
M2OD – Optimization and Discrete

Mathematics

Dr Brad Baxter

Department of Mathematics

Imperial College, London SW7 2BZ

b.baxter@ic.ac.uk

www.ma.ic.ac.uk/∼baxter

These notes contain all of the examinable theory and algorithms for the
first 9 lectures of M2OD. I shall provide an example sheet in Week 2 and
announce office hours later in Week 1. Please note that I am on sabbatical
this term, so will not often be available on campus after Week 3.

1. Linear Programming

1.1. Introduction

A linear programming (LP) problem requires us to find the smallest value of
a linear function subject to some linear equality and inequality constraints.
Thus the most general problem of this type is to

Minimize f(x) = cTx, x ∈ R
n

subject to ℓj(x) = 0, 1 ≤ j ≤ M,

and ℓj(x) ≥ 0, M + 1 ≤ j ≤ M + P, (1.1)

where ℓj(x) = aTj x− bj , for j = 1, 2, . . . ,M + P . However, it will suffice to
focus on a more restricted problem. The standard form we shall consider is
as follows.

Minimize f(x) = cTx, x ∈ R
n

subject to Ax = b and x ≥ 0. (1.2)

Here the notation “x ≥ 0” simply means that every component of the vector
x is non-negative.
We shall always assume that the matrix A is m × n, where m < n, and

that its columns a1,a2, . . . ,an generate a subspace of dimension m. In other
words, we assume rank A = m. Thus the set of solutions

Σ(b) ≡ {x ∈ R
n : Ax = b} (1.3)

2 Brad Baxter

is nonempty. Further, if z ∈ Σ(b), then

Σ(b) = z+K, where K = {y ∈ R
n : Ay = 0}, (1.4)

because, if x,y ∈ Σ(b), then A(x− y) = b− b = 0.
The constraints in (1.2) require that x ∈ Σ(b) be a vector with non-

negative components. We shall use some special terminology to describe
this set.

Definition 1.1. (i) If x ∈ Σ(b), then we define B(x) = {k ∈ [1, n] :
xk 6= 0}. We shall call B(x) the basic set. The nonzero variables
{xk : k ∈ B(x)} are called basic variables.

(ii) If x ∈ Σ(b) and the columns of A correponding to the basic variables
{ak : k ∈ B(x)} are linearly independent, then we say that x is a
basic point in Σ(b). Further, if |B(x)| < m, then we say that x is a
degenerate basic point.

Exercise 1.1. If x ∈ Σ(b) is a basic point, then |B(x)| ≤ m.

Definition 1.2. The feasible set is defined by

S = {x ∈ Σ(b) : x ≥ 0}. (1.5)

An element of S is called a feasible point. If x ∈ S is a basic point in Σ(b),
then we say that x is a vertex, also called a basic feasible point. We shall
elucidate the geometric name in due course. Further, S is sometimes called
a simplex.

Thus the standard LP problem becomes

Minimize f(x) = cTx

subject to x ∈ S. (1.6)

Definition 1.3. Any solution to (1.6) is called an optimal feasible point.
In other words, x∗ ∈ S is an optimal feasible point if and only if

cTx∗ ≤ cTx, for all x ∈ S.

It is easy to construct LP problems for which there are no optimal feasible
points, or infinitely many.

Example 1.1. (i) For the three-dimensional LP problem

Minimize : x

subject to : x+ y + z = 1 and x ≥ 0, y ≥ 0, z ≥ 0,

the set of optimal feasible points is

{(0, y, z) ∈ R
3 : y + z = 1, y ≥ 0, z ≥ 0}.

If you sketch this, you will obtain a triangle for which one edge consists
of optimal feasible points.

M2OD 3

(ii) The one-dimensional LP problem

Minimize − x subject to x ≥ 0

has no optimal feasible points.

(iii) The two-dimensional LP problem

Minimize − x, subject to x ≥ 0 and 0 ≤ y ≤ 2,

has no optimal feasible point.

The following lemma might seem rather unimportant at first sight, but is
crucial to the theory and algorithms of linear programming.

Lemma 1.1. Let x ∈ S be a feasible point that is not a vertex. Then
we can construct a new feasible point z ∈ S for which B(z) ⊂ B(x) and
|B(z)| ≤ |B(x)| − 1.

Proof. By definition of vertex, the columns {ak : k ∈ B(x)} corresponding
to the basic set B(x) are linearly dependent. Thus there are scalars {yk :
k ∈ B(x)}, not all of which are zero, such that

∑

k∈B(x)

ykak = 0,

so that we have a nonzero vector y ∈ R
n such that B(y) ⊂ B(x) and

Ay = 0.

Hence

A (x− ty) = b, for all t ∈ R,

and x − ty ∈ Σ(b) for all t ∈ R. However, if yk 6= 0, then xk − tyk < 0
when |t| > |xk/yk| and sign(t) = sign(yk). Of course, we see that x− ty is
feasible for all sufficiently small |t|. If we now choose the largest modulus
t∗ such that z ≡ x − t∗y ∈ S, then B(z) ⊂ B(x), by construction, and
|B(z)| < |B(x)|, as required. �

Theorem 1.2. The feasible set contains a vertex.

Proof. If x ∈ S is not a vertex, then Lemma 1.1 implies the existence of
a vector z1 ∈ S such that B(z1) ⊂ B(x) and |B(z1)| ≤ |B(x)| − 1. If z1 is
not a vertex, then we can apply the lemma again to obtain z2 ∈ S such that
B(z2) ⊂ B(x) and |B(z2)| ≤ |B(x)| − 2. Of course, we apply the lemma
repeatedly until we obtain a feasible point, zp ∈ S say, that is a vertex.
Thus we have B(zp) ⊂ B(x) and |B(zp)| ≤ |B(x)| − p. �

Theorem 1.3. If there exists an optimal feasible point, then there’s an
optimal vertex.

4 Brad Baxter

Proof. Let x ∈ S be an optimal feasible point that is not a vertex. Fol-
lowing the proof of Lemma 1.1, there is a nonzero vector y ∈ R

n such that
B(y) ⊂ B(x) and x − ty is feasible for, say, |t| < δ. If f(y) 6= 0, then
x− t sign(f(y))y 6= x is a feasible point for 0 < t < δ such that

f(x− t sign(f(y))y) = f(x)− t sign(f(y))f(y) = f(x)− t|f(y)| < f(x),

which contradicts the optimality of x. Thus we must have f(y) = 0. There-
fore each application of Lemma 1.1 results in a feasible point z such that
|B(z)| ≤ |B(x)| − 1 and f(z) = f(x). Thus we can apply the lemma several
times, as in the proof of Theorem 1.2, to obtain an optimal vertex. �

Definition 1.4. If 1 ≤ m ≤ n, then an m-set is simply any subset of
{1, 2, . . . , n} containing m different numbers.

Exercise 1.2. There are
(

n
m

)

m-sets.

Proposition 1.4. There are at most
(

n
m

)

vertices of S.

Proof. Suppose that x ∈ S is a nondegenerate vertex, so that |B(x)| = m.
If y ∈ S is a vertex such that B(y) = B(x), then x = y, because the
equation

0 = A(x− y) =
∑

k∈B(x)

(xk − yk)ak,

and the linear independence of {ak : k ∈ B(x)} imply that x = y. Thus
every nondegenerate vertex corresponds to exactly onem-set of {1, 2, . . . , n}.
If x ∈ S is degenerate, then choose any m-set B∗ such that B(x) ⊂ B∗

and the vectors {aℓ : ℓ ∈ B∗} are linearly independent. (This is possible
because of the assumption rank A = m.) If y ∈ S is any vertex for which
B(y) ⊂ B∗, then we obtain

0 = A(x− y) =
∑

k∈B∗

(xk − yk)ak,

and we deduce that x = y. Thus we have associated exactly one m-set of
{1, 2, . . . , n} with each degenerate vertex.
We have therefore established that every vertex, degenerate or nondegen-

erate, corresponds to exactly one m-set of {1, 2, . . . , n}. Thus the number
of vertices is at most the number of m-sets, which is

(

n
m

)

. �

The last result suggests a simple algorithm to compute the minimum of
an LP problem when an optimal feasible point exists:

(i) We first find all the vertices: For each m-set B, we solve the equations
∑

k∈B

xkak = b

M2OD 5

if the vectors {ak : k ∈ B} are linearly independent. If the computed
vector satisfies x ≥ 0, then we have found a vertex. Let V denote the
set of all vertices — we know that |V | ≤

(

n
m

)

.

(ii) We now compute f(v) = cTv for every vertex v ∈ V and pick any
element giving the smallest value of f .

Unfortunately this method is only useful when
(

n
m

)

is small, which ex-

cludes almost all problems of practical interest, since
(

n
m

)

is enormous for
quite modest values of m and n. However, it does suggest a useful strat-
egy: Since the minimum value of f(x) is attained at a vertex, then we can
attempt the solve the problem

Minimize f(x) = cTx, x ∈ R
n

subject to x is a vertex of S, (1.7)

by starting at a vertex and then moving to a vertex at which f(x) takes a
smaller value. If we regard the cost vector c as defining our “up” direction,
then we simply move from each vertex to a lower vertex. This is a simple
version of the simplex method.

It can be shown that

lim
n→∞

(

2n
n

)

22n/
√
πn

= 1.

Therefore the denominator provides a simple way to estimate the numerator. Choos-

ing n = 200, we find that the number of vertices in a linear programming problem

with 400 vertices and 200 constraints can have more vertices than there are atoms

in our universe! In contrast, the simplex algorithm typically visits a small multiple

of n vertices before finding the solution, so that n = 200 problems can be solved

with ease on any basic Pentium.

1.2. Moving between Vertices

The idea of the simplex method is to move from vertex to vertex of S to
reduce the value of f , ultimately locating an optimal vertex. Therefore
suppose we have located a nondegenerate vertex v ∈ S. Any other
vertex must have a different basic set of variables. Thus, in moving from v
to another vertex, one of the basic variables must become zero. To express
this, we introduce the following notation.

Definition 1.5. Let e1, e2, . . . , en be the coordinate vectors, that is

e1 =









1
0
...
0









, e2 =













0
1
0
...,
0













, . . . , en =









0
...
0
1









∈ R
n.

6 Brad Baxter

Further, if j1, j2, . . . , jn is a permutation of the integers 1, 2, . . . , n, then we
say that the matrix

(ej1 ej2 · · · ejn)

is a permutation matrix. In other words, we’re simply shuffling the columns
of the identity matrix.

Let’s write

B ≡ B(v) = {j1, j2, . . . , jm} and N = {1, 2, . . . , n}\B ≡ {k1, k2, . . . , kn−m}.
(1.8)

Thus, for any vector x ∈ R
n (not necessarily in S) we can write

x =

m
∑

ℓ=1

xjℓejℓ +

n−m
∑

p=1

xkpekp . (1.9)

Accordingly, we set

xB =





xj1
...

xjm



 ∈ R
m and xN =





xk1
...

xkn−m



 ∈ R
n−m. (1.10)

Similarly, we define

vB =





vj1
...

vjm



 ∈ R
m. (1.11)

Further, we shall write

AB = (aj1 aj2 · · · ajm) and AN = (ak1 ak2 · · · akn−m
) .

(1.12)
We note that AB is an invertible m×m matrix and AN is an m× (n−m)
matrix. Further, we see that x ∈ Σ(b) if and only if

ABxB +ANxN = b, (1.13)

whence

xB = A−1
B (b−ANxN) = vB −A−1

B ANxN , (1.14)

since

vB = A−1
B b. (1.15)

Further, setting

cB =









cj1
cj2
...

cjm









∈ R
m and cN =









ck1
ck2
...

ckn−m









∈ R
n−m, (1.16)

M2OD 7

we obtain

f(x) = cTBxB + cTNxN (1.17)

and we note that

f(v) = cTBA
−1
B b. (1.18)

Thus, substituting (1.14) in (1.17), we find

f(x) = cTB
(

vB −A−1
B ANxN

)

+ cTNxN (1.19)

= f(v) +
(

cTN − cTBA
−1
B AN

)

xN (1.20)

≡ f(v) + rTxN , (1.21)

where

r = cN −AT
NA−T

B cB. (1.22)

[Here A−T
B is shorthand for the transpose of A−1

B .]
Equation (1.22) provides a simple test for optimality.

Proposition 1.5. If r ≥ 0, then v is an optimal vertex.

Proof. If xN ≥ 0, then (1.22) implies rTxN ≥ 0, so that f(x) ≥ f(v). �

Thus, if r is not a vector with non-negative components, then we are at a
suboptimal vertex. In order to move to a new vertex, the simplex method
chooses

xN = θei, θ ≥ 0, (1.23)

where i ∈ {1, 2, . . . , n −m} is an integer for which ri < 0. In this case, we
obtain

xB = vB − θA−1
B ANei (1.24)

and, because the ith component of r is negative, (1.21) implies

f(x) = f(v) + θrTei = f(v) + θri < f(v), (1.25)

for θ > 0. Of course, we must ensure x ∈ S. In other words, we must pick
θ > 0 so that

xB = vB − θA−1
B ANei ≥ 0. (1.26)

Thus, setting

d = A−1
B ANei, (1.27)

we require vB − θd ≥ 0, i.e.

(vB)j − θdj ≥ 0, for 1 ≤ j ≤ n−m. (1.28)

Of course, the larger the permitted value of θ, the greater the reduction in
f(x). Thus we set

θ∗ = sup{θ > 0 : vB − θd ≥ 0} (1.29)

8 Brad Baxter

or

θ∗ = min{(vB)k/dk : dk > 0}. (1.30)

Then the resulting vector w, where

wB = vB − θ∗d and wN = θ∗ei, (1.31)

is a vertex for which f(w) < f(v). Further, in an attempt to optimize our
reduction in f , the simplex method chooses i so that the ith component of r
is maximally negative, i.e. ri ≤ rk, for 1 ≤ k ≤ n−m. This motion between
vertices is called the simplex method.

Fix for degenerate vertices
The above description is valid when v is a nondegenerate vertex of S, that
is, when B(v) contains m numbers. However, if v is a degenerate vertex,
then there is a fix: We now let B∗ be any set of m numbers containing
B(v) such that the corresponding columns {ak : k ∈ B∗} of A are linearly
independent. We then continue the algorithm as given above, BUT you are
warned that degenerate vertices can cause problems.

Algorithm 1.1. The Simplex Algorithm.

(i) Pick a vertex v ∈ S. [See the next section for finding vertices.]

(ii) Let B ≡ B(v) be the basic set, N = {1, 2, . . . , n} \ B the nonbasic
set, proceeding as described at the end of the previous section if v is a
degenerate vertex. Construct AB, AN , cB, cN ,vB as above.

Let

r = cN −AT
NA−T

B cB.

If r ≥ 0, then STOP: the algorithm has found v an optimal vertex.

(iii) Let ri be any maximally negative component of r, that is

ri ≤ rj , 1 ≤ j ≤ n−m,

and set

d = A−1
B ANei.

Let

θ∗ = min{(vB)k/dk : dk > 0}.
Then the next vertex is given by where

xB = vB − θ∗d and xN = θ∗ei.

Now let v denote this new vertex and setB ≡ B(v) andN ≡ {1, . . . , n}\
B(v). GOTO (ii).

M2OD 9

1.3. Some Convex Geometry

This section introduces some topics from the important field of convex anal-
ysis that yield some useful geometric insights.

Definition 1.6. For any points x1,x2, . . . ,xp ∈ R
n and numbers t1, t2, . . . , tp ∈

[0, 1] satisfying
p
∑

k=1

tk = 1,

the linear combination
p
∑

k=1

tkxk

is called a convex combination of x1, . . . ,xp.

Example 1.2. The set of all convex combinations of x,y ∈ R
n is precisely

the line segment joining x and y; it’s the set

{tx+ (1− t)y : 0 ≤ t ≤ 1}.
Definition 1.7. A subset K of Rn is called convex if x,y ∈ K implies
every convex combination of x and y is also an element of K. Thus the line
segment joining any pair of points in K is also contained in K.

Lemma 1.6. The feasible set defined by equation (1.5) is convex.

Proof. Let z = tx+(1−t)y. If x,y ∈ Σ(b), then Az = tAx+(1−t)Ay = b
for every t ∈ R. Further, if x ≥ 0 and y ≥ 0, then, for t ∈ [0, 1], we have

zj = txj + (1− t)yj ≥ min{xj , yj} ≥ 0, 1 ≤ j ≤ n.

Thus S is convex. �

Exercise 1.3. Let K1,K2, . . . ,KN be convex subsets of Rn. Then their
intersection

K =
N
⋂

j=1

Kj

is also a convex set.

Definition 1.8. Let K be a convex subset of Rn. A point v ∈ K is called
an extreme point of K if there do not exist distinct points x,y ∈ K and
t ∈ (0, 1) such that z = tx + (1 − t)y. In other words, an extreme point
cannot lie in the interior of a line segment contained in K.

Example 1.3. Consider the tetrahedron

K = {(x, y, z) ∈ R
3 : x+ y + z ≤ 1 and x ≥ 0, y ≥ 0, z ≥ 0}.

10 Brad Baxter

Then the extreme points of K are the corners (1, 0, 0), (0, 1, 0) and (0, 0, 1).

We see that the extreme points in the last example are exactly the vertices
defined in the previous section. This is true in general.

Theorem 1.7. The extreme points of the feasible set S are exactly the
vertices of S.

Proof. Suppose z ∈ S is not an extreme point. Then there are distinct
points x,y ∈ S, and a number t ∈ (0, 1), such that z = tx+(1− t)y. Hence
B(x) ⊂ B(z) and B(y) ⊂ B(z). Thus

∑

k∈B(z)

(xk − yk)ak = 0

and the vectors {ak : k ∈ B(z)} are linearly dependent, which implies that
z is not a vertex.
Conversely, suppose x ∈ S is not a vertex. Thus we may apply the

construction of Lemma 1.1 to obtain a nonzero vector y such that x− ty is
a feasible point for all sufficiently small |t|. Thus there is a number θ > 0
such that x+ θy, x− θy are feasible points, so that

x =
1

2
(x+ θy) +

1

2
(x− θy)

and x is not an extreme point, being the midpoint of the line segment joining
the feasible points x± θy. �

Definition 1.9. Let A be any subset of Rn. Then the convex hull K(A)
of A is the set generated by all convex combinations of points of A.

It can be shown that K(A) is the smallest convex set containing A. In
other words, if C is a convex set such that A ⊂ C, then K ⊂ C. Further,
there is a simple link between convex sets and their extreme points.

Proposition 1.8. Let C be any convex subset of Rn. Let E denote the
set of all extreme points of C. Then C = K(E).

Proof. This proof is not examinable. �

Applying this proposition to the feasible set S of a linear programming
problem, we get another proof of the fact that, if there’s an optimal feasible
point, then there’s an optimal vertex. For, if x ∈ S is an optimal feasible
point, then we can express x as a convex combination of vertices of S:

x =

p
∑

k=1

wkvk.

M2OD 11

Thus

f(x) =

p
∑

k=1

wkf(vk) ≥ min{f(vk) : 1 ≤ k ≤ p} ≥ min{f(v) : v is a vertex of S}.

This leads us to another interesting question: how large can the number p
be in the previous equation? It is plausible that, in R

2, any point in the
convex hull of a finite set of points is in the triangle generated as the convex
hull of some three of the points. This is indeed the case.

Theorem 1.9. (Carathéodory’s Theorem) Let A be any subset of Rn.
Then every point of the convex hull K(A) is a convex combination of at most
n+ 1 points of A.

Proof. Suppose

z =

p
∑

k=0

wkak,

where p > n, w0, w1, . . . , wp are positive numbers, a0,a1, . . . ,ap ∈ A and
∑p

k=0wk = 1. Then

0 =

p
∑

k=0

wkαk,

where αk = ak − z. Thus the vectors α1, . . . ,αp are linearly dependent
(because any p > n vectors in R

n are linearly dependent). Hence there are
real numbers y1, . . . , yp, not all of which vanish, for which

p
∑

k=1

ykαk = 0.

If we now define y0 ≡ 0, then we see that

p
∑

k=0

(wk − tyk)αk = 0

for every t ∈ R. Now consider the kth coefficient

ck(t) = wk − tyk

as a function of t. We note that c0(t) ≡ w0 > 0, for all t, and ck(0) = wk > 0.
Thus ck(t) > 0 for all sufficiently small |t|, because we have finitely many
continuous functions. Of course, if yk 6= 0, then tk = wk/yk is the unique
zero of the linear function ck(t). Let t

∗ be the smallest modulus element of
the zeros of c0(t), . . . , cp(t). Then ck(t

∗) ≥ 0, for k = 0, 1, . . . , p, and at least
one of the numbers {ck(t∗) : 0 ≤ k ≤ p} must be equal to zero (if not, we
could increase t∗ in modulus without causing one of the coefficient functions

12 Brad Baxter

to become negative). Therefore

0 =

p
∑

k=0

ck(t
∗)αk =

(

p
∑

k=0

ck(t
∗)ak

)

−
(

p
∑

k=0

ck(t
∗)

)

z,

or

z =

p
∑

k=0

w∗
kak,

where

w∗
k =

ck(t
∗)

∑p
ℓ=0 cℓ(t

∗)
, k = 0, 1, . . . , p,

and at least one w∗
k must vanish. Thus we have expressed z as a convex

combination of at most p points in A.
We repeat the construction until p ≤ n, so proving the theorem. �

1.4. Variations on the standard form

At first sight, the LP problem defined by (1.1) seems far more general than
the LP problem given by (1.2). However, this seemingly greater generality is
illusory. To give some indication of this, we show how several LP problems
can be reduced to standard form.
First note that, for the feasible region defined by (1.1) to be nonempty,

the number M of linear equality constraints cannot exceed the total number
of variables n. If M = n, then either S is empty, or it contains exactly one
point, namely the solution to the n linear equations. Thus it is natural to
exclude this rather trivial case by stipulating M < n. Further, if some of
the M linear equations can be written as a linear combination of the others,
then we can reduce the total number M of linear equations. Therefore we
assume that any such reduction has already been effected, leavingM linearly
independent equations.
We can now reduce (1.1) to standard form by introducing P slack variables

xn+1, xn+2, . . . , xn+P .

Specifically, we solve the augmented LP problem

Minimize cTaugxaug, xaug ∈ R
n+P

subject to mj(xaug) = 0, 1 ≤ j ≤ M,

and mM+j(xaug) = xn+j , 1 ≤ j ≤ P. (1.32)

M2OD 13

Here

xaug =









x1
x2
...

xn+P









and mj(xaug) = (x1 · · · xn)
T aj−bj , 1 ≤ j ≤ M+p.

1.5. Finding an initial vertex

In some problems, finding an initial vertex is trivial. For example, if every
linear equality constraint results from creating a slack variable, then we can
simply begin with the slack variables being the basic variables. However, in
general this is not the case. However, it is possible to find a vertex of S by
applying the simplex algorithm to solve a closely related LP problem; this is
the “first phase”, the “second phase” being the simplex algorithm starting
with the vertex of S located by the first phase.

Algorithm 1.2. Phase I: This algorithm finds a vertex of S provided that
S is nonempty. Phase II: We then use this vertex to solve the original LP
problem.

(i) Let σk = sign(bk), for 1 ≤ k ≤ m, and define the diagonal matrix

D =









σ1
σ2

. . .

σm









.

Replace A by DA and b by Db. Thus we have simply multiplied every
linear equality constraint by ±1 so as to obtain b ≥ 0.

(ii) Use the simplex method to solve the LP problem

Minimize r1 + r2 + · · ·+ rm

subject to Ax+ r = b

and x ≥ 0, r ≥ 0, (1.33)

starting with the vertex x = 0, r = b. The simplex algorithm will
terminate with r = 0 and x a vertex of S,

(iii) Use the newly computed vertex as the initial vertex for the simplex
method applied to the original problem.

Note that the LP problem defined by (1.33) has m + n variables and m
linear constraints. Thus finding a vertex is just as difficult as solving the
LP problem once an initial vertex is known.

1.6. Some computational points

Older treatments of the simplex method were designed for readers who may
not have met matrices during their undergraduate career. Therefore such

14 Brad Baxter

expositions introduce matrices tacitly, avoiding almost all explicit mention
of matrix algebra. The matrix A is written out in full and is called the
“tableau”. This is the reason for the ubiquity of tableaux in many texts,
although this exposition is far beyond its “use by” date. Today, every stu-
dent in every numerate discipline learns about matrices from the beginning
of their undergraduate career. Therefore we say nothing about tableaux in
this treatment. If you want to see how it used to be done, then look up the
relevant sections of Strang.
One disadvantage of the simplex method as described here is the seeming

need to compute A−1
B at every step of the simplex method. This can be

avoided once we observe that the basic set changes by one element only
from one iteration to the next. Changing the order of the elements in the
basic set as necessary, we can assume that only the qth column changes,
that is

AnewB = AoldB + (b− a) eTq , (1.34)

where a is the qth column of AoldB and b is the qth column of AnewB . This
relies on the fact that, for any two (column) vectors u,v ∈ R

n, the matrix
product uvT is an n × n matrix whose (j, k)th element is ujvk. Equation
(1.34) is called a rank one update, because any matrix of the form uvT has
rank one. Indeed, we have

(

uvT
)

x = u
(

vTx
)

,

by associativity of matrix multiplication. Thus uvT maps every vector in
R
n to a multiple of u and the matrix uvT has rank one.
The ingenious Sherman-Morrison formula allows us to avoid the recom-

putation of the inverse when a rank one change occurs.

Theorem 1.10. Let u,v ∈ R
n and let E be any invertible n × n matrix

whose inverse has already been computed. If

F = E + uvT (1.35)

and vTE−1u 6= −1, then F is invertible and

F−1 = E−1 −
(

αβT

1 + vTα

)

, (1.36)

where

α = E−1u and β = E−Tv. (1.37)

These calculations require a multiple of n2 arithmetic operations.

Proof. We compute the product of F and the claimed formula for its in-

M2OD 15

verse.

(

E + uvT
)

(

E−1 − E−1uvTE−1

1 + vTE−1u

)

= I + uvTE−1 − uvTE−1

1 + vTE−1u
− uvTE−1uvTE−1

1 + vTE−1u

= I + uvTE−1 −
(

uvTE−1 + (vTE−1u)uvTE−1

1 + vTE−1u

)

= I + uvTE−1 − uvTE−1

(1.38)

The main computation required is to multiply an n×nmatrix by two vectors
in R

n, which requires a multiple of n2 operations. �

You have seen a more general version of this formula in the assessed work.
The formula is useful because computing the inverse of AnewB afresh on each
iteration would require a multiple of n3 operations — consider the saving
when, say, n = 100 or n = 10000.

Karmarkar’s Algorithm: The simplex method achieved prominence in the 1950s
when tests comparing its performance to several other methods for solving LP prob-
lems conclusively demonstrated its great superiority. Its creator, George Dantzig,
is still alive and famous, and the ambitious student might care to read his classic
textbook. The simplex method and its many variants then dominated the theory
and practice of linear programming for some thirty years

In the 1960s and 1970s, several mathematicians began asking, and answering,
some interesting complexity questions. Specifically, their interest concerned the
questions

(i) What’s the worst possible performance of the simplex algorithm.
(ii) How does it behave on average?

Of course, enormous experience in the use of the simplex algorithm had by then
been developed, so that it was conjectured that the number of vertices visited was
at most a linear function of the number of variables n and the number m of linear
equality constraints, because this was the observed behaviour of the algorithm.
However, this is quite wrong, as was found by Klee, Minty and Chvatal in the early
1970s. Their example is simple to describe:

Maximize
n
∑

j=1

10j−1xj

subject to xi + 2

n
∑

j=i+1

10j−ixj ≤ 102n−2i, i = 1, 2, . . . , n

and x ≥ 0. (1.39)

Exercise 1.4. Write down the Klee-Minty-Chvatal problem when n = 5.

Thus the Klee-Minty example is an n-dimensional problem with n linear inequality
constraints. The feasible region is a cuboid with 2n extreme points. It can be
shown that, if the initial vertex is x = 0, then the simplex algorithm visits all 2n

16 Brad Baxter

vertices before reaching the minimal vertex. Thus the simplex algorithm requires
time growing exponentially with n. Apparently this behaviour has never been dis-
covered in practice, so that such simplexes are presumably rare. Therefore, by
making some probabilistic assumptions, many mathematicians began to attempt
to show that the average case behaviour is as observed, with limited success. In
1979, Khachiyan, a Russian mathematician, constructed a new method which he
proved would reach the minimal vertex in time given by a polynomial function of
m and n, but this still far exceeds the observed linearity of the simplex method.
Further, their new algorithm was greatly inferior to the simplex method in perfor-
mance. Then, in 1984, Narendra Karmarkar, a mathematician employed by AT&T,
presented a new algorithm for which he claimed performance superior to the sim-
plex method. The practical importance of linear programming problems caused his
discovery to reach the front page of the New York Times, but his work generated
much controversy. Specifically, although his algorithm was clear and geometrically
highly attractive (it goes through the middle of the simplex rather than staying
on the edges), its claimed performance was dependent on numerical methods being
used in intermediate calculations whose details were known only to AT&T. Since
AT&T refused to make these details public knowledge, Karmarkar’s claims could
not be verified. However, once the arguments had died down in the late 1980s, the
consensus was that his method was superior to the simplex algorithm for certain
classes of LP problems, but by no means for all. Further, in 1985, it was found that
Karmarkar’s method was a special case of a more general class of algorithms popu-
lar in the 1960s for finding local minima of a general nonlinear function subject to
nonlinear constraints. For various reasons, these algorithms were generally aban-
doned in the 1970s, but their identification with Karmarkar’s method rejuvenated
the research field. This is now a highly active area of research, of great interest to
pure mathematicians, applied mathematicians, computer scientists and economists.

Some of the details of Karmarkar’s method can be found in Strang’s books.

Any student should be able to follow Strang’s relaxed exposition without too much

trouble.

1.7. Convexity and the Gauss-Lucas Theorem

In this section we derive a beautiful convexity result.

Theorem 1.11. (Gauss-Lucas Theorem) Let p(z) be a polynomial of de-
gree n with distinct roots

Z = {z1, z2, . . . , zm} ⊂ C.

Then every root of its derivative p′(z) is an element of the convex hull K(Z).

Before proving Theorem 1.11, we state some corollaries and preliminary
results.

Corollary 1.12. If every root of a polynomial has non-negative real part,
then every root of its derivative also has non-negative real part.

M2OD 17

Corollary 1.13. If every root of a polynomial lies in a convex set K, then
every root of its derivative is an element of K.

Proof. Both corollaries rely on the fact that Z ⊂ K implies K(Z) ⊂ K. �

These corollaries are surprisingly useful in their own right.
To prove Theorem 1.11, we need some notation. For any complex sequence

α1, α2, . . . , αN , we define

N
∏

k=1

αk ≡ α1α2 · · ·αN .

Thus this notation plays the corresponding role of Σ when studying prod-
ucts.

Exercise 1.5. If α1, . . . , αN are positive numbers, then

loge





N
∏

j=1

αj



 =

N
∑

j=1

loge αj .

The Fundamental Theorem of Algebra (hopefully proved in your Com-
plex Analysis course) asserts that every polynomial p(z) of degree n can be
written as

p(z) = λ
m
∏

k=1

(z − zk)
νk , z ∈ C. (1.40)

where λ ∈ C is a constant and ν1, . . . , νm are positive integers satisfying
ν1 + · · ·+ νm = n. There is a simple formula for the derivative p′(z):

Lemma 1.14.

p′(z) = λ
m
∑

j=1

νj (z − zj)
νj−1

m
∏

k=1,k 6=j

(z − zk)
νk . (1.41)

Proof. Direct differentiation of the product. �

It will come as no surprise to any student of the residue theorem that it
is easier to study

q(z) ≡ p′(z)

p(z)
. (1.42)

Further, we see that

q(z) =
m
∑

j=1

νj
z − zj

. (1.43)

18 Brad Baxter

Proof. . . . of Theorem 1.11: Let w be any zero of p′. Either (i) p(w) =
p′(w) = 0, or (ii) p(w) 6= 0 and p′(w) = 0. In case (i), we have w ∈ Z ⊂
K(Z), as required. In the latter case, we obtain

0 = q(w) =
m
∑

j=1

νj
w − zj

=
m
∑

j=1

νj (w − zj)

|w − zj |2
. (1.44)

Hence, taking complex conjugates of both sides,

w
m
∑

k=1

νk|w − zk|−2 =
m
∑

j=1

zjνj |w − zj |−2, (1.45)

or

w =
m
∑

j=1

τjzj , (1.46)

where

τj =
νj |w − zj |−2

∑m
k=1 νk|w − zk|−2

. (1.47)

Thus τj > 0 and τ1+ · · ·+ τm = 1, and w is indeed a convex combination of
the roots of p(z). �

The following exercise displays a typical use of the Gauss-Lucas Theorem.

Exercise 1.6. Prove that the diameter of the set of roots of the quartic
polynomial z4 + az3 + bz2 + cz + d is at least

√

(a2/4)− (2b/3).

M2OD 19

2. Networks

My treatment is based on that of T. W. Körner, The Pleasures of Counting,
which I highly recommend as a fascinating general text.

2.1. Introduction

We imagine n computer centres, or nodes {1, 2, . . . , n} linked by routes, or
edges. The edge linking nodes i and j has capacity cij bits per second, where
cij ≥ 0. We don’t assume that cji = cij . Our problem is to send as many
bits per second as possible from node 1, the source, to node n, the sink.
Thus we must specify the number of bits per second xij sent from node i to
node j, where

0 ≤ xij ≤ cij , for 1 ≤ i, j ≤ n. (2.1)

Further, we shall assume cjj = 0 and that messages can only be created or
destroyed at nodes 1 and n. Thus we have the conservation conditions

n
∑

k=1

xjk − xkj = 0, for 1 < j < n. (2.2)

We see that
n
∑

k=1

xjk

is the net number of bits per second leaving node j whilst

n
∑

k=1

xkj

is the net numbers of bits per second reaching node j.
The conservation conditions imply that the total number of messages

reaching node n each second is given by

F =
n
∑

k=1

x1k − xk1, (2.3)

and we shall call this the flow value. Another consequence of the (2.2) is
the relation

F =
n
∑

k=1

xkn − xnk. (2.4)

Thus our problem is to maximize the flow value F given by (2.3) subject to
the constraints (2.1,2.2). We see that our task is to minimize a linear func-
tion subject to some linear equality and inequality constraints. Specifically,
our network problem is as follows.

20 Brad Baxter

Minimize F (x) =
n
∑

k=1

(x1k − xk1)

subject to
n
∑

k=1

(xjk − xkj) = 0, for 1 < j < n

and 0 ≤ xjk ≤ cjk, 1 ≤ j, k ≤ n. (2.5)

Here

x =























x11
x12
...

x1n
x21
...

xn−1 n























∈ R
n2

.

Definition 2.1. (i) Any feasible vector x ∈ R
n2

will be called a flow.
(ii) The zero flow is simply the choice x = 0.
(iii) A flow x∗ is maximal, or optimal, if F (x) ≤ F (x∗) for every flow x.

There may be more than one maximal flow.

We could solve (2.5) using the simplex method. Unfortunately the large
number of slack variables required renders the basic form of the simplex
method rather inefficient. Our main aim in this section is to study a variant
of the simplex method called the Ford-Fulkerson algorithm.

2.2. The Ford-Fulkerson Algorithm

Lemma 2.1. Let x be a suboptimal flow for (2.4) and let us define subsets
A0, A1, . . . of {1, 2, . . . , n} recursively, as follows. Let

A0 = {1}
Ak+1 = Ak ∪ {j ∈ [1, n] : cij > xij − xji for some i ∈ Ak}, k ≥ 0.(2.6)

(2.7)

Then

(i) either there exists r ≥ 1 such that n ∈ Ar

(ii) or there exists r ≥ 1 such that n /∈ Ar and Ar = Ar+1 = Ar+2 = · · ·.

Proof. If Ak 6= Ak+1, then |Ak+1| ≥ |Ak|+1. Since there are only n nodes,
the sets A0 ⊂ A1 ⊂ · · · either reach node n or cease to grow when (say)
k = r. �

M2OD 21

Lemma 2.1 is the crux of the Ford-Fulkerson Algorithm. We shall some
more notation.

Definition 2.2. Let U ⊂ {1, 2, . . . , n} satisfy 1 ∈ U and n /∈ U , and let
V = {1, 2, . . . , n}\U (so n ∈ V). Then we say that C = (U, V) defines a cut
in the network. The cut capacity cap(C) (or cut value) is simply the sum of
the capacities of all edges joining nodes in U to nodes in V , that is

cap(C) =
∑

i∈U,j∈V

cij . (2.8)

Proposition 2.2. For any cut C = (U, V) and any flow x, we have

F (x) ≤ cap(C). (2.9)

Proof. This is the elementary inequality

cap(C) =
∑

i∈U,j∈V

cij ≥
∑

i∈U,j∈V

xij ≥
∑

i∈U,j∈V

xij − xji = F (x).

�

Corollary 2.3. (i) The minimum cut capacity is at least the maximum
flow value.

(ii) If C is a cut and x is a flow satisfying cap(C) = F (x), then C is a
minimal cut and x is a maximal flow.

Proof. These are immediate consequences of Proposition 2.2. �

Proposition 2.4. Let x be a flow and let A0 ⊂ A1 ⊂ A2 ⊂ · · · be the sets
defined in Lemma 2.1. If n ∈ Ar, for some r, then we can construct a new
flow y for which F (y) > F (x).

Proof. We define a sequence mr,mr−1, . . . ,m1,m0 recursively by setting
mr = n and, for k = r, r− 1, . . . , 1, we choose mk−1 to be any node in Ak−1

for which

cmk−1mk
> xmk−1mk

− xmkmk−1
. (2.10)

Thus m0 = 1, because m0 ∈ A0 = {1}. We have therefore constructed a
flow-augmenting path. Setting

δ = min{cmk−1mk
−
(

xmk−1mk
− xmkmk−1

)

: k = 1, . . . , r} (2.11)

we define our new flow y along the flow-augmenting path by increasing
xmk−1mk

by at most δ, or reducing xmkmk−1
by most δ, or some combination

of the two. For all other edges the flow x is unchanged. Thus

F (y) = F (x) + δ. (2.12)

�

22 Brad Baxter

Proposition 2.5. Let x be a flow and let A0 ⊂ A1 ⊂ A2 ⊂ · · · be the sets
defined in Lemma 2.1. If n /∈ Ar and Ar = Ar+1, then x is a maximal flow
and C = (Ar, {1, 2, . . . , n} \Ar) is a minimal cut.

Proof. If

Ar+1 = Ar ∪ {j ∈ [1, n] : cij > xij − xji, for some i ∈ Ar}, (2.13)

then J /∈ Ar implies ciJ = xiJ − xjI , for every i ∈ Ar. Hence xiJ = ciJ and
cJi = 0 when i ∈ Ar and J /∈ Ar. (In detail, we have

ciJ = xiJ − xJi ≤ xiJ ≤ ciJ ,

or ciJ = xiJ and xJi = 0.) Thus, if we choose the cut C = (Ar{1, . . . , n} \
Ar), then its capacity satisfies

cap(C) =
∑

i∈Ar ,j /∈Ar

cij =
∑

i∈Ar,j /∈Ar

xij − xji = F (x). (2.14)

Thus, by Corollary 2.3, x is a maximal flow and C is a minimal cut. �

The Ford-Fulkerson algorithm is now straightforward to describe.

Algorithm 2.1. The Ford-Fulkerson algorithm.

(i) Choose be any flow x (the zero flow x = 0 will suffice).
(ii) Construct the sets A0 ⊂ A1 ⊂ A2 ⊂ · · · defined by (2.7). If there

exists r such that n /∈ Ar and Ar = Ar+1, then, by Proposition 2.5, we
STOP, because our flow is maximal. Otherwise apply Proposition 2.4
to construct a new flow y with F (y) > F (x). Repeat.

This algorithm can fail to converge if the flows and the capacities are real
numbers. However, if the flows and capacities are integers, then convergence
in finitely many steps follows from the relation

F (y) ≥ F (x) + 1 (2.15)

and noting that any cut provides an upper bound on our maximal flow.

Exercise 2.1. Let all flows and capacities be integers and let M = ∩(C)
for any cut C. Show that, if the initial flow is the zero flow, then Ford-
Fulkerson requires at most M iterations to attain a maximal flow.

M2OD 23

3. Basic Graph Theory

There is really no suitable textbook for this part of the course, although
some of the material is covered in chapters of the following books, listed
roughly in order of difficulty. If you wish to buy one of these, the first is
probably most suitable.

(i) G. Strang, Introduction to Linear Algebra.
(ii) G. Strang, Introduction to Applied Mathematics.
(iii) P. J. Cameron, Combinatorics.
(iv) B. Bollobas, Modern Graph Theory.

3.1. Fundamentals

Speaking informally, a graph is just some dots, called nodes or vertices,
joined by edges. The edges need not be straight lines and are not restricted
to lie in two dimensional space. In this section, we shall not view the edges
as directed, but you have already seen directed graphs in the section on the
Ford-Fulkerson algoritm. Further, we require that every edge join different
vertices. The formal definition is as follows.

Definition 3.1. A graph G = (V,E) is a finite set V , whose elements are
called vertices, and a subset E of V × V , called edges. No edge can be of
the form (x, x), x ∈ V . FUrther, if (x, y) ∈ E, then we usually just write xy
to denote the edge.

Example 3.1. Let the vertices of our graph be labelled x, y, z and the
edges are (x, y), (y, z), (z, x); we have, of course, formed a triangle.

Another way to summarize the information represented by a graph is to
form the n×n matrix A whose elements are either zero or one, and Ajk = 1
if and only if vertices j and k are joined by an edge. Such a matrix is
called an adjacency matrix. We see that the matrix is symmetric (that is,
Ajk = Akj) and its diagonal elements are zero, that is Ajj = 0, 1 ≤ j ≤ n.

Example 3.2. For the last example, the adjacency matrix is

A =





0 1 0
0 0 1
1 0 0



 .

Thus all of graph theory reduces to the study of symmetric matrices of
zeros and ones whose diagonal elements are zero! It might seem surprising
that rich structures of great theoretical and practical interest might arise
from such a simple definition, but such is indeed the case.
To discuss properties of graphs we need some terminilogy, much of is

straightforward, which we present now.

24 Brad Baxter

Definition 3.2. Let G = G(V,E) be a graph.

(i) If the vertices x, y ∈ V are joined by an edge, i.e. xy ∈ E, then we say
that x and y are adjacent.

(ii) If we have vertices x0, x1, x2, . . . , xℓ ∈ V such that x0x1, x1x2, . . . , xℓ−1xℓ ∈
E, then we say that we have a path of length ℓ; thus the length of a
path is simply the number of edges in the path. There is no require-
ment that the vertices all be different, so that a path can return to a
previous vertex.

(iii) If we have vertices x1, . . . , xℓ ∈ V and edges x1x2, . . . , xℓ−1xℓ, xℓx1 ∈ E,
the we say that we have a cycle of length ℓ.

(iv) If every pair of vertices in a graph can be joined by a path, then we
say that the graph is connected.

(v) A graph without cycles (an acyclic graph) is called a forest. A connected
forest is called a tree.

(vi) If G is a connected graph, then a spanning tree is an acyclic subgraph
that contains every vertex. In other words, it’s a maximal acyclic
subgraph of G (in the sense that adding one more edge of G creates a
cycle).

(vii) We can define a distance, or metric, on the vertices of the graph by
declaring the distance d(x, y) between two vertices x, y ∈ V to be the
length of a shortest path joining the vertices. Further, we set d(x, x) =
0 and let d(x, y) = ∞ if x and y are not joined by a graph.

(viii) If x ∈ G, then we let

Γ(x) = {y ∈ V : xy ∈ E}.
In other words, Γ(x) is the set of vertices adjacent to x. We define the
degree d(x) of x to be the number of elements in Γ(x), that is

d(x) = |Γ(x)|.
Further, if the vertices of the graph are labelled {1, 2, . . . , n}, then we
shall write dk instead of d(k). In terms of the adjacency matrix A for
the graph, we have

dj =
n
∑

k=1

Ajk, 1 ≤ j ≤ n. (3.1)

This notation can also be extended to subsets of the graph. If S ⊂ V ,
then we let Γ(S) denote the set of vertices in G that are adjacent to at
least one point of S.

(ix) The total number of edges in the graph will be denote e(G). Thus
e(G) = |E|.

M2OD 25

Proposition 3.1. Let G be a graph. Then
∑

x∈V

d(x) = 2e(G). (3.2)

Proof. If we label the vertices 1, 2, . . . , n, then we must show that

n
∑

j=1

dj = 2e(G).

But, because every edge corresponds to two ones in the adjacency matrix
(because there’s an edge joining vertices j and k if and only if Ajk = Akj =
1), we have

2e(G) =
n
∑

j=1

n
∑

k=1

Ajk =
n
∑

j=1

dj .

�

Proposition 3.2. A graph G can be written as a disjoint union of cycles
if and only if every vertex has even degree.

Proof. If the graph is a disjoint union of cycles, then a vertex belonging to
k cycles must have degree 2k.
Conversely, let x0x1 . . . xℓ be a path of maximal length in G. Since d(xℓ)

is even, there must be at least one other vertex y adjacent to xℓ. But then
we must have y ∈ {x0, x1, . . . , xℓ−1}, because otherwise the path chosen
would not be of maximal length. Thus we have obtained a cycle. Deleting
these edges from the graph, we obtain a new graph with strictly fewer edges
such that every vertex still has even degree. Thus we can now repeat the
construction until all edges have been assigned to cycles. �

The next lemma is the Cauchy-Schwarz inequality, a result that’s ex-
tremely useful in its own right.

Lemma 3.3. Let x1, x2, . . . , xn and y1, y2, . . . , yn be real numbers. Then




n
∑

j=1

xjyj





2

≤
(

n
∑

k=1

x2k

)(

n
∑

ℓ=1

y2ℓ

)

.

Proof. Define the sum of squares

Q(t) =

n
∑

k=1

(yk − txk)
2, t ∈ R.

Then Q(t) ≥ 0, for all t ∈ R. Expanding, we find the quadratic

Q(t) = at2 + bt+ c,

26 Brad Baxter

where

a =

n
∑

k=1

x2k, b = −2

n
∑

k=1

xkyk and c =

n
∑

k=1

y2k.

Thus the discriminant satisfies b2−4ac ≤ 0, which is the required inequality.
�

Exercise 3.1. Let x1, x2, . . . , xn be any n real numbers. Prove that
(

n
∑

k=1

xk

)2

≤
n
∑

k=1

x2k.

The following remark yields some geometric insight. If we let

x =









x1
x2
...
xn









and y =









y1
y2
...
yn









,

then

Q(t) = ‖y − tx‖2,
where ‖u‖2 = u21 + u22 + · · ·+ u2n.

Exercise 3.2. Prove that equality is attained in the Cauchy-Schwarz in-
equality if and only if the vectors x and y are linearly dependent.

Theorem 3.4. (Mantel’s Theorem) Let G be a graph with n vertices.
If G is triangle-free, then e(G) ≤ n2/4.

Proof. If vertices j and k are adjacent, then Γ(j) ∩ Γ(k) is empty, because
any vertex adjacent to both j and k would then form a triangle. Thus
dj + dk ≤ n if Ajk = 1. Another way to write this as

Ajk(dj + dk) ≤ n, for 1 ≤ j, k ≤ n.

Therefore
n
∑

j=1

n
∑

k=1

Ajk(dj + dk) ≤ 2ne(G).

In other words,
n
∑

j=1

n
∑

k=1

Ajk

n
∑

ℓ=1

Ajℓ +Akℓ ≤ 2ne(G),

that is,

2
n
∑

j=1

d2j ≤ 2ne(G).

M2OD 27

Now the Cauchy-Schwarz inequality tells us that




n
∑

j=1

dj





2

≤ n
n
∑

j=1

d2j .

Thus

(2e(G))2 ≤
n
∑

j=1

d2j ≤ ne(G),

which simplifies to e(G) ≤ n2/4. �

We now introduce a highly important class of graphs.

Definition 3.3. Let G be a graph for which the two sets V1, V2 satisfy
V1 ∪ V2 = V , V1 ∩ V2 = ∅ and every edge joins a vertex of V1 to a vertex of
V2. Then we say that the graph is bipartite.

Proposition 3.5. A graph is bipartite if and only if it contains no odd
cycles.

Proof. Suppose G is bipartite and x1x2 · · ·xm is a cycle. Without loss of
generality, we may assume x1 ∈ V1. Thus x2 ∈ V2, x3 ∈ V1, etc. In other
words, we have xℓ ∈ V2 if and only if ℓ is even. But xm is joined to x1, so
that xm must be a vertex of V2. Hence m is an even number.
Conversely, suppose G is a graph without odd cycles and pick any vertex

a ∈ V . I claim that, if we define

V1 = {x ∈ G : d(a, x) is an odd number }
and

V2 = {x ∈ G : d(a, x) is an even number },
then every edge in the graph must join a vertex of V1 to a vertex of V2; thus
G is bipartite.
Indeed, suppose x, y ∈ V1 were adjacent. Thus there are paths joining a

to x and a to y with, say, lengths p and q respectively, where p and q are
odd integers. Therefore, if x and y are adjacent, then we have a cycle whose
length is the odd number p+ q + 1, which is forbidden by hypothesis. The
same argument applies if x, y ∈ V2, except that, in this case, p and q are
even numbers. �

Example 3.3. Let G be a graph with vertices V1 = {x1, . . . , xN} and
V2 = {y1, . . . , yN} and let each vertex of V1 be joined to every vertex of
V2. Thus G has 2N vertices and N2 edges. Setting n = 2N , we see that
e(G) = n2/4 edges, thus attaining the upper bound in Mantel’s theorem.

28 Brad Baxter

3.2. Hall’s Marriage Theorem

Suppose we have n girls V1 = {g1, . . . , gn} and n boys V2 = {b1, . . . , bn}. We
now create a bipartite graph G from the vertices V = V1∪V2 by joining gj to
bk by an edge if and only if they are judged compatible. If you wish, you may
imagine our task to be the arrangement of marriages in a postapocalyptic
world. Our aim is to create as many compatible marriages as possible; we
shall say that we have a complete matching if it is possible to achieve n
marriages between compatible pairs. If a complete matching exists, then
every set of r girls must be compatible with as least r boys, for 1 ≤ r ≤ n;
more briefly, we shall say that every r girls likes ≥ r boys. Remarkably, the
converse is also true.

Theorem 3.6. If every r girls likes ≥ r boys, for 1 ≤ r ≤ n, then a
complete matching is possible.

Proof. We proceed by induction on n, noting that the result is obvious
when n = 1. Thus let us assume the truth of the theorem for any set of N
girls and boys when N < n.
Now

(i) either every r girls likes at least r + 1 boys, for 1 ≤ r ≤ n− 1,

(ii) or there is an integer r < n and a set of r girls that like exactly r boys.

In the first case, let’s marry any compatible couple, g1, b1 say. Then
any r girls in the remaining n − 1 girls g2, . . . , gn likes at least r + 1 boys
in b1, . . . , bn. In particular, they like at least r boys in b2, . . . , bn. We can
therefore, by induction hypothesis, obtain a complete matching for g2, . . . , gn
and b2, . . . , bn, which, together with our marriage of g1 to b1, furnishes a
complete matching for all n girls and boys.
The second case is slightly more slippery. By relabelling as necessary, we

can assume that girls g1, g2, . . . , gr are compatible only with boys b1, . . . , br.
Thus every k girls of g1, . . . , gr must like at least k boys in b1, . . . , br and, by
induction hypothesis, we can construct a complete matching for the first r
girls and boys. Now, I claim that any m of the remaining girls gr+1, . . . , gn
must like at least m of the remaining boys br+1, . . . , bn. For, if this were
not so, then the r + m girls formed by adjoining girls g1, . . . , gr to the m
girls chosen would like strictly fewer than r+m boys, contradicting hypoth-
esis. Thus, by induction hypothesis, we can obtain a complete matching for
gr+1, . . . , gn, br+1, . . . , bn also. �

The proof of Hall’s marriage theorem is constructive, in the sense that,
given n girls and boys, we could check the required property for every subset
of the girls. However, there are

(

n
r

)

ways to pick r girls from n, so that there

M2OD 29

are, in total,
n
∑

r=1

(

n

r

)

= 2n − 1

sets to inspect.

Exercise 3.3. Use the binomial expansion

(1 + t)n =
n
∑

k=0

(

n

k

)

tk

to prove that
n
∑

k=0

(

n

k

)

= 2n.

Further, prove that
(

n

0

)

+

(

n

2

)

+

(

n

4

)

+ · · · =
(

n

1

)

+

(

n

3

)

+

(

n

5

)

+ · · · .

A better way to construct a complete matching is to turn the graph of
our girls and boys into a network by adding a source node s and a sink
node t. We join s to every girl and join t to every boy. We now let every
edge have unit capacity and use the Ford-Fulkerson algorithm to calculate
the maximal flow. If the maximal flow value is F , then F is the maximum
number of compatible marriages that can be achieved.
Here’s another way to state Hall’s marriage theorem.

Theorem 3.7. Let G = G(V1, V2) be a bipartite graph. A complete
matching is a subgraph of G containing every vertex such that element
of V1 is adjacent to exactly one element of V2, and conversely. A complete
matching is possible if and only if

|Γ(Y)| ≥ |Y |
for every subset Y ⊂ V1.

Every statement in graph theory can be reformulated in terms of prop-
erties of the adjacency matrix corresponding to the graph. To this end, we
introduce the following terminology.

Definition 3.4. Let M be any n×n matrix. If 1 ≤ j1 < j2 < · · · < jr ≤ n
and 1 ≤ k1 < k2 < · · · < ks ≤ n, then we say that the matrix T defined by

Tℓ,m = Mjℓ,km , 1 ≤ ℓ ≤ r, 1 ≤ m ≤ s,

is an r×s submatrix of M . We say that it is a zero submatrix if its elements
are all zero.

30 Brad Baxter

Proposition 3.8. Let G = G(V1, V2) be a bipartite graph; the elements of
V1 (resp. V2) will be called girls (resp. boys). Then the following statements
are logically equivalent.

(i) Every r girls likes at least r boys, 1 ≤ r ≤ n.
(ii) Let T be the n× n matrix of zeros and ones defined by Tjk = 1 if and

only if girl j likes boy k. Then every r × s zero submatrix of T must
satisfy r + s ≤ n.

Proof. (i) The zero submatrix with rows j1, . . . , jr and columns k1, . . . , ks
corresponds to girls gj1 , . . . , gjr who detest boys gk1 , . . . , gks . Thus they
like n− s ≥ r boys, so that r + s ≤ n.

(ii) If r + s ≤ n, then the r girls like n− s ≥ r boys.
�

Definition 3.5. An n × n matrix M is doubly stochastic if its elements
are non-negative and every row and column sums to one. More formally, we
have Mjk ≥ 0, for 1 ≤ j, k ≤ n, and

n
∑

ℓ=1

Mjℓ =

n
∑

m=1

Mmk = 1, 1 ≤ j, k ≤ n.

Doubly stochastic matrices arise naturally in probability theory and statis-
tics – look up “Markov chain” in any standard text. Here, however, we shall
use Hall’s theorem to prove a striking and seemingly unrelated result.

Exercise 3.4. Let M be any n× n doubly stochastic matrix. Prove that
n
∑

j=1

n
∑

k=1

Mjk = n.

In other words, the sum of the elements of an n×n doubly stochastic matrix
must equal n.

Exercise 3.5. Show that there are n! different permutation matrices.

Exercise 3.6. Show that every permutation matrix is doubly stochastic.

Exercise 3.7. Show that any convex combination of doubly stochastic
matrices is doubly stochastic.

Theorem 3.9. Let M be any n × n doubly stochastic matrix. Then M
is a convex combination of permutation matrices. In other words, there exist
permutation matrices P1, P2, . . . , PN and non-negative numbers w1, w2, . . . , wN

satisfying
∑N

j=1wj = 1 such that

M =
N
∑

j=1

wjPj .

M2OD 31

To use the terminology of convex analysis, if Π denotes the set of all
n×n permutation matrices and Σ denotes the set of n×n doubly stochastic
matrices, the Σ is the convex hull of Π.

Proposition 3.10. Let M be a doubly stochastic n×n matrix. Let T be
the n × n matrix of zeros and ones defined by the equation Tjk = 1 if and
only if Mjk > 0. (Thus T encodes the locations of the positive elements of
M .) Then every r × s submatrix of T satisfies r + s ≤ n.

Proof. Without loss of generality, we may permute the rows and columns
of M and T so that the zero submatrix appears at the top left of the matrix.
Thus we obtain

M =

(

Z A
B C

)

,

where Z is an r × s matrix consisting entirely of zeros. The sum of every
element of A must be equal to r, because every row of A must sum to r.
Similarly, the sum of the elements of B must equal s. Since the sum of the
elements of M must equal n, we deduce that r + s ≤ n. �

Now the matrix T defined in the last proposition defines a bipartite graph
in the obvious way. Specifically, using the nuptial language adopted earlier,
we take n girls and boys such that the jth girl likes the kth boy if and only
if Tjk = 1. Thus, because every r × s submatrix of zeros satisfies r + s ≤ n,
we know that there exists a complete matching. In other words, T contains
a permutation matrix, P (1) say.

Exercise 3.8. Show that every complete matching in T corresponds to a
permutation matrix.

By definition of T , we see that

w1 := min{Mjk : P
(1)
jk = 1}

is a positive number. Thus the matrix

M1 :=
M − w1P

(1)

1− w1

is a doubly stochastic matrix with strictly fewer positive elements than M .
We can now repeat the construction, obtaining

M ≡ M0 = w1P
(1) + (1− w1)M1 (3.3)

M1 = w2P
(2) + (1− w2)M2

M2 = w3P
(3) + (1− w3)M3

...

MN−2 = wN−1P
(N−1) + (1− wN−1)MN−1

32 Brad Baxter

MN−1 = P (N),

where w1, w2, . . . , wN−1 ∈ [0, 1], M0,M1,M2, . . . ,MN−1 are doubly stochas-
tic matrices such that Mk+1 contains strictly fewer positive elements than
Mk, for k = 0, 1, . . . , N − 2, and P (1), . . . , P (N) are permutation matrices.
In other words, we have

Mj ∈ K(P (j+1),Mj+1), j = 0, 1, . . . , N−2, and MN−1 ∈ K(P (N)),

which implies

M = M0 ∈ K(P (1), P (2), . . . , P (N)),

where K(·) denotes convex hull.
If we use the Ford-Fulkerson algorithm to construct the complete matching

in the matrix T , then the above method is an efficient algorithm.

Example 3.4. The matrix

M ≡ M0 =





2/3 1/3 0
1/3 0 2/3
0 2/3 1/3





is doubly stochastic, and we see that

T =





1 1 0
1 0 1
0 1 1





Thus T contains the permutation matrix

P (1) =





1 0 0
0 0 1
0 1 0





and w1 = 2/3. Therefore the matrix

M1 =
M0 − w1P

(1)

1− w1
=





0 1/3 0
1/3 0 0
0 0 1/3





is our next stochastic matrix to consider. Of course, we see immediately
that M1 = (1/3)P (2), where

P (2) =





0 1 0
1 0 0
0 0 1



 .

M2OD 33

Example 3.5. The matrix

M ≡ M0 =







1/4 1/2 0 1/4
1/2 0 1/2 0
0 1/4 1/2 1/4

1/4 1/4 0 1/2







is doubly stochastic, with

T =







1 1 0 1
1 0 1 0
0 1 1 1
1 1 0 1






.

We see that T contains the permutation matrix

P (1) =







0 0 0 1
0 0 1 0
0 1 0 0
1 0 0 0







and w1 = 1/4. Thus our next doubly stochastic matrix is

M1 =
M0 − w1P

(1)

1− w1
=

4

3







1/4 1/2 0 0
1/2 0 1/4 0
0 0 1/2 1/4
0 1/4 0 1/2






,

with corresponding matrix

T =







1 1 0 0
1 0 1 0
0 0 1 1
0 1 0 1






.

We see that T now contains the permutation matrix

P (2) =







0 1 0 0
1 0 0 0
0 0 1 0
0 0 0 1







and w2 = 2/3. Thus our second doubly stochastic matrix is

M2 =
M1 − w1P

(1)

1− w1
= 3







1/3 0 0 0
0 0 1/3 0
0 0 0 1/3
0 1/3 0 0






≡ P (3),

and we recognize this as a permutation matrix. Thus we have the convex
combination

M = w1P
(1) + (1− w1)M1

34 Brad Baxter

= w1P
(1) + (1− w1)

(

w2P
(2) + (1− w2)M2

)

= w1P
(1) + (1− w1)w2P

(2) + (1− w1)(1− w2)P
(3)).

Exercise 3.9. Why does Carathéodory’s theorem imply that N ≤ n2+1?

3.3. Rectangle Tilings

This is an interesting diversion using some simple properties of bipartite
graphs. If R and R1, R2, . . . , Rm are rectangles in the plane, then we say
that R1, . . . , Rm tile R if

R1 ∪R2 ∪ · · · ∪Rm = R

and

Rj ∩Rk = ∅ for j 6= k.

A classical problem of recreational mathematics is the construction of
squared squares. Here our rectangles R and R1, . . . , Rm must be squares
with integer sides. Further, no two squares can be congruent (that is, the
same squares rotated and shifted). We shall not study this beautiful problem
in depth, but the ambitious reader may consult Chapter 2 of Modern Graph
Theory, by B. Bollobas. Instead, we shall prove the following nice result.

Theorem 3.11. If the rectangles R1, . . . , Rm each have at least one side
whose length is a rational number, then the tiled rectangle R also has at
least one side of rational length.

It’s easy to see that, multiplying all sides by a sufficiently enormous inte-
ger, we need only address the next theorem.

Theorem 3.12. If the rectangles R1, . . . , Rm each have at least one integer
side, then the tiled rectangle R also has an integer side.

Further, without loss of generality (why?), we shall assume that

R = [0, a]× [0, b] (3.4)

and

Rk = [ak + λk]× [bk + µk], 1 ≤ k ≤ m. (3.5)

Before embarking on the proof, we shall define a lattice point to be a point
in R

2 with integer coordinates. In other words, the lattice points are simply
the elements of Z2, if the latter set is embedded in R

2 in the obvious way.

Proof. Let L denote the set of all lattice points contained in R. Let’s
construct a bivariate graph whose vertices are L ∪ {R1, . . . , Rm} as follows:
we join (i, j) ∈ L to Rj if and only if (i, j) is a corner of Rj . Thus every

M2OD 35

rectangle is joined to 0, 2 or 4 lattice points, because at least one of its
sides is an integer. In particular, our graph has an even number of edges.
However, we note that (0, 0) is joined to exactly one rectangle. Further,
every lattice point that isn’t a corner of R is joined to 0, 2 or 4 rectangles.
The total number of edges so far accounted for is therefore odd. Hence either
one or all of the corners (a, 0), (0, b), (a, b) must be a lattice point. �

The following alternative proof is not examinable, but is too lovely to omit. Let us
define

f(x, y) = cos(2πx) cos(2πy),

and observe that
∫ ∫

Rj

f(x, y) dx dy =

(

∫ aj+λj

aj

cos(2πx) dx

)(

∫ bj+µj

bj

cos(2πy) dy

)

.

Now at least one of λj , µj is an integer, λj say. Thus
∫ aj+λj

aj

cos(2πx) dx =

∫ λj

0

cos(2πx) dx = 0,

which implies
∫ ∫

Rj

f(x, y) dx dy = 0.

Because we have a rectangle tiling of R by R1, . . . , Rm, we obtain
∫ ∫

R

f(x, y) dx dy =
m
∑

j=1

∫ ∫

Rj

f(x, y) dx dy = 0.

But then

0 =

∫ ∫

R

f(x, y) dx dy

=

(∫ a

0

cos(2πx) dx

)

(

∫ b

0

cos(2πy) dy

)

= (2π)−2 sin(2πa) sin(2πb).

Therefore at least one of a, b must be an integer.]

3.4. Constructing Spanning Trees

In several areas of Computer Science, it is often necessary to construct a
spanning tree given a connected graph G. The details of such problems
cannot be covered here, but a brief sketch may interest you. In the animation
of a film such as Toy Story, each object is stored as a polygonal mesh
in computer memory. The triangular faces of this mesh are coloured and

36 Brad Baxter

the edges of the mesh form the topology of the object. For example, it is
important that the parts of the mesh defining Buzz Lightyear’s arm never
be joined to those parts of the mesh defining other parts of his body, for
otherwise it might appear that his arm were intermittently melting into his
body. We could store the information by keeping the n×n adjacency matrix
for each character, but this is extremely expensive. A better way is to build
a tree, because we can then go from each node in the tree to its adjacent
node.
It’s very easy to build a tree in a connected graph. First pick any vertex

and label it 1. Then add every edge leading to an adjacent vertex and
label the corresponding vertices 2, 3, For each of the newly labelled
vertices, add every edge that leads to an unlabelled adjacent vertex and
label the new vertices. We continue until the tree contains every vertex of
the original graph. Further, we see that the subgraph is acyclic because
of the condition that edges leading to previously labelled vertices are never
added to the subgraph, so denying the possibility of cycles forming. This
simple algorithm is called breadth-first search.

