++)

pData[iData] = oRHS.pData[iData];

}

return *this;

};

which gives us a slightly more efficient version of the operation.

Important Point: Every object contains a data member this which is a
pointer to itself.
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Object01

pA=234700; -

Object02

pA=235300; -
Object02

pA=? - ...

Object02

pA=383760; -

----

6666

Figure 3: Assignment of two objects (Object02 = Object01;). Firstly the
storage assocated with the LHS object must be deleted; then storage of the
appropriate size is allocated to the LHS; then the data from the RHS are
copied to the LHS object.
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3.4.2 The copy constructor

Another way of instantiating an object is by copying another one, and there
is a special kind of constructor called the copy constructor to do this. It is
invoked in the following ways:

// instantiation using the copy constructor

Test02 oTest02_04(oTest02_01);

Test02 oTest02_05 = oTest02_01;

and for the class Test02 would have the following form

Test02(const Test02& oRHS)

{

iSize = oRHS.iSize;

pData = new double [iSize];

for (unsigned int iData=0; iData<iSize; iData++)

pData[iData] = oRHS.pData[iData];

};

Once again, oRHS is the object being copied from. We don’t need to delete

anything here, since the object is being constructed, and since the method is
a constructor there is no return value.

3.5 Operator Overloading

This refers to the idea of taking one of the language operators and giving
it a new meaning for a particular class. This is done by creating a class
method which is called through the operator symbol instead of a name. We
have already seen one example of this, which is the assignment operator for
Test02.

There are plenty of others which can be used, for example, +, -, *, /

which normally have an arithmetic interpretation, or == and != which have a
logical interpretation. One of the most useful is [], which is commonly used
for providing access to data in an array-like object such as Test02. Insert
the following methods into Test02

double& operator[](unsigned int iData)

{

return pData[iData];

};
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double operator[](unsigned int iData) const

{

return pData[iData];

};

The first of these gives data access as a LHS, that is, the element of the array
can be assigned (i.e. changed). The second does not allow the data to be
changed (hence the keyword const), and is called when data are required as
a RHS.

Here are are some code examples of data access for Test02:

iMemory = 10;

// create instance using overloaded constructor

Test02 oTest02(iMemory);

// set some data values

for (unsigned int iData=0; iData<oTest02.GetSize(); iData++)

oTest02[iData] = sqrt(static_cast<double>(iData));

// output the values

for (unsigned int iData=0; iData<oTest02.GetSize(); iData++)

cout << oTest02[iData] << " ";

cout << endl;

Firstly, we create an instance of Test02 using the overloaded constructor
which contains enough memory to store 10 double variables. Then we assign
values to the 10 variables by calling the first version of the overloaded []

operator which allows the data values to be changed. Then we output the
values to the screen by calling the second version of the [] operator, where
the data values are not changed.

An overloaded operator can be made to mean anything, but it is a good
idea to keep the meaning of the overloaded version analogous to the original
meaning of the operator if possible.

3.6 Static Data and Methods

So far we have seen class data and methods which are associated with an
instance of the class, that is, a particular object. For example, in class
Test02, each object oTest02 01 and oTest02 02 has its own copy of the
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data members pData and iSize which can have different values depending
on how their constructors were called.

It is possible to have data members and methods which are associated with
the class itself, and are in common to all instances of the class rather than
specific to a given instance. These are referred to as static data and meth-
ods. Static data might be used if a class needs certain numerical constants.

An interesting example of static data and methods might be if we have a very
complex program and wish to track the number of instances of a particular
class. Suppose we add a static data member to Test02 to count instances,
as follows:

class Test02

{

private:

// ...

static unsigned int Instances;

// ...

public:

// ...

static unsigned int GetInstances()

{

return Instances;

}

// ...

};

unsigned int Test02::Instances = 0;

The keyword static is used in the class declaration. Note also that the vari-
able has to be declared seperately, since it is not associated with a particular
instance of the class. It is initialised with the value zero.

There is also a public method to access the variable Instances, which has
been called GetInstances() and this is also labelled with the static key-
word.

Now in order to count the number of instances of Test02 which exist, all we
have to do is increase the counter by 1 every time an instance is created and
decrease by the counter by 1 every time an instance is destroyed. An instance
can be created by the default constructor, any overloaded constructor, or by
the copy constructor, so the following line of code

Instances++;
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must be added to each of these. When an instance is destroyed, the destructor
is called, and so it must contain the following

Instances--;

Add these static data and methods and the extra lines of code to your version
of Test02 and check that they do what is expected. The static method to
return the counter may be called as follows:

cout << "Number of instances of Test02 = "

<< Test02::GetInstances() << endl;

Note that access to static methods and data is through the :: membership
operator. In contrast the dot operator ’.’ is used to access instance data
and methods, as we have already been using.

3.7 Interface and Implementation

Generally, in large software projects, the code is arranged differently than in
the examples we’ve looked at so far – it wouldn’t be a good idea to try to put
everything in one file. Code is divided up into two sections, referred to as the
interface, and the implementation. The interface is placed in a header file,
with the extension .h and the implementation goes in a .cpp file. Generally
one has one pair of files per class and use the same name for the files as
the class they contain, so for the Test02 example we would have Test02.h

and Test02.cpp. In our file main.cpp, instead of the code we’ve already
used, there would be the statement #include "Test02.h" and as long as
the header and implementation files are added to the project, everything will
be fine.

There are a few points of syntax with dividing up the code in this way. The
contents of Test02.h would be as follows:

class Test02

{

private:

static unsigned int Instances();

double *pData;

unsigned int iSize;

public:

Test02();
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Test02(unsigned int iS);

Test02(const Test02& oRHS);

Test02& operator=(const Test02& oRHS);

~Test02();

unsigned int GetSize();

double& operator[](unsigned int iData);

double operator[](unsigned int iData) const;

static unsigned int GetInstances();

};

unsigned int Test02::Instances = 0;

This is the interface of the class, and is the same as before but with the
function bodies removed. Note that the assignment operator and the copy
constructor are now included. The function bodies will be placed in the
implementation file, and the only difference is that the code must state when
a method is defined which class it is a member of. The implementation file
must contain the statement #include "Test02.h". Class membership is
again indicated by the operator ::, and here is how this would look for the
method GetSize()

unsigned int Test02::GetSize()

{

return iSize;

}

and other than the Test02:: bit, this looks like a normal function, with the
usual return value, name and body. Here is how the copy constructor would
look,

Test02::Test02(const Test02& oRHS)

{

Instances++;

iSize = oRHS.iSize;

pData = new double [iSize];

for (unsigned int iData=0; iData<iSize; iData++)

pData[iData] = oRHS.pData[iData];

}

and here is the assignment operator

Test02& Test02::operator=(const Test02& oRHS)



3 CLASSES 36

{

// everything else the same here

}

and the rest of the methods would be done in an analagous fashion.

3.7.1 Header Guard

There is an important issue to consider when dividing up projects into in-
terface and implementation, and when many different source code files are
involved. What would happen if, for example, we had the header file for
a class Test02.h and this is then used in two other classes, ClassAA.h

and ClassBB.h, with the usual statement #include "Test02.h" in both
of these?

Suppose that we now wish to use the latter two classes in main.c, and use
the statements

#include "ClassAA.h"

#include "ClassBB.h"

As far as the compiler is concerned, the header for the class Test02 is ap-
pearing twice in main.c, which will result in an error. The compiler will not
accept any class or variable defined twice, a sensible safety feature.

So how can we stop the interface of a class (or anything else for that matter)
appearing twice? The answer is the header guard. Compiler directives should
be placed around the header of a class, as follows:

#ifndef HEADER_Test02_

#define HEADER_Test02_

class Test02

{

// class interface as usual

}

#endif

One should ensure that the symbol which is used is uniquely associated with
the interface it protects. For example, in the case of Test02, I have used
HEADER Test02 . Similarly, we might use HEADER ClassAA , and this will
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work all the time as long as there’s no possibility of confusion with other
classes or namespaces.

Important point: Whenever you create a class you should place a header
guard around its interface, and make sure that it is unique to that class.

4 Templates

4.1 Template Functions

In C++ we can have two or more functions with the same name but which
can have different types of arguments or different numbers of arguments, as
in the case of the constructors for Test02. The types of the return values of
the functions (other than constructors) may also differ. Suppose we use the
name TestFunction as an example, as follows:

double TestFunction(double x)

{

return x*x;

};

int TestFunction(int i)

{

return i*i;

};

and here is some code to demonstrate calling these functions,

double dVal = 1234.5678;

cout << "TestFunction(dVal) = "

<< TestFunction(dVal) << endl;

int iVal = 10;

cout << "TestFunction(iVal) = "

<< TestFunction(iVal) << endl;

Suppose that we want several versions of TestFunction that can accept int,
float, double, unsigned int, and return the square of the argument as the
same type. This can be done without explicitly writing out the code for each
one (although this would of course work). We can replace the two versions
of TestFunction above with the following code,
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template <typename D>

D TestFunction(D dVal)

{

return dVal*dVal;

};

The keyword template requires an argument list enclosed in <>. This con-
tains a list of one or more typenames to be used along with the symbol to
represent them in the function code. In this case, the symbol D is used. Again
this is called function overloading. This can be done both for functions which
are standalone or class methods.

4.2 Template Classes

The class Test02 allocates and controls access to some memory, a specified
number of double variables. What if we wanted several different versions
of the Test02 class able to allocate memory for different variable types, for
example, unsigned int, double, float, etc?

In an analogous fashion to our template function from the first example, we
can create a template class, the interface of which would look as follows,

#include <cstddef> // this is so we can use

using namespace std; // the standard library

template <typename D>

class Test03

{

private:

static unsigned int Instances;

D* pData;

unsigned int iSize;

public:

Test03();

Test03(unsigned int iS);

Test03(const Test03<D>& oRHS);

Test03<D>& operator=(const Test03<D>& oRHS);

~Test03();

unsigned int GetSize();

D& operator[](unsigned int iData);

D operator[](unsigned int iData) const;
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static unsigned int GetInstances();

};

Differences between this and Test02 are few: there is the template <typename

D> statement which is the same as used for TestFunction above; when the
class name itself is used as a return type from a function or as an argument
type, we have to include the template parameter and specify Test03<D>

instead.

There are some syntactical differences in the implementation, where the tem-
plate parameter(s) have to specified, and here is the implementation of the
GetSize() method which would appear in the file Test03.cpp,

template <typename D>

unsigned int Test03<D>::GetSize()

{

return iSize;

}

and here is the implementation of the assignment operator

template<typename D>

Test03<D>& Test03<D>::operator=(const Test03<D>& oRHS)

{

if (this != &oRHS)

{

delete [] pData;

iSize = oRHS.iSize;

pData = new D [iSize];

for (unsigned int iData=0; iData<iSize; iData++)

pData[iData] = oRHS.pData[iData];

}

return *this;

}

When we use a template class in code, we have to specify the template
parameters, so that the compiler knows which type is required:

// instantiate an object of type Test03<double>

unsigned int iMem = 1000;

Test03<double> oTest03_01(iMem);
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// and now create one of type Test03<unsigned int>

// but access it through a pointer

Test03<unsigned int>* pT03_01 =

new Test03<unsigned int>(iMem);

// now call one of the class methods

cout << "Size of storage is "

<< pT03_01->GetSize() << endl;

// also note the results from the following

cout << "Test03<double> instances = "

<< Test03<double>::GetInstances() << endl;

cout << "Test03<unsigned int> instances = "

<< Test03<unsigned int>::GetInstances() << endl;

// and make sure that the object is destroyed

delete pT03_01;

and then proceed as before.

Use of both template functions and classes can depend on what build envi-
ronment and compiler one is using. Sometimes the compiler has to be told
which template types to generate. In the case of template function exam-
ple, if we wanted TestFunction to work for unsigned int and double, the
implementation file should contain the instructions

template double TestFunction<double>(double dVal);

template unsigned int

TestFunction<unsigned int>(unsigned int dVal);

after the function definition. In the case of template classes the implemen-
tation file should contain template class instantiation instructions as follows

template class Test03<unsigned int>;

template class Test03<double>;

in order that the right types are generated. Static data members are also
affected by this issue, and the implementation file should also contain

unsigned int Test03<double>::Instances = 0;

unsigned int Test03<unsigned int>::Instances = 0;



5 INHERITANCE AND POLYMORPHISM 41

in order that we also get the static data member Instances for each of the
classes Test03<double> and Test03<unsigned int>.

Although this might seem like it defeats the object of using templates in the
first place, it is necessary because most compiler implementations have not
yet caught up with the published C++ ANSI/ISO standard.

Finally, as a exercise, complete the implementation of Test03.

5 Inheritance and Polymorphism

In this part of the course we will look at the second main feature of object
oriented programming in C++, that of polymorphism. This means that
one or more different classes can be accessed through a common interface
defined in a base class. The so-called derived classes are created through the
mechanism of inheritance.

5.1 Inheritance

The best way to start is with an example of a simple base class,

class Base01

{

protected:

double dVal;

public:

Base01()

{

dVal = 0.0;

};

void SetVal(const double &dValue)

{

dVal = dValue;

};

double GetVal()

{

return dVal;

};

virtual double PerformOperation() { return 0.0; };

};
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Note there are two new things in the declaration of this class. Firstly, the
use of the keyword virtual in the method PerformOperation, and the use
of the protected storage class, in addition to public. (There are no private
members of this class so the private declaration is not needed.) Here are a
couple of derived classes

class Derived01: public Base01

{

public:

double PerformOperation()

{

return 2.0 * dVal * sqrt(dVal);

};

};

class Derived02: public Base01

{

public:

double PerformOperation()

{

return 3.0 * log(dVal);

};

};

In the class declaration, the syntax class Derived01: public Base01

means that class Derived01 is publically inherited from the class Base01.
A class from which others are derived is referred to as a base class. Here is
some code to demonstrate basic properties of these classes:

// create pointers to type Base

Base01 *pB01, *pB02;

// create objects of type Derived01 and Derived02

Derived01 oD01;

Derived02 oD02;

// set the pointers to object addresses

pB01 = &oD01;

pB02 = &oD02;

// set some data
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pB01->SetVal(10.0);

pB02->SetVal(10.0);

// get some output

cout << "pB01->PerformOperation() = "

<< pB01->PerformOperation() << endl

<< "pB02->PerformOperation() = "

<< pB02->PerformOperation() << endl;

Firstly, this example declares two pointers to the base class type, Base01.
Then one object of each of the two derived types is created by calling the
default constructor. Then the first interesting thing happens: each of the
base class pointers is set to the address of one of the derived class objects.
It is not normally possible to set a pointer of one type to the address of a
variable of another type. For example, the following

double dVal;

unsigned int* pI = &dVal;

would result in a compile time error. It is the relationship between Base01

and Derived01 and Derived02 defined by the inheritance mecahanism which
makes it possible in this case.

The kewyword virtual is used in the definition of the PerformOperation()
method in the base class. This means that a derived class can override the
version of the method provided in the base class. In this example, even if the
PerformOperation() method is called through a base class pointer, it is the
version of the method provided in the derived class which is executed.

If the keyword virtual was not used in the base class declaration, then
the base class version of the method would be called through the base class
pointer. If the method were called through the derived class interface com-
mands

cout << "oD01.PerformOperation() = "

<< oD01.PerformOperation() << endl

<< "oD02.PerformOperation() = "

<< oD02.PerformOperation() << endl;

then it is the derived class version of the method would be called. The derived
class can, but does not have to, override a virtual base class method; there
is a technique for forcing this to happen, which will be discussed later.
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One final point is that the data member dVal is in the protected storage
class, rather than the private storage class. If dVal were private in the
base class then the derived class methods would not be able to access it; if
it is protected in the base class then it behaves as if dVal were a private

member of the derived class.

The inheritance relationship means that the derived class acquires data mem-
bers and methods of the base class, but their use and access depends upon
the details of the storage class in which they are placed.

5.2 Construction and Destruction of Objects

When creating a derived class object, we are in effect creating an object of
the base class type and one of the derived class type all in one, and accessing
them through the same interface. This “composite” object can either be
accessed through the derived class interface, or the base class pointer, as
shown above.

However, this simple example did not deal with either the destructor of the
base class or the constructor of the derived class. All of these should be
called at some point when these objects are being created, used and then
destroyed. The precise order in which these methods are called is important
and there are some syntactical quirks involved with making sure that this
happens correctly.

Imagine we have the following simple heirarchy of a base class and a single
derived class where both the constructors and destructors print out a message
when they are called.

class Base03

{

public:

Base03()

{

cout << "Base03 ctor" << endl;

};

~Base03()

{

cout << "Base03 dtor" << endl;

};

virtual void Operation() {};

};
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class Derived03: public Base03

{

public:

Derived03()

{

cout << "Derived03 ctor. " << endl;

};

~Derived03()

{

cout << "Derived03 dtor" << endl;

};

};

Now suppose that we construct a derived class object in the following way,
and wait for main() to destroy it upon exiting

int main(void)

{

Derived03 oD03;

}

Try this and see what the output is. This result makes some sense, and
all seems to be OK. Note the order in which the base and derived class
constructors and destructors are called. Suppose that we now wish to access
the derived class properties and methods through the base class interface, as
follows:

int main(void)

{

Base03* pB03 = new Derived03;

// do some things here

delete pB03;

}

try this and note the difference in output with the previous case. There is a
problem: the derived class destructor is not being called. The “composite”
object is not being properly destroyed, resulting in a memory leak.

When the derived class is created in the first example, all is well, but because
in this case the delete operator is being called on the base class pointer, only
the base class destructor will be called. In order to make sure that destructors
for the base class and derived class are called, the keyword virtual must be
added to the declaration of the base class destructor as follows,
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class Base03

{

// ...

virtual ~Base03()

{

cout << "Base03 dtor" << endl;

};

// ...

};

and all will be well.

5.3 Abstract Classes

In previous examples we have considered the case where a virtual method in
the base class is overridden by a version of the method defined in the derived
class. The derived class does not have to override the default behaviour, but
there is a technique for forcing any class derived from a particular base class
to provide an implementation of a method.

We add a virtual method to the class Base03 as follows

class Base03

{

public:

// ...

virtual void Operation()

{

cout << "Base03::Operation() called. " << endl << flush;

};

// ...

};

and so as before it is optional for the derived class to override this method.
Now suppose that instead the base class looked like:

class Base03

{

public:

// ...

virtual void Operation() = 0;
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// ...

};

This is called a pure virtual method and makes sure that any class de-
rived from Base03 must provide an implementation of this method, and if
it does not, there will be a compile-time error. Furthermore, if the method
Operation() is to be pure virtual then the base class cannot provide a default
implementation. If we attempt to put a function body into this declaration,
there will be a compile-time error. Since Base03 cannot contain an imple-
mentation of one of its methods, it is no longer possible to create an instance
of Base03.

Any class containing pure virtual methods is called abstract.

5.4 Some Details

5.4.1 Multiple Inheritance

Is is possible for a class to inherit from more than one base class, thus one
might well see a declaration like

class Derived: public BaseClass01, public BaseClass02

{

// ...

};

There is no particular problem with this, except if the two base classes have
inherited from a common base class themselves, that is

class BaseClass00

{

public:

void BaseClassOperation() {};

};

class BaseClass01: public BaseClass00 {};

class BaseClass02: public BaseClass00 {};

Suppose that BaseClass00 has a method called BaseClassOperation, and
then we try to call this method for the derived class, for example,
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oDerived.BaseOperation();

there will be a compile-time error. The reason for this is that the class
Derived has been given two copies of the method BaseOperation(), one
from each of its base classes, BaseClass01 and BaseClass02, resulting in an
ambiguity.

One way to resolve this is to specify which method is desired in the call, that
is, which of the base classes one is referring to,

oDerived.Base01::BaseClassOperation();

A more elegant way round the problem is to make sure it never happens in
the first place. If we change the declarations of the classes BaseClass01 and
BaseClass02 in the following way

class BaseClass01: virtual public BaseClass00 {};

this ensures that the class BaseClass00 will only be added to the heirarchy
if it not there already, and will therefore only be added once. BaseClass00
is called a virtual base class.

5.4.2 Other Types of Inheritance

There are three storage classes for class data members and methods, private,
protected and public. These determine how a class data member or
method can be accessed from outside of the class, but also affect how class
members are accessed with the inheritance heirarchy.

An example that we have already seen is the difference between private

and protected class members in public inheritance. A protected base class
member behaves as if it were private in the derived class. Although not
explicitly stated, it should also be noted that public data members and
methods in the base class are public in the derived class as well.

There are three types of inheritance, private, protected and public. The
above examples used public inheritance. The difference between these tech-
niques appears in how different storage classes are treated going up and down
the inheritance heirarchy. However, public inheritance is by the the more
commonly used technique, and we do not have time to look at private

and protected inheritance. All of the details can be found in the reference
material quoted for this course.
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5.5 Practical Use Of Polymorphism

Now for a more realistic example. Suppse we have a class that performs a
computation of an expectation via Monte Carlo simulation. In performing
this computation, a random number generator is required, but the code which
performs the averaging does not need to know how the random numbers are
generated. Additionally, depending upon the precise situation being mod-
elled, we might require random numbers drawn from different distributions
(e.g. Gaussian, or jump processes).

The first design decision we therefore make is to put the Monte Carlo com-
putation and the random number generator in different classes. The Monte
Carlo object will be passed a pointer to a random number generator object
which it will use to perform its computation.

In order to make different random number generators interchangeable from
the point of view of the object which is using them (the client) they will
inherit their interface from a common base class. Furthermore, the base
class methods which the client will use will be pure virtual in the base class;
this will ensure that every random number generator class must implement
them. Remember also that since we are using public inheritance, the base
class destructor should be virtual.

Here is a sketch of the random number generator abstract class which defines
the interface

class Random

{

protected:

// data and methods

public:

Random() {};

virtual ~Random() {};

virtual double GetVariate() = 0;

};

The GetVariate() method is the one which the client will call to get a draw
from the appropriate distribution.

The Monte Carlo class interface might look a bit like this

class MonteCarlo

{
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private:

// data and methods

Random* pRandom;

public:

MonteCarlo();

~MonteCarlo() {};

bool Register(Random* pR);

void Unregister();

bool PerformComputation();

};

The MonteCarlo constructor should set pRandom to NULL to make sure that
it isn’t used without being set.

MonteCarlo::MonteCarlo()

{

pRandom = NULL;

}

The two methods Register() and Unregister() are used to set (and re-
move if necessary) a random number generator for the object, and their
implementations are

bool MonteCarlo::Register(Random* pR)

{

if (pR == NULL)

return false;

if (pRandom != NULL)

{

Unregister();

}

pRandom = pR;

return true;

}

void MonteCarlo::Unregister()

{

pRandom = NULL;

}
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the Register() method returns true or false depending on whether the
operation works or not. The PerformComputation() method is the one that
does the work, and will be calling the random number generator. Of course
this will not be possible if a valid pointer has not already been registered, so

bool MonteCarlo::PerformComputation()

{

if (pRandom == NULL)

return false;

// perform computation here, calling

// pRandom->GetVariate(), etc

return true;

}

but if pRandom has been set, then we may proceed.

A class which provides an implementation of an interface (such as Random)
is referred to as concrete. So here is a sketch of a concrete class for a random
number generator

class Gaussian: public Random

{

public:

Gaussian() {};

~Gaussian() {};

double GetVariate()

{

double dVal;

// perform an iteration

// of Box-Muller

return dVal;

};

};

The Gaussian class provides an implementation of the GetVariate method
which performs an iteration of the Box-Muller algorithm for Gaussian pseudo-
random variates, and returns the appropriate value. We can have any number
of these concrete classes which provide different distributions.

And finally, this is how these classes might be used,
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// create random number generator

Random* pR = new Gaussian;

// create MonteCarlo object

MonteCarlo* pMC = new MonteCarlo;

// register pR, and make sure to test

// for possible error

if (!pMC->Register(pR))

{

cout << "Attempt to register Random failed. "

<< endl;

// maybe return from here if appropriate

}

// do something

pMC->PerformComputation();

// and finish

pMC->Unregister();

delete pR;

delete pMC;

To reiterate the main points thus far:

Encapsulation: The programming tasks have been broken up into more
manageable sections. Complex behaviour and numerical computations are
more readily tackled (and debugged!) if parts which are mathematically or
otherwise independent can be separated from each other.

Polymorphism: The MonteCarlo class will accept any object derived from
the Random abstract class. Since the GetVariate() method is pure virtual,
any object registered with MonteCarlo is certain to provide an implementa-
tion of the methods which will be called. Any concrete classes derived from
Random can be used interchangeably.

6 Exception Handling

Consider the previous example where we create objects of type Gaussian

and MonteCarlo and then test for an error before carrying on with the work.
If the error test had shown something to be amiss and the code had returned
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at that point, then the objects referred to be pR and pMC would not have
been deleted, leading to a memory leak. The only way to avoid this situation
is to make sure that the when the error is noticed, then all other temporary
objects are cleaned up before returning the program to a higher level.

The syntax for the basic mechanism for dealing with errors (exceptions) in
C++ on the client side is as follows

SomeClass oClass;

try

{

oClass.PerformOperation();

}

catch (Exception oException)

{

// handle exception

}

and in the declaration of SomeClass

class SomeClass

{

public:

void PerformOperation() throw(Exception)

{

// ...

if (Error)

{

Exception oException;

throw oException;

}

// ...

};

};

Code which might lead to an error is given the ability to “throw” an object
of some kind, which should be designed to contain data about the state of
the object which threw it and what error conditions were encountered.

The call to this perilous operation should be enclosed in a try/catch block.
The code enclosed in the try block is executed as normal if nothing goes
wrong, and the code in the catch block is ignored. If an exception is thrown
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during its execution, however, the code in the catch block is then executed.
Furthermore, the object which was thrown by the exception is copied so that
its contents can be inspected.

Here is a more practical example. We will create a class called E01 which
will perform an operation using polymorphic classes from earlier.

class E01

{

public:

E01()

{

cout << "E01 ctor. " << endl;

};

~E01()

{

cout << "E01 dtor. " << endl;

};

void PerformComputation() throw (string);

};

The method PerformOperation has been given the ability to throw a string
object if necessary, and here is a first implementation

void E01::PerformComputation() throw (string)

{

bool bError = false;

Derived03 oD;

bError = true; // force error condition

if (bError)

{

string oString("error happened");

throw oString;

}

// perform the rest of the task

oD.Operation();

return;

};
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And the client code will look like

E01* pE = new E01;

try

{

pE->PerformComputation();

}

catch (string oString)

{

cout << "error caught: " << oString << endl;

}

delete pE;

Compile and run this example. All is OK here; note that all of the appro-
priate constructors and destructors are being called.

Suppose now we wish to use the class Derived03 but in a polymorphic fashion
through the base class pointer. Here is a second version of the method

void E01::PerformComputation() throw (string)

{

bool bError = false;

Base03* pD = new Derived03;

bError = true;

if (bError)

{

string oString("error happened");

throw oString;

}

// perform the rest of the task

pD->Operation();

delete pD; // paired with new Derived03;

return;

};

What happens now? There is a problem because the destructors for Derived03
and Base03 are not being called. Looking at the code for this version of
PerformOperation the reason is fairly obvious: the exception is being thrown
before the delete operator is called on pD. One way of dealing with this issue
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is as described above; we have to write code explicitly to delete all tempo-
rary objects before leaving the method. Fortunately, there is a slightly more
palatable solution.

There is a template class in C++ called auto ptr<> (pronounced “auto
pointer”) which behaves as a pointer to another object, but takes care of
disposing of the object to which it points when it goes out of scope. We no
longer have to call delete on pD. So here is PerformOperation in its final
form,

void E01::PerformComputation() throw (string)

{

bool bError = false;

auto_ptr<Base03> pD(new Derived03);

bError = true;

if (bError)

{

string oString("error happened");

throw oString;

}

// perform the rest of the task

pD->Operation();

return;

};

and all is now well.

7 The Standard Template Library

The standard template library (STL) consists of two main parts. Firstly,
there is a set of container classes which are designed for managing storage
and access of arbitrary data. These data can be any other classes, provided
that their design conforms to certain basic criteria. The second part of the
STL is a set of algorithms which operate upon the container classes. Some
of these perform typical computing operations such as sorting, and a few are
oriented towards numerical issues. In order that an algorithm can traverse
a container to access data or perform some operation, we also require the
important concept of iterators.
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7.1 Container classess

7.1.1 The pair container

The simplest container class in the STL is the pair, which is used to hold
two variables (or class objects). It has two template parameters, one for each
of the types which it can hold, and is used as follows

pair<unsigned int, double> oPair01;

which creates an object storing two variables, an unsigned int and a double.
This calls the default construtor for the pair. The pair has two data mem-
bers to store each of the variables, and these are (unusually) in the public
storage class. They can be accessed as follows

oPair01.first = 1;

oPair02.second = 123.234;

where the data member first accesses the unsigned int data member, and
second accesses the double data member. The types are in the same order
as the template parameters in the original declaration of the object. We
can also assign values when the object is created, by calling an overloaded
constructor

pair<unsigned int, double> oPair02(2, 234.3);

Any data type or class can put into a pair, so we could use an example from
earlier in the course

pair<unsigned int, Test02> oPair03;

where the first data member is still and unsigned int and second is now
type Test02. The methods of the Test02 member can be accessed through
the usual syntax for instance data and methods

oPair03.first = 1;

cout << oPair03.second.GetSize() << endl;

One use of pair objects might be if we want a function or method to return
two variables or objects instead of one, for example
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pair<double, double> PairFunction(double x, double y)

{

pair<double, double> oResult;

oResult.first = x+y;

oResult.second = x*y;

return oResult;

}

and this would be called as follows

double x = 10.0, y = 12.0;

pair<double, double> oPair04 = PairFunction(x, y);

cout << oPair04.first << " " << oPair04.second << endl;

7.1.2 The vector container

We now come to a template class that can store only one type of variable
or object, but can deal with an arbitrary number of them. When we use
a vector the code #include <vector> must be inserted in the program
header. To create a vector we have to supply a single template parameter,
for example

vector<double> oVector01;

vector<Test02> oVector02;

These two lines have created vector objects, one to store double types
and the other to store objects of type Test02. These two examples have
called the default constructor for vector and thus have no elements; however,
an overloaded constructor could have been called instead, or the resize()

method could be called as follows

unsigned int iMem = 432;

oVector01.resize(iMem);

vector<double> oVector03(iMem);

We can also call another overloaded constructor the arguments of which are
the size parameter for the vector and an object of the type being stored which
will be copied on initialisation,

iMem = 10;
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vector<double> oVector04(iMem, 23.2);

Test02 oTest02(3);

vector<Test02> oVector05(iMem, oTest02);

where the object oVector04 will have all of its iMem elements initialised to
the value 23.2. The object oVector05 will store iMem Test02 objects, each
of which was initialised by copying the object oTest02; the copy constructor
for Test02 was called to do this. If the argument oTest02 were ommitted
here, the default constructor for Test02 would have been called to initialise
the elements of the vector.

The [] operator is used to access vector elements, and the length of a
vector object is returned by the size() method,

for (unsigned int iVec=0; iVec<oVector04.size(); iVec++)

cout << oVector04[iVec] << " ";

cout << endl;

for (unsigned int iVec=0; iVec<oVector05.size(); iVec++)

cout << oVector05[iVec].GetSize() << " ";

cout << endl;

In the second example here, we have called the GetSize() method for all
elements of the vector oVector05, each of which is a Test02 object.

When using the [] operator to access elements of a vector, it can of course
be used as LHS as well as RHS of an expression,

oVector04[0] = 4.123;

There are many other methods for the vector class for inserting elements
at arbitrary positions, erasing part or all of the container, and changing its
size. However, many of these other operations are not very efficient and are
not the best use of the vector container.

7.1.3 The queue container

A queue can again store only one type, and is used to store objects which
must be processed in a particular order. The queue is first-come-first-served
(i.e. first-in-first-out), that is when we add an object to the container, it goes
on the back, and when we remove an object from the container, it comes
off the front. In order to use the queue class, the program must contain
#include <queue> at the appropriate point. Consider the following code
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queue<Test02> oQueue;

// add some objects to the queue

unsigned int nObject = 10;

for (unsigned int iObject=0; iObject<nObject; iObject++)

{

Test02 oTest02;

oQueue.push(oTest02);

}

The size of the object is given by oQueue.size(). Now we can process the
objects in the order that they were added

while (!oQueue.empty())

{

Test02 oTest02 = oQueue.front();

oQueue.pop();

// processing of oTest02

cout << oTest02.GetSize() << endl;

}

The pop() method removes the front element of the queue, but does not
return a value; the front() method must be called first. If front() is called
for an object which is empty, then there will be an error; the size of the object
must always be tested first. The push and pop() methods are the only ways
in which the queue elements can be added or removed. Data access is only
through the front() and back() methods; the [] operator is not supported.

7.1.4 The map container

The map and multimap containers are used to store so-called key-value pairs.
This means that we can store arbitrary data objects and access them not
through an array index variable (like we used for the vector) but through
some other data type such as a string. We must use the directive #include
<map> to use these classes. For example, if we wish to have string objects in
the map which are accessed through numbers as keys, then we might use

map<unsigned int, string> oMap01;

map<unsigned int, string>::value_type
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oValue01(23, "Firstname Lastname 01");

pair<unsigned int, string>

oValue02(34, "Firstname Lastname 02");

oMap01.insert(oValue01);

oMap01.insert(oValue02);

cout << "map size = " << oMap01.size() << endl;

Firstly, we instantiate a map object with template parameters which describe
a key type of unsigned int and a value type of string. Then we create two
objects, a map::value type and a pair; these are the types which describe
key-value pairs for this map. These two forms are equivalent. If we attempt
to insert a key-value pair where the key is already present, the attempt will
fail.

This is how to search a map for the data associate with a particular key

unsigned int iKey = 10;

map<unsigned int, string>::iterator itMap = oMap01.find(iKey);

if (itMap == oMap01.end())

cout << "key " << iKey << " not found " << endl;

else

cout << "key " << iKey << " " << itMap->second << endl;

the find() method for the map returns what is called an iterator; this is
basically a pointer to the result (more about iterators in the next section). If
the key is not present in the map, then find() returns a pointer to the end
of the map. We may also remove an element from the map which is referred
to by the iterator itMap

oMap01.erase(itMap);

A multimap is a map which can have more than one value associated with
each key. The basic ideas here are the same as for map, but the results of the
find() method are different. If a key is present, then the results are defined
by a range; that is, all elements found between two iterators.

7.1.5 The complex container

A class for complex arithmetic comes ready made, using #include <complex>,
and objects may be instantiated as follows
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complex<double> oComplex01,

oComplex02(2.3),

oComplex03(0.2, -3.32);

cout << oComplex01 << endl

<< oComplex02 << endl

<< oComplex03 << endl;

we have instantiated three complex objects where both the real and imag-
inary parts are both double valued. Other template parameters may be
used, but the real and imaginary parts must be the same type. The first
instantiation calls the default constructor, and sets the number to zero; the
second sets the real part only, and the third sets the real and imaginary parts
respectively.

All of the appropriate numerical operators are provided for this class, as well
as a few special functions which are meaningful for complex numbers only.
For example,

cout << norm(oComplex03) << " "

<< abs(oComplex03) << endl;

7.1.6 Some other containers

There are more container classes in the standard library, such as list, hash,
stack, and others. For example, the stack is a last-come-first-served (i.e.
last-in-first-out) queue. Where functionality for different containers is analo-
gous, method names have been made as consistent as possible, but inevitably
there are many differences between them.

It should be noted that the containers described in previous sections have
many more methods and properties than the most important ones which
were described. Details of these and the rest of the standard containers can
be found the sources previously given.

7.2 Iterators

As mentioned previously, a method of accessing data and traversing the
elements of the standard containers is also provided. An iterator for a
vector<double> can be declared and used as follows

vector<double> oVector(20);
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vector<double>::iterator itVec;

for (itVec=oVector.begin(); itVec<oVector.end(); itVec++)

*itVec = 10.0;

as can be seen from this example, the iterator behaves like a pointer to
array elements. The range over which it is incremented is defined by the val-
ues returned by vector<>::begin() and vector<>::end(). The begin()

method returns the address of the first element of the container, and the
end() method returns the address one element beyond the last element of
the container. That is, the elements of the vector are in the half-open iterator
range [begin, end).

The reason for this is clear if one considers the standard way of accessing array
elements in C/C++ which we have previously seen for a vector container

for (unsigned int iVec=0; iVec<oVector.size(); iVec++)

oVector[iVec] = 10.0;

which performs the same task as the iterator example above. In this case we
use a looping variable in the range [0, size) which is the analogous half-open
interval.

A more compact (and thus less readable) version of the iterator traversal
which is often used is

vector<D> oVec(iSize);

for (vector<D>::iterator itVec=oVec.begin();

itVec<oVec.begin(); itVec++)

{

// do something with *itVec here

}

So if there are two equivalent versions of the container traversal, one using
the iterator and the other using the convetional array indexing, why do we
bother with iterators in the first place?

One reason is that some of the containers don’t support element access
through the array indexing operator, e.g. list, and for technical reasons
pointer-like access would be inappropriate. Secondly, although iterators be-
have like pointers they are not, and can be given a variety of different be-
haviours. They provide a common mechanism for data access across all of
the standard containers.

Compare the following two methods of traversing a vector
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// create a vector and insert some things

vector<string> oVec;

oVec.push_back("string 1");

oVec.push_back("string 2");

oVec.push_back("string 3");

// forward iterator

for (vector<string>::iterator itStr=oVec.begin();

itStr!=oVec.end();

itStr++)

cout << *itStr << " ";

cout << endl;

// reverse iterator

for (vector<string>::reverse_iterator itStr=oVec.rbegin();

itStr!=oVec.rend();

itStr++)

cout << *itStr << " ";

cout << endl;

The iterator vector<>::iterator goes forwards through the container over
the interval [begin, end). The second example is using a reverse iterator,
which traverses the interval [rbegin, rend). In the latter case, rbegin gives
the last element of the container and rend points beyond the first element of
the container, in the same sense that end points beyond the last element. Also
note that incrementing a reverse iterator gives a pointer to the previous

element of the container.

7.3 Standard Algorithms

To go along with the standard containers are a set of algorithms for per-
forming a variety of generic tasks. Generally one should use the statements
#include <numeric> and #include<algorithm>. A description of some of
the commonly used ones follows.

7.3.1 max element and min element

These algorithms return an iterator of the appropriate type pointing to the
maximum or minimum element defined in an iterator range given by the
arguments to the function. Consider the following example using a vector
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vector<double> oVec(1000);

for (vector<double>::iterator itVec=oVec.begin();

itVec<oVec.end(); itVec++)

*itVec = sqrt(static_cast<double>(rand()));

cout << *min_element(oVec.begin(), oVec.end()) << " "

<< *max_element(oVec.begin(), oVec.end()) << endl;

Suppose that we wanted to know the index in the vector where the value is
found instead of the value itself

unsigned int iVal;

iVal = static_cast<unsigned int>(

max_element(oVec.begin(), oVec.end()) - oVec.begin() );

cout << "index of maximum = " << iVal << endl;

where we have used the iterator analogy of pointer arithmetic.

7.3.2 sort and reverse

We can also sort container elements in an iterator range, and reverse their
ordering

sort(oVec.begin(), oVec.end());

for (vector<double>::iterator itVec=oVec.begin();

itVec<oVec.end(); itVec++)

cout << *itVec << " ";

cout << endl;

reverse(oVec.begin(), oVec.end());

for (vector<double>::iterator itVec=oVec.begin();

itVec<oVec.end(); itVec++)

cout << *itVec << " ";

cout << endl;

and the vector elements have been printed out to show what has happened.

7.3.3 accumulate

The accumulate algorithm applies the + operator to elements in the iterator
range given by the first two arguments and to the third argument, used to
initialise the summation
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double dSum = 0.0;

dSum = accumulate(oVec.begin(), oVec.end(), dSum);

cout << "Sum = " << dSum << endl;

and the result is returned by the function. what does the following code do?

cout << "answer = " <<

accumulate(oVec.begin(), oVec.end(), 0.0) /

static_cast<double>(oVec.size());

7.3.4 Others

There are many other algorithms in the standard library, details of which
are given in the reference materials cited. They all use the general idea of
operating upon container elements defined by an iterator range.

7.4 Function Objects

Although it appears that the algorithms described above are mostly arith-
metic in nature, this is because the operators for the intrinsic types such as
double are defined by the language to have an arithmetic meaning. So if we
have a vector<double> object, then calling the sort algorithm reorders the
vector according to comparisons made using the < operator.

But what if we have a vector of an arbitrary class type, then what will happen
if we attempt to call sort with this as an argument? It will work provided
that an implementation of the < operator is defined for this class. So the
sort algorithm will run using the overloaded operator provided by the class
designer.

Any of the standard algorithms can be made to work on an arbitrary class
type provided that this class implements the operator which that particular
algorithm uses to perform its task.

There is another way of giving operators associated with an arbitrary class
type to a standard algorithm, and that is through the use of the concept of
function objects. To create a class to perform an operation on a data type
double which can be used as a function object, we overload the () operator
as follows

class FunctionObject

{

public:
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double operator()(const double& dVal)

{

double dReturn;

// compute some value

return dReturn;

};

};

and then in client code we can use an instance of FunctionObject as if it
were a function

FunctionObject oFunc;

double dValue = 123.321;

cout << oFunc(dValue) << endl;

The connection between function objects and the standard algorithms is an
important one. The operator which the algorithm uses to perform its task is,
unless specified, already determined. However, one can specify an operator
other than the default one for an algorithm to use, as long as it is given in a
particular way. It must be a function object.

There are many built-in function objects in the language with exactly this
application in mind. Consider the following example, using the sort() algo-
rithm

vector<unsigned int> oVec(10);

for (vector<unsigned int>::iterator itVec=oVec.begin();

itVec<oVec.end(); itVec++)

*itVec = rand();

sort(oVec.begin(), oVec.end());

for (vector<unsigned int>::iterator itVec=oVec.begin();

itVec<oVec.end(); itVec++)

cout << *itVec << " ";

cout << endl;

So what we have done here is created a vector container and filled it up the
random numbers from rand(), then called sort() and then printed out the
results. When sort() is working here, it is comparing the elements of the
container using the < operator, which is default behaviour. Now replace the
above call to sort() with the following
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sort(oVec.begin(), oVec.end(), less<unsigned int>());

in this case, we are calling an overloaded version of the sort function, and
the third argument is creating one of the built-in function objects. This one
is the less-than operator which acts upon unsigned int data; note that this
is a template class.

Now try the following instead

sort(oVec.begin(), oVec.end(), greater<unsigned int>());

and see what happens. In these calls to sort(), where the function object is
being passed to the algorithm () appears; this is not the fuction call operator
itself, but to call the constructor for the class. The instance of the function
object less or greater is created when the algorithm is called, and only
exists for the duration of this call.

These objects can of course be created and used on their own

less<unsigned int> oLess;

cout << oLess(1, 2) << endl // true

<< oLess(2, 1) << endl; // false

as with anything else.

As long as we conform to this interface, we can create a function object
which can be called by an appropriate algorithm. Consider the generate()

algorithm which accepts a container and sets each elements in the container
equal to the result of a call to the function object passed in. Consider the
following example

class FunctionObject

{

private:

double dValue;

public:

FunctionObject()

{

dValue = 1.0;

};

double operator()()

{

double dReturn = dValue;
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dValue += sqrt(dValue+1.0);

return dReturn;

};

};

and the following client code

vector<double> oVec(10);

generate(oVec.begin(), oVec.end(), FunctionObject());

for (vector<double>::iterator itVec=oVec.begin();

itVec<oVec.end(); itVec++)

cout << *itVec << " ";

cout << endl;

An instance of FunctionObject is created when the the call to generate()

takes place. The algorithm then calls the function object () operator and
assigns each element of the container to the result of that method call.

8 Input and Output

8.1 IO Streams

In the standard library, there is a series of related classes called streams.
These are used in various ways for handling input and output to and from the
console (as we have used already), files and classes such as strings. Streams
can be used with other classes if they are appropriately customised. We
require #include<iostream> to use these concepts.

We have already seen the use of the standard output stream to send data of
all kinds to the console

cout << string("this is a string... ")

<< complex<double>(-12.32, 3.345) << endl;

In WinXP this means though the command line interface, cmd.exe, and
in UNIX through the shell. The program may also receive input from the
console, as follows

double dValue;

cout << "input a double value: ";

cin >> dValue;

cout << "answer = " << 2.0 * dValue << endl;
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When the program execution reaches the line of code containing cin, it waits
for input from the console, and when it is received, carries on. Data aquired
by the program in this fashion must be carefully checked, however, to ensure
that they are valid. The cout and cin objects are of type ostream (output
stream) and istream (input stream) respectively.

We are calling the << and >> operators. The first, <<, is called an inserter
because it inserts a value into the stream object; the second, >> is called
an extractor, because it extracts a value from the stream object. These are
pre-defined in the language for built-in types such as double or complex<>,
but for a custom class have to be defined in a particular way.

Consider the pair<> container. It happens that the >> and << operators are
members of the istream and ostream classes respectively. Therefore we can
not create customised versions of these operators by overloading them in the
client class (pair in this case). Instead we provide a version of << and >>

operator functions which can take as arguments ostream and istream on
the LHS and pair<> as RHS:

ostream& operator<<(ostream& s, pair<double, double>& oPair)

{

s << oPair.first << " " << oPair.second;

return s;

};

istream& operator>>(istream& s, pair<double, double>& oPair)

{

s >> oPair.first >> oPair.second;

return s;

};

Of course these operator functions could be templates as well in order that we
can use them on any type of pair<>. Now we can use the operator functions
in client code as usual, and send pair<> objects to the console and read them
back in again

pair<double, double> oPair(1.0, 2.0);

cout << oPair << endl;

cin >> oPair;

cout << oPair;

The << or >> operators are not members of the client class, but might need to
be able to access its private data. In this case, the operator function should
be made a friend of the client class using the following syntax
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class ClientClass

{

private:

friend ostream& operator<<(ostream& s, ClientClass& oCC);

double dVal01, dVal02;

public:

// ...

};

ostream& operator<<(ostream& s, ClientClass& oCC)

{

s << oCC.dVal01 << " " << oCC.dVal02;

return s;

};

The operator << is not a member of ClientClass but can access its private
data because it is a friend.

8.2 File Streams

8.2.1 Basic usage

File input and output is done through file streams which are also part of
the istream and ostream heirarchy (see Stroustrup for a painfully detailed
discussion of these matters). We need the directive #include<fstream> to
use these facilities.

Here is an example of reading a file (which already exists) using a ifstream

(input file stream) object

string sBuffer;

ifstream oInFile("Filename.txt", ios::in);

if (!oInFile.is_open())

{

cout << "File could not be opened. " << endl;

}

else // process data

{

while (!oInFile.eof())

{
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getline(oInFile, sBuffer);

cout << sBuffer << endl;

}

oInFile.close();

}

Firstly, we create an object of type ifstream. Its overloaded constructor is
given two arguments, a string for the file name, and ios::in. The latter
is an integer which tells the stream that the file is to be used for input and
therefore must exist already. We then test the is open() method to check
if the file was sucessfully opened, and if not, give an error message. If all is
OK at this stage, then we go on to loop while the ifstream::eof() method
returns false (that is, while the end of the file has not beed reached), and at
each iteration read in a line from the file. The line being read in is placed
in the string sBuffer. This string is then output to the console in order to
check what is going on. Other processing or parsing of the string would take
place at this stage.

Note that in order for this to work, you will have to create a file with the
appropriate name and place it in the same directory/folder as the executable
for the project. Also put a few lines of text in that file.

Here is some code to write to a file, in the same style as the above

ofstream oOutFile("FileOut.txt", ios::out);

if (!oOutFile.is_open())

{

cout << "File could not be opened. " << endl;

}

else

{

oOutFile << "string 0" << endl;

oOutFile << "string 1 " << endl;

oOutFile << "string 234" << endl;

oOutFile.close();

}

Firstly, an object of type ofstream is created, again with two arguments,
a file name and a integer ios::out. The latter specifies that the file will
be used for output only, and if it exists already, it will be truncated. The
next line checks that the file is open, and if not, we then write out an error
message. If the stream is open then we write a few lines and then call the
close() method.
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This is probably the easiest way to do file IO. There are other approaches,
for example reading or writing single characters at a time, but this is much
more complicated to implement and full of pitfalls.

8.2.2 More advanced usage

Suppose that you have a large amount of numerical data that needs to be
written and subsequently read in from a file. Suppose for the moment that
these data are double valued and in an array called pData of length nData,
and we write them out in the following way

ofstream oOut("file.txt", ios::out);

if (!oOut.is_open())

{

cout << "file could not be opened. " << endl;

}

else

{

oOut << nData << " ";

for (unsigned int i=0; i<nData; i++)

oOut << pData[i] << " ";

}

which will first write out the length of the array and then write out the
numbers in the array one at a time, separated by spaces. Now suppose we
read them in as follows:

ifstream oIn("file.txt", ios::in);

if (!oIn.is_open())

{

cout << "file could not be opened. " << endl;

}

else

{

oIn >> nData;

for (unsigned int i=0; i<nData; i++)

oIn >> pData[i];

}

There is nothing wrong with this, but there are some things to consider.

1. The contents of this file will look something like



8 INPUT AND OUTPUT 74

10 0.00125126 0.563585 0.193304 0.808741 0.585009 ...

so the values have been written with 6 significant figures (the default),
considerably less than the precision with which the machine stores
double variables (it is about 15-16). This can be changed by calling
cout.precision(10) where the argument is the number of significant
figures required.

2. Suppose now that we write out a number with a greater number of
significant figures:

1.4142135623731

Each character of this number when in a text file occupies 1 byte, so
a double variable takes 15 bytes when stored in the file. However, in
the machine’s memory it only uses 8. So clearly this is inefficient.

3. When you write or read numbers to text files (or to cout and cin) the
computer has to convert the internal format used for storage into text
and then back again. This takes time — not obvious for small amounts
of data, but can make a big difference.

A solution to this is to write data to disk files in the exact form in which they
are stored in the machine’s memory; then the data on disk occupy the same
amount of memory as they would when stored in RAM. In addition, there
is no need to convert to and from text, thus making things faster. The only
slight downside is that the data in the disk file will no longer be readable,
but if you’ve got Gb of data, were you going to look at them anyway?

In any case, this is how we write data out:

ofstream oOut("file.dat", ios::out|ios::binary);

if (!oOut.is_open())

{

cout << "file not opened. " << endl;

}

else

{

oOut.write(reinterpret_cast<char const *>(&nData),

sizeof(unsigned int));

oOut.write(reinterpret_cast<char const *>(pData),

nData*sizeof(double));

}
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and now read the same thing back in again

ifstream oIn("file.dat", ios::in|ios::binary);

if (!oIn.is_open())

{

cout << "file not opened. " << endl;

}

else

{

oOut.read(reinterpret_cast<char *>(&nData),

sizeof(unsigned int));

oOut.read(reinterpret_cast<char *>(pData),

nData*sizeof(double));

}

Note that when doing these operations we do not write individual variables,
but instead pass to the write() method a number of bytes to write out, and
the place to start reading from (a pointer).

1. Arguments to write() are a const pointer and number of bytes; the
pointer is const because we are reading from it. The pointer argument
to read() is not const because we are writing to that memory location.

2. The sizeof() function returns the number of bytes occupied by a
particular data type.

3. When we read data into the location pData this must already have had
sufficient memory allocated to it to store whatever is going to be read
in, just as if you were going to use it as an array.
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Part II

Numerical Methods and
Libraries

9 Random Numbers

One of the most important areas in financial engineering is Monte Carlo sim-
ulation, the most important element of which is generating random numbers.
Or pseudo-random numbers at least, since we are going to use deterministic
algorithms to do so. There is some code built into the STL for tasks such as
these; in addition, there are many other libraries available which incorporate
such functionality. In times of real desparation, we could even write some
ourselves, and I will give one example to show that some algorithms can be
very simple.

In the following I will show how to generate uniformly distributed variates
(either floating point in the range [0, 1] or integer valued in [0, N)); once you
have these, you can use them to generate variates from many other densities.

9.1 A simple method

This is a very simple algorithm based on modulo arithmetic; we generate a
sequence of the form

Ij+1 = bIj + c mod m,

and with suitable choices of the constants b, c and m we get a sequence
with a very long period. Some appropriate values are b = 1664525 and
c = 1013904223, and the arithmetic is done modulo 232. So if we use a 32 bit
representation of unsigned integer variables (which is what unsigned int is
on a 32 bit machine), the code can be rather succinctly put as

unsigned int iVal = 0;

unsigned int b = 1664525,

c = 1013904223;

for (unsigned int i=0; i<100; i++)

{

iVal = b*iVal + c;

}
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Note 1: This method is not recommended, but just given as an example of
how simple (and fast) some methods can be. You will, from time to time,
encounter code like this.

Note 2: This method is an example of what is called a “linear congruential”

generator, if you want to look them up.

9.2 C++ Intrinsics

In the standard library (accessed using #include <cstdlib>) there are func-
tions called rand() and srand(int). The first of these returns an integer
random number between 0 and RAND MAX (a number defined by the com-
piler) and the second of these takes an integer argument and uses it to set
the random number seed. These functions are provided by the creators of
any particular compiler and so will vary between platforms.

The value of RAND MAX that the Windows, Solaris and many other compilers
use is 32767. If you want to use these functions to obtain double precision
numbers uniformly distributed between 0 and 1, then simply divide the return
value of rand() by RAND MAX, making sure that appropriate casting is used.

cout << "RAND_MAX = " << RAND_MAX << endl;

for (unsigned int i=0; i<10; i++)

{

double x = static_cast<double>(rand()) / RAND_MAX;

cout << x << " " ;

}

cout << endl;

Suppose you now wish to now generate uniformly distributed numbers in the
interval [0, N), where N is a positive integer. The most obvious thing to do
is to take the return value of rand() and take the remainder dividing by N .
However (for reasons that we are not going into here) the lower order bits
returned by rand() may not be as “random” as the rest of the quantity, so
a better solution is to take the following

unsigned int N = 17;

for (unsigned int i=0; i<10; i++)

{

double x = static_cast<double>(rand()) / RAND_MAX;

unsigned int j = N*x;

cout << j << " " ;
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}

cout << endl;

Note 1: As with the previous example, using the system rand() is probably
not the best option. If you are going to use it, then make sure to test it
carefully.

9.3 Gaussian variates

In this section I will discuss how use uniformly distributed random numbers
(floating point) on the interval [0, 1] to obtain unit normal random variables.
The following is the Box-Muller technique.

I am not going to discuss the theory of this method, except to note that
unlike rejection based methods, two uniform variates in results in two normal
variates out, so nothing is wasted. On the other hand, it requires evaluation
of the functions sin, cos and log; there are other possibilities, but this version
of the algorithm is the most commonly used.

So, taking uniformly distributed variates u1, u2 ∼ U [0, 1] i.i.d., the quantities

x1 = µ+ σ
√

−2 lnu1 cos(2πu2),

x2 = µ+ σ
√

−2 lnu1 sin(2πu2),

are x1, x2 ∼ N(µ, σ2) i.i.d.

So here’s the appropriate C++ code for doing the computation; this func-
tion returns 2N variates of the form described, although I’ve written it as a
standalone function here, could be incorporated as a class method. I have
used TNT; you could replace the TNT Array1D class with the STL vector

class if you like, or anything else for that matter.

Array1D<double> BM(const double& mu,

const double& sigma,

unsigned int N)

{

Array1D<double> oResults(2*N, 0.0);

double u1, u2, dC1, dC2,

dTP = 2.0*acos(-1.0);

// first compute uniform variates

for (unsigned int i=0; i<2*N; i++)

{

oResults[i] = Rand01();
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}

// now transform them

for (unsigned int i=0; i<N; i++)

{

u1 = oResults[2*i];

u2 = oResults[2*i+1];

dC1 = sqrt(-2.0*log(u1));

dC2 = dTP*u2;

oResults[2*i] = mu + sigma*dC1*cos(dC2);

oResults[2*i+1] = mu + sigma*dC1*sin(dC2);

}

return oResults;

}

As you can see, something called Rand01 is being called here; this is a place-
holder for a function to compute uniform random numbers in the range [0, 1].
Filling in the details, as they say, is an exercise for the student.

10 The Boost Library

The boost library can be obtained from

http://www.boost.org

and contains many interesting and useful things. There are several classes
which implement different algorithms for generating pseudo-random num-
bers, and a set of complementary classes which are used to represent different
probability densities.

This course has neither the space or time to go into how to build and use the
boost library, but I recommend that you consider it as a good quality and
reliable resource.

11 Template Numerical Toolkit

The template numerical toolkit (TNT) is a collection of matrix and vector
classes and associated algorithms for C++. It was created by Roldan Pozo
at NIST, and is available from

http://math.nist.gov/tnt/
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All of the code for the libraries is supplied in the header files, and the library
does not have to be built to be used. All that one requires is the appropriate
#include statements in the program.

The code is divided into two parts: TNT, which consists of the 1, 2 and 3
dimensional array classes, and JAMA which is a set of linear algebra func-
tions. To use TNT in code, the following lines should be included before the
main() function, or in any other class where TNT is required.

#include "tnt.h"

#include "jama_cholesky.h"

#include "jama_eig.h"

#include "jama_lu.h"

#include "jama_qr.h"

#include "jama_svd.h"

using namespace TNT;

using namespace JAMA;

11.1 Class Array1D

The Array1D<> template class is a one-dimensional array (i.e. vector) and
can be instantiated in the usual ways

Array1D<double> oArray1D_01,

oArray1D_02(10),

oArray1D_03(4, 0.234);

Array1D<double> *pArray1D = new Array1D<double>(oArray1D_03);

where we are creating arrays which store double variables. The first in-
stantiation calls the default constructor, and the size of the object is 0; the
second has called an overloaded constructor and the object has length 10 ele-
ments, but they are not initialised; the third object calls another overloaded
constructor to get length 4 with all elements initialised to 0.234; the final
instantiation has called the copy constructor.

It happens that the inserter and extractor are already overloaded for the
Array1D class, so they may be sent to console output

cout << oArray1D_01 << oArray1D_02 << oArray1D_03 << *pArray1D;

The dim() method returns the dimension of the object, and the addition,
subtraction and assignment operators are all defined
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oArray1D_02 = oArray1D_03;

oArray1D_01 = oArray1D_02 + oArray1D_03;

cout << oArray1D_01.dim() << endl;

cout << oArray1D_01 << endl;

note that when the object is inserted to cout the dimension of the vector is
in the output anyway. The * and / operators are defined as well, but perform
element-by-element operations on their two arguments, provided they are the
same dimension,

cout << oArray1D_01 * oArray1D_02;

cout << oArray1D_01 / oArray1D_02;

which is the same scheme as used in Matlab. Element access is through the
[] operator which can be used as both a LHS and RHS

oArray1D_01[0] = 3.0;

cout << oArray1D_01[0] << endl;

11.2 Class Array2D

The Array2D<> template class is a two-dimensional array or matrix, and can
be instantiated as usual

Array2D<double> oArray2D_01(10, 10),

oArray2D_02(2, 3, 1.0);

where again we are creating objects to store double types. The first object is
created as a 10 by 10 matrix, but elements are not initialised, and the second
is a 2 by 3 matrix, with all elements initialised to 1.0. The copy constructor
can also be used. The numbers of rows and columns of an object are returned
by the dim1() and dim2() methods respectively, and the array objects can
be sent to cout in the same way as before

cout << oArray2D_02;

cout << oArray2D_02.dim1() << " "

<< oArray2D_02.dim2() << endl;

The assignment operator is defined, as well as +, -, *, / which again operate
in an element-by-element fashion as for Array1D<>. One more operation
which can be done is matrix multiplication, and a method called matmult()

is used for this
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Array2D<double> oArray2D_03(3, 2, 3.2);

Array2D<double> oArray2D_04 =

matmult(oArray2D_02, oArray2D_03);

cout << oArray2D_04;

and the definition is as usual; the number of columns in the first argument
have to match the number of rows in the second, or the empty container will
be returned. Element access for the array object uses the [] operator as
before, and can be used as LHS or RHS

oArray2D_04[0][0] = 1.0;

cout << oArray2D_04;

11.3 Algorithms

11.3.1 LU decomposition

Consider the set of linear equations

Ax = b

if the matrix A is written as the LU decomposition,

A = LU

where L and U are lower triangular and upper triangular respectively, then
the equations can be solved by first evaluating y from

Ly = b

and then solving
Ux = y

for y. Solving the triangular sets of equations is trivial, but how do we obtain
the decomposition A = LU in the first place?

There is no point in explaining here how or why the algorithm for this works,
but the answer using TNT/JAMA is as follows

unsigned int iDim = 10;

Array2D<double> oA(iDim, iDim);

for (unsigned int i=0; i<iDim; i++)

for (unsigned int j=0; j<iDim; j++)
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oA[i][j] = rand();

Array1D<double> oVec_b(iDim);

for (unsigned int i=0; i<iDim; i++)

oVec_b[i] = rand();

LU<double> oLU(oA);

Array1D<double> oVec_x = oLU.solve(oVec_b);

The first thing that happens here is we create a matrix of double values and
fill it up with random numbers, oA. Then we create a vector of right hand
sides, oVec b. Next we create an object of type LU<double>, which computes
the LU decomposition of the matrix which it is passed as an argument on
construction. We can then call the solve() method with oVec b as an
argument to find the vector x from the expression Ax = b.

As an exercise, check that this has been done correctly.

11.3.2 Eigenvalue solver

The right-eigenvectors and eigenvalues of a real-symmetric matrix A are
defined by the columns of the orthogonal matrix X

XTAX = λ

where λ is diagonal. The matrices X and λ can be obtained using TNT by
the following code

unsigned int iDim = 10;

Array2D<double> oG(iDim, iDim);

for (unsigned int i=0; i<iDim; i++)

for (unsigned int j=i; j<iDim; j++)

{

oG[i][j] = rand();

oG[j][i] = oG[i][j];

}

Eigenvalue<double> oEIG(oG);

Array1D<double> oEigReal, oEigImag;

oEIG.getRealEigenvalues(oEigReal);

oEIG.getImagEigenvalues(oEigImag);
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Array2D<double> oV;

oEIG.getV(oV);

The first thing that happens is we create a real symmetric (square) matrix,
oG. We then create an object of type Eigenvalue<double>, and pass it the
matrix of interest. The eigenvalues and eigenvectors of the matrix are com-
puted on construction, and can then be returned by the subsequent calls,
and sent to cout if desired.

As an exercise, convince yourself that this operation has been done correctly.

11.3.3 Cholesky factorisation

Given a symmetric positive definite matrix A, the Cholesky factorisation of
A is a lower triangular matrix C such that

A = CCT .

This can be done using another of the JAMA classes; suppose that you have
an appropriate matrix oP already defined.

JAMA::Cholesky<double> oCholesky(oP);

if (oCholesky.is_spd())

{

oChol = oCholesky.getL();

}

else

{

cerr << "couldn’t perform Cholesky factorisation. "

<< endl << flush;

exit(1);

}

Note that the method Cholesky::is spd() returns true if the matrix used
was symmetric positive definite, meaning that the factorisation was com-
pleted, and the matrix C can be recovered. Otherwise, the factorisation in
this form is not possible.

11.4 An example

So one final example of how we might use some of the computational tech-
nology described above. Suppose that we have a multivariate normal density
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specified by a mean vector x̄ and covariance matrix P, and we wish to gen-
erate samples from that density. Suppose that the number of dimensions is
m. The following steps will do this job:

1. Form the lower triangular Cholesky factorisation P = CCT

2. Form a m-vector of unit normal samples, z ∼ N(0, 1), i.i.d.

3. Form the vector w = Cz+ x̄

then the vector w is distributed as required, w ∼ N(x̄,P), i.i.d.


