C++ For Financial Engineering; Exercises

Steve Miller and Brad Baxter

July 2012

How To...

. Add a new method to TestClass: open the file TestClass.h and add
the header for the method:

void TestNM();
the add the body of the method to the file TestClass. cpp:

void TestClass::TestNM()
{

// code in here...

}

Don’t forget to put the code into main() to call the new method.
2. Compile the project: Use the “file” menu and select “build solution”.

3. Run the project: Use the “Debug” menu and select “start without
debugging”.

4. Add a file to the project. Right-click on the project name in the left
hand window and select “Add New Item” and then select the type of
item, e.g. header file, cpp file and so on.

. Add a new class to the project. Right-click on the project name and
select “Add new item” and select “Class”. Then select “C++ Class”
and give a name. The .h and .cpp files will automatically be created
and added to the project.



2 BASIC CONCEPTS 2

2 Basic Concepts

2.1 A pricing function

Background: Intrinsic data types, the math library and simple functions.

Task: You should now be able to a write a function to return the price of
Euro call using the Black-Scholes formula:

C(S) = S®(dy) — Ke ™" ®(dy) (1)

where S' is the stock price today, K is the strike price, T' is time to expiry, r
is the risk free rate and

di = {In(S/K)+ (r+0%/2)T} JoVT, (2)
dy = {In(S/K)+ (r—o*/2)T} JoVT (
= dy—oVT (4)
where 02 is the volatility. The function ®(z) is the unit normal c.d.f. and is
supplied.

The parameters should be the arguments to the function, and the return
value should be the price. Suppose you were required to create a function
which computes the price of the call and the put options at the same time
(using put-call parity, C(S) — P(S) =S — Ke™""); what would you do?

2.2 A second pricing function

Background: Functions and arrays

Task: Write a function that computes the price of a Euro put or call using
the B-S formula as above, but this time for every one of a set of strike price
values passed into the function as an array of given length. Suppose that the
calling program specifies the strike prices as something like:

unsigned int m = 10;
double *pA = new double [m];

pA[0] = 1.0;
pA[1] = 2.0;
// etc...

Naturally you can make use of the solution to the previous problem to do
this.



3 USE OF CLASSES 3

2.3 Some linear algebra

Background: Arrays

Task: Write a function to compute the inner product (¢ = ). a;b;) of two
real-valued vectors (of the same length) that are passed as arguments. The
arrays can be assumed to be specified in the calling program in the following
way:

unsigned int m = 100; // for example
double *pA = new double [m];

double *pB = new double [m];

// set some values for the arrays
// and then call the function

3 Use of classes

3.1 Another Black-Scholes solver

Background: Basic class concepts

Task: Create a class to represent the Euro option. It should have data
members to store all parameters required to solve the Black-Scholes formula,
and methods to set and return these quantities. In addition, there should
be methods to compute the put and call prices (and then store these data
internally); you should be able to return these values when requested.

3.2 Interface and Implementation

Background: Basic class concepts, construction and copying

Task: Complete the implementation of the class Test02 discussed in section
3.7

3.3 Example using inheritance

Background: Inheritance, virtual and pure virtual functions. Abstract
classes.

Task 1: Create an abstract class for the payoff function for an option. It
should have a pure virtual method called Evaluate which takes a double



4 USE OF THE STL 4

value as an argument and evaluates the payoff function at this argument. It
should also have a virtual destructor.

Task 2: Create concrete classes for put and call payoffs. Parameters of
these payoff functions (e.g. strike price) can be passed in as arguments to
the derived class constructor.

4 Use of the STL

4.1 Some linear algebra

Background: Basic STL concepts, use of the vector container

Task: Write a function that takes two double valued vector arguments and
returns their dot product.

4.2 Some statistics

Background: Basic STL concepts, the pair<> container
Task 1: Write a function to compute the mean and variance

=Y = S (a—wp? 9

(2

of a vector<double> argument, to return both of these values as elements
of a pair<double, double> object. We wish to use it in the following way:

vector<double> oVec(m, 0.0);
// do something to fill up values of oVec
pair<double, double> oResults = SomeFunction(oVec);
cout << "Mean = " << oResults.first

<< "; var = " << oResults.second << endl;

Task 2: Now create a function to compute the covariance of two vector<double>
arguments of the same length, using

Cov(a,b) = L (a; — pha)(b; — pip) (6)

n—1 -

where p, and muy are the means of a and b respectively.



5 MONTE CARLO 5

5 Monte Carlo

In the notes, it is shown how to generate normally distributed random num-
bers. The code for this course includes a basic random number generator. It
can be called in the following fashion:

RNG oRNG;
double dVal = oRNG.Uniform0O1(); // draw from U(0,1)
double dVal2 = oRNG.UnitNormal(); // draw from N(O, 1)

WARNING: This rng uses system rand() which is generally not a good
idea. It is not thread safe and on some operating systems might not be a
good random number generator (in some statistical sense). This is provided
for demo purposes only.

5.1 Basic Monte Carlo

Background: Use of classes

Task: Write a class to price Euro call and put using Monte Carlo method.
The approach is to approximate the expectation of the payoff function using

Tl (i) _
C(S)~e n;max (ST K,O) (7)
where '
SC(FZ):Sexp{(r—az/Q)T+U\/TZ(i)} (8)

where Z0 ~ N(0,1),i=1,...,n iid.

5.2 More Monte Carlo

Background: Use of classes, inheritance example above, monte carlo pricing
example above

Task: An option can in principle have a completely arbitrary payoff function.
Modify your option pricing class to accept a pointer to a payoff function
object as defined above, and use its Evaluate() method in place of the
explicit put or call payoff function.



5 MONTE CARLO 6

5.3 Use of TNT

Read the section of the notes on TNT.

1. Check that when a LU decomposition has been performed, that the
results are numerically correct. That is, if we recombine the upper and
lower triangular matrices which are computed by TN, is the original
matrix recovered? Are there errors? At what level of precision do they
appear?

2. Use an LU decomposition and the subsequent solution of the equations
for a specific right hand side vector to compute the inverse of a matrix.

3. Use the cholesky factorisation of a real-symmetric positive definite ma-
trix (i.e. a covariance matrix) together with some mean vector to gen-
erate draws from a multivariate Gaussian distribution.



