
Optimization

Dr Brad Baxter

Department of Mathematics

Imperial College, London SW7 2BZ

b.baxter@ic.ac.uk

www.ma.ic.ac.uk/∼baxter

1. Introduction

Here are some examples of optimization problems.

(i) Changing the orbit of a spacecraft using as little fuel as possible.
(ii) Minimizing the energy wasted in electrical power distribution each day in Britain.
(iii) Maximizing the profit of a portfolio of stocks and bonds subject to the estimated risk of

the portfolio not exceeding some chosen number.
(iv) Minimizing the estimated risk of a portfolio of stocks and bonds subject to the profit

exceeding some chosen number.
(v) Minimizing the cost of a complex chemical reaction in plastics manufacture.
(vi) Calculating the most economical pipe diameter for a system based on flowrate, fluid

density and fluid viscosity.

In all of these problems, we want to minimize, or maximize, a function f(x). In fact, because
maximizing a function f(x) is equivalent to minimizing −f(x), we shall only consider mini-
mization. In many applications, we have constraints on the minimization, as in the examples
above. This is called constrained optimization. If there are no constraints, then we have an
unconstrained optimization problem. We shall mainly study the latter problem in this short
introductory course. Some jargon: the function being optimized is often called the objective
function.

Example 1.1 (i) An unconstrained optimization problem: Minimize f(x, y) = x2 + y2.
(ii) A constrained optimization problem: Minimize f(x, y) = x2 + y2 subject to x + 3y = 1

and x, y ≥ 0. Here we have linear equality and inequality constraints.
(iii) Another constrained optimization problem: Minimize f(x, y) = x2 + y2 subject to

g(x, y) = (x − 2)2 + 3(y − 4.2)2 ≤ 0.4. Here the constraint is a nonlinear inequality
constraint.

Excellent optimization software is available these days, and you will use some in your other
courses. You might therefore wonder why we’re teaching you the fundamental theory of
optimization — after all, you only want to use the programs, not write your own. Here are
some reasons.

(i) Even good software is far from perfect, and some understanding of the fundamental
mathematics is necessary for those many occasions when programs do not behave as
advertised.

(ii) Many optimization problems need some modification before they’re suitable for standard
software.

(iii) You may need to change optimization software before it’s suitable for your application.

2 Dr Brad Baxter

(iv) It’s very easy to re-invent poor methods, such as the steepest descent method studied
later.

Section 2 contains most of the course material, whilst Section 3 collects together some
mathematical background material.

1.1. References

There is no ideal textbook for this course, although Chapter 10 of Numerical Recipes, by
W. Press, B. Flannery, S. Teukolsky and W. Vetterling, is useful. Another good book
is Practical Optimization, by S. Gill, W. Murray and M. Wright, although this is a little
too advanced. Three good websites are www-fp.mcs.anl.gov/opt, www.mathprog.org and
www.netlib.org.

2. Methods for Unconstrained Optimization

2.1. Taylor’s theorem in one dimension

In one dimension, you already know that a function f(x) can be expanded in a Taylor series

f(a+ h) = f(a) + hf ′(a) +
1

2
h2f ′′(a) + · · · . (2.1)

The omitted terms represented by “· · ·” contain h3 and higher powers of h. Then the quadratic
approximation

q(h) = f(a) + hf ′(a) +
1

2
h2f ′′(a) (2.2)

satisfies

f(a+ h) = q(h) + E(h), (2.3)

where the error term E(h) is bounded by

|E(h)| ≤ Ch3 (2.4)

when |h| is sufficiently small. We often summarize this by writing

f(a+ h) = q(h) +O(h3), (2.5)

and “O(h3)” is read as “big-oh of h3”. This is an extremely useful notation when discussing
errors in approximation. As a further example, the linear approximation

ℓ(h) = f(a) + hf ′(a) (2.6)

satisfies

f(a+ h) = ℓ(h) +O(h2). (2.7)

Example 2.1 The function cosx = 1+O(x2) for small |x|; the function sinx = x− x3/6+
O(x5) for small |x|.
Definition 2.1 The function f(x) has a local minimum at x = a if

f(a+ h) ≥ f(a) (2.8)

when |h| is sufficiently small. It has a local maximum at x = a if

f(a+ h) ≤ f(a) (2.9)

when |h| is sufficiently small.

Optimization 3

Example 2.2 Find the local maxima and local minima of f(x) = sinx.

Theorem 2.1 If f ′(a) = 0 and f ′′(a) > 0, then f(x) has a local minimum at x = a.

Proof. We use the quadratic approximation (2.2). In this case, we have

q(h) = f(a) +
1

2
h2f ′′(a) > f(a),

for all h 6= 0. Since

f(a+ h) = q(h) +O(h3)

for small |h|, we deduce that f(a+ h) ≥ f(a) when |h| is sufficiently small. 2

Exercise 2.1 What’s the corresponding theorem for local maxima?

Proposition 2.2 If f ′(a) 6= 0, then f possesses neither a local maximum nor a local mini-
mum at x = a.

Proof. In this case we use the linear approximation (2.6). The key observations are

ℓ(h) > f(a)

when hf ′(a) > 0, and

ℓ(h) < f(a)

when hf ′(a) < 0. Thus, because f(a + h) = ℓ(h) +O(h2) when |h| is small, we cannot have
a local maximum or local minimum of f(x) at x = a. 2

It’s important to grasp that a local maximum is not a global maximum. For example, the
function f(x) = −(x2 − 1)2 has a local minimum at x = 0, but this is not a global minimum.
Further, the converse of Theorem 2.1 is not true.

Exercise 2.2 Find a function f(x) with a global minimum at x = 0 for which f ′′(a) = 0.

2.2. Taylor’s theorem in n dimensions

The simple results of the last section all have analogues when f(x) is a function of n variables,
but life is no longer quite so easy . . .

Definition 2.2 Let f(x) be a function of n variables. The gradient ∇f(x) of f(x) is the
vector function

∇f(x) =













∂f
∂x1

∂f
∂x2

...
∂f
∂xn













(2.10)

of first partial derivatives of f(x).

IMPORTANT NOTATION: Some students confuse the symbol ∂ for partial differentiation
with the Greek letter δ. They are different! Confusing these symbols will be penalized in the
coursework and at examination.

4 Dr Brad Baxter

Example 2.3 Let f(x) = x21 + x22 + · · ·+ x2n. Then

∂f

∂xj
= 2xj , for 1 ≤ j ≤ n,

or, more briefly,

∇f(x) = 2x. (2.11)

Exercise 2.3 Find the gradient of f(x) = sinx1 sinx2 · · · sinxn.
The n-dimensional analogue of the linear approximation defined in (2.6) is the function

ℓ(h) = f(a) +
n
∑

k=1

hj
∂f

∂xj
(a), (2.12)

which we shall usually express by

ℓ(h) = f(a) + h · ∇f(a). (2.13)

Further, recalling that the transpose of the column vector

h =







h1
h2
...
hn







is the row vector

hT = (h1 h2 · · · hn) ,

we write

ℓ(h) = f(a) + hT∇f(a), (2.14)

which is the same as

ℓ(h) = f(a) +∇f(a)Th. (2.15)

The n-dimensional analogue of the quadratic approximation is more complex. You might
expect this on realizing that f(x) has n2 second partial derivatives

∂2f

∂xj∂xk
, for j, k = 1, 2, . . . , n.

Definition 2.3 The second derivative matrix D2f(a), or Hessian, of the function f(x) is
defined by

(

D2f(a)
)

jk
=

∂2f

∂xj∂xk
, 1 ≤ j, k ≤ n. (2.16)

We shall also assume that, for every function f(x) studied in this course,

∂2f

∂xj∂xk
=

∂2f

∂xk∂xj
. (2.17)

Thus every second derivative matrix in this course will be a symmetric matrix.

Optimization 5

Example 2.4 Let f(x) = x21x
2
2, for x =

(

x1
x2

)

∈ R
2. Then the second derivative matrix is

D2f(x) =

(

2x22 4x1x2
4x1x2 2x21

)

.

Exercise 2.4 Find the second derivative matrix when f(x) = x21 + · · ·x2n.
Definition 2.4 Let f(x) be a function of n variables. The vector d ∈ R

n is called a descent
direction for f(x) at x = a if

dT∇f(a) < 0. (2.18)

If dT∇f(a) > 0, then we say that d is an ascent direction.

One way to understand descent directions is to let z = f(x) be the height of a surface above
sea level at the point x ∈ R

2. If you imagine walking in a particular direction d starting at
the point a, then d is a descent direction if and only if we’re walking downhill. (In some
books, descent directions are called downhill directions.)

Example 2.5 If ∇f(a) 6= 0, then d = −∇f(a) is a descent direction because

dT∇f(a) = −∇f(a)T∇f(a) = ‖∇f(a)‖2.
Proposition 2.3 If ∇f(a) 6= 0, then f(x) possesses neither a local minimum nor a local
maximum at x = a.

Proof. We observe that d = −∇f(a) is a descent direction and d = +∇f(a) is an ascent
direction. 2

Exercise 2.5 Let f(x, y) = x2 + y2 and let a =

(

2
1

)

. Calculate ∇f(a) and sketch a

diagram showing all descent directions and all ascent directions.

Descent directions lead to one of the most important ideas in optimization: descent direction
methods. Here we attempt to find a local minimum of a function of n variables by starting at a
point x1 ∈ R

n and choosing a descent direction d1. We move away from x1 along the descent
direction d1 to find a new point x2 satisfying f(x2) < f(x1) — this is called a line search.
We then repeat the construction, choosing a new descent direction d2 at x2 and performing
another line search to obtain a new point x3 satisfying f(x3) < f(x2). Of course, we hope
that the sequence of points x1,x2, . . . converges to a local minimum of f(x), but any reduction
can be valuable in applications. [For example, if the function being minimized is the electrical
energy lost by heat dissipation in the National Grid, then even a small reduction saves vast
amounts of money.] Most optimization methods apply this strategy, differing only in their
choice of descent directions and the method chosen to perform the line search.
We need to study line searches in detail. To this end, define

φ(α) = f(a+ αd), for α ≥ 0. (2.19)

Thus φ(α) is simply the value of f(x) when x = a+ αd.

Proposition 2.4 The derivative of φ(α) is given by

φ′(α) = dT∇f(a+ αd). (2.20)

In particular, φ′(0) = dT∇f(a) < 0 when d is a descent direction for f(x) at x = a. Further-
more, the second derivative is

φ′′(α) = dTD2f(a+ αd)d. (2.21)

6 Dr Brad Baxter

Proof. Using a Taylor series for the univariate function φ(α), we have

φ(α+ h) = φ(α) + hφ′(α) +
1

2
h2φ′′(α) +O(h3). (2.22)

Using the Taylor series for the function f(x) of n variables, we have

φ(α+ h) = f(a+ (α+ h)d)

= f((a+ αd) + hd)

= f(a+ αd) + (hd)T∇f(a+ αd) +
1

2
h2dTD2f(a+ αd)d+O(h3)

= φ(α) + hdT∇f(a+ αd) +
1

2
h2dTD2f(a+ αd)d+O(h3). (2.23)

(2.24)

We now equate the h and h2 terms in (2.22) and (2.24). 2

We shall now prove the sufficient condition for local minima of multivariate functions anal-
ogous to Theorem 2.1.

Theorem 2.5 Suppose ∇f(a) = 0 and

dTD2f(a)d > 0 (2.25)

for every nonzero vector d ∈ R
n. The f(x) has a local minimum at x = a.

Proof. Using the previous proposition, we see that the line search function φ(α) satisfies
φ′(0) = 0 and φ′′(0) > 0. Hence φ(α) has a local minimum at α = 0, by Theorem 2.1, for
every nonzero vector d ∈ R

n. Hence f(x) has a local minimum at x = a. 2

The sufficient condition satisfied by the second derivative matrix in Theorem 2.5 is so
important that it has its own name:

Definition 2.5 Let A be any matrix. We say that A is positive definite if

uTAu > 0 (2.26)

for every nonzero vector u ∈ R
n.

How do we know that a matrix is positive definite? If A is symmetric, then it’s positive
definite if and only if its eigenvalues are all positive numbers. A simpler condition for 2 × 2
matrices is given in the exercise sheets.

Exercise 2.6 (i) When is
(

P 0
0 Q

)

positive definite?
(ii) Prove that

(

4 −1
−1 4

)

is positive definite.

We now restate Theorem 2.5 in the new terminology.

Optimization 7

Theorem 2.6 If ∇f(a) = 0 and the second derivative matrix D2f(a) is positive definite,
then f(x) has a local minimum at x = a.

2.3. Exact line search

Given a point a ∈ R
n and a descent direction d, we know that we can reduce f(x) by going

along the half-line

L = {a+ αd : α ≥ 0}. (2.27)

But how far do we go? An exact line search increases α until φ(α) begins to increase again. In
other words, we “walk” in the downhill direction d as far as possible, stopping when we begin
to ascend. Informally, imagine a blind man walking over a hilly landscape. He walks downhill
in a particular direction, stopping once the path begins to go uphill. He then chooses a new
downhill direction and repeats the process. More formally, we apply the next definition.

Definition 2.6 If d is a descent direction for f(x) at x = a, then an exact line search
chooses the smallest positive number α∗ for which φ′(α∗) = 0.

Exercise 2.7 Prove that φ′(α) < 0 for 0 ≤ α < α∗ when φ′(0) < 0 and α∗ is as defined
above.

Example 2.6 We can calculate exact line searches analytically for quadratic functions, as

we shall now illustrate. Let f(x, y) = x2 + 3y2 and a =

(

1
1

)

. We have

∇f(x, y) =

(

2x
6y

)

,

and the steepest descent direction is

d = −∇f(a) =

(

−2
−6

)

.

Then

L = {a+ αd : α ≥ 0} = {
(

1
1

)

+ α

(

−2
−6

)

=

(

1− 2α
1− 6α

)

: α ≥ 0}

and φ(α) = f(a+ αd) = f(1− 2α, 1− 6α) = (1− 2α)2 + 3(1− 6α)2. Thus φ′(α∗) = 0 if and
only if α∗ = 5/28, which implies

b =

(

9/14
−1/14

)

.

Example 2.7 Exact line searches can fail! For example, if φ(α) = exp(−α), then φ does
not attain its minimum value. Good software packages will terminate the line search, but
poorer programs will continue until floating point overflow occurs! In most theoretical work
we assume that this doesn’t happen, as I shall do in these notes.

How do we perform an exact line search for a general function? Good algorithms are rather
fiddly and would take too long to explain in this short course. Here is a very simple algorithm
based on the bisection method for finding a root of a nonlinear equation.

Algorithm 2.1. (Bisection algorithm for exact line search.) Let φ′(0) < 0 and find
A > 0 such that φ′(A) > 0. Let ǫ > 0 be a chosen tolerance and set L = 0, R = A.
While R− L > ǫ

8 Dr Brad Baxter

If ‖φ′(L+R
2)‖ < ǫ then STOP.

If φ′(L+R
2) < 0, replace L by (L+R)/2.

If φ′(L+R
2) > 0, replace R by (L+R)/2.

Exercise 2.8 Apply Algorithm 2.1 when φ(α) = − sinα and A = π.

Good software packages contain faster reliable codes for exact line searches. You can learn
more in Numerical Recipes or at www.netlib.org.

Proposition 2.7 Let a ∈ R
n and let d be a descent direction for f(x) at x = a. If we apply

an exact line search to φ(α), obtaining b = a+ α∗d, then

∇f(b)Td = 0. (2.28)

Proof. We know that, by (2.20),

0 = φ′(α∗) = dT∇f(a+ α∗d) = dT∇f(b). (2.29)

2

Exercise 2.9 Check that ∇f(b)T∇f(a) = 0 in Example 2.6.

This simple geometrical property of exact line searches makes them much easier to under-
stand. However, exact line searches are expensive — they consume computer time.

2.4. Steepest Descent — a BAD method

How do we construct descent directions? One way is to choose

d = −∇f(a), (2.30)

because then we obtain

dT∇f(a) = −‖∇f(a)‖2 < 0,

as required (unless we’re already at a stationary point). Further, if we ask how to choose a
unit vector d that makes φ′(0) as negative as possible, we must obtain d = −∇f(a), as seen
in the next exercise, so explaining the name “steepest descent”.

Exercise 2.10 For any two vectors v and w in R
3, we have

|vTw| = |v ·w| = ‖v‖‖w‖| cosφ|,
where φ is the angle between the two vectors v and w and ‖v‖ is defined by (3.10). Thus

|vTw| ≤ ‖v‖‖w‖, (2.31)

and the upper bound is attained when w is a multiple of v. Thus, given a unit vector d, we
make dT∇f(a) as negative as possible by choosing

d = − ∇f(a)

‖∇f(a)‖ .

[(2.31) is called the Cauchy–Schwarz inequality, and its n-dimensional analogue can be found
in the exercises.]

Optimization 9

Algorithm 2.2. (Steepest descent with exact line searches.) Pick ǫ > 0 and choose
a starting point x0 ∈ R

n. Set k = 0.
While ‖∇f(xk)‖ > ǫ
Perform exact line search along {xk − α∇f(xk) : α ≥ 0} to obtain xk+1.
Increment k by one.

IMPORTANT: As you will see, steepest descent with exact line searches is an atrociously
inefficient method. Unfortunately, unsophisticated users tend to reinvent this algorithm when
faced with an optimization problem for the first time, so sealing their fate. However, studying
Algorithm 2.2 is extremely useful, because it points the way to many good ideas.

Why is steepest descent so bad? The easiest way to explain this is to apply it to minimize
the quadratic function

f(x) =
1

2
xTAx, x ∈ R

n, (2.32)

where A is an n × n symmetric positive definite matrix. Our first task is to compute the
gradient of this function. The following notation is highly useful.

Definition 2.7 The Kronecker delta is defined by δjk = 0 when j 6= k and δjj = 1.

Example 2.8 If I denotes the n× n identity matrix, then Ijk = δjk.

Example 2.9 If f(x) = xp, for x ∈ R
n, then ∇f(x) = ep, where (ep)j = δjp.

Exercise 2.11 Show that
∂xj
∂xk

= δjk.

Proposition 2.8 If f(x) = 1
2x

TAx, for x ∈ R
n, where A can be any n × n symmetric

matrix, then

∇f(x) = Ax. (2.33)

Proof. Now

f(x) =
1

2

n
∑

j=1

n
∑

k=1

Ajkxjxk. (2.34)

Using the Kronecker delta notation, and remembering that A is symmetric, we have

∂f

∂xq
=

1

2

n
∑

j=1

n
∑

k=1

Ajk
∂

∂xq
(xjxk)

=
1

2

n
∑

j=1

n
∑

k=1

Ajkδjqxk +
1

2

n
∑

j=1

n
∑

k=1

Ajkδkqxj

=
1

2

n
∑

k=1

Aqkxk +
1

2

n
∑

j=1

Ajqxj

=

n
∑

k=1

Aqkxk

= (Ax)q.

10 Dr Brad Baxter

2

If xk is the current point, then our search direction is

dk = −∇f(xk) = −Axk. (2.35)

The exact line search condition implies the equation

∇f(xk)
T∇f(xk + α∗dk) = 0, (2.36)

by Proposition 2.7, whence

(Axk)
T (A (xk − α∗Axk)) = 0,

or

xT
kA

2xk = α∗xT
kA

3xk.

Thus we obtain the useful explicit formula

xk+1 = xk + α∗dk = xk −
(xT

kA
2xk

xT
kA

3xk

)

Axk. (2.37)

To illustrate this in two dimensions, write

xk =

(

uk
vk

)

, (2.38)

and choose A to be the diagonal matrix

A =

(

R 0
0 1

)

, (2.39)

where R is a positive constant; then we obtain
(

uk+1
vk+1

)

=

(

uk
vk

)

−
(R2uk + vk
R3uk + vk

)

(

Ruk
vk

)

. (2.40)

Choosing a random starting vector x0 and a positive number R, we can then apply this
equation to generate the iterates of steepest descent with exact line search, and our findings
are as illustrated in lectures. The conclusion is that steepest descent performs poorly even
when applied to the model problem of minimizing a quadratic function.

Exercise 2.12 Set R = 103, x0 =

(

10
1

)

, and apply (2.40) using, for instance, a spread-

sheet. You should see that many iterations are needed to approach the minimum at the origin.
Try larger values of R, such as R = 106.

Proposition 2.9 Let F (x) = a + bTx + 1
2x

TMx, for x ∈ R
n, where M is a symmetric

matrix. Then

∇F (x) = b+Mx. (2.41)

Proof. We have

F (x) = a+

n
∑

k=1

bkxk +
1

2

n
∑

j=1

n
∑

k=1

Mjkxjxk,

Optimization 11

whence, as in Proposition 2.8,

∂F

∂xp
= bp + (Mx)p.

2

2.5. The Conjugate Gradient (CG) algorithm — a GOOD method

A seemingly trivial change to the steepest descent method provides the following excellent
method for minimizing a general function whose first partial derivatives are available.

Algorithm 2.3. (Fletcher–Reeves CG with exact line searches.) Pick ǫ > 0 and choose
a starting point x0 ∈ R

n.
Set k = 0 and d0 = ∇f(x0).
While ‖∇f(xk)‖ > ǫ
Perform exact line search along {xk − α∇f(xk) : α ≥ 0} to obtain xk+1.
Increment k by one.
Set

dk = −∇f(xk) +
(‖∇f(xk)‖2
‖∇f(xk−1)‖2

)

dk−1. (2.42)

This algorithm has the remarkable property that, when applied to a quadratic function
in n dimensions, it reaches the minimum in precisely n steps (ignoring computer rounding
errors). Thus the seemingly innocuous difference between (2.42) and steepest descent leads
to stunningly superior performance in practice.

2.6. Newton’s method for minimizing functions of n variables

The steepest descent method uses only first partial derivatives of f(x). What happens if
second partial derivatives are also available? Given a point xk ∈ R

n, we want to generate
a new point xk+1 that is closer to a local minimum of f(x). One way is to minimize the
quadratic approximation

q(h) = f(xk) + hT∇f(xk) +
1

2
hTD2f(xk)h,

which is possible if the second derivative matrix D2f(xk) is positive definite — this will
typically be the case if we are sufficiently close to a local minimum. Thus we solve

0 = ∇q(hk) = ∇f(xk) +D2f(xk)hk,

obtaining

hk = −
(

D2f(xk)
)

−1
∇f(xk)

and

xk+1 ≡ xk + hk = xk −
(

D2f(xk)
)

−1
∇f(xk).

Practical Computation: We DON’T calculate the inverse matrix, because it is easier, and
more accurate, to solve the linear system

D2f(xk)hk = −∇f(xk).

12 Dr Brad Baxter

This algorithm converges quadratically when it converges. More precisely, if x∗ is the local
minimum, then we obtain

‖ek+1‖ = O(‖ek‖2),
where ek = xk − x∗. Unfortunately, Newton’s method has many disadvantages:

(i) It’s completely unreliable. Specifically, there is no way to predict whether a given starting
point will lead to convergence to the desired local minimum for a general function f(x).

(ii) If one of the second derivative matrices D2f(xk) is not positive definite, then the algo-
rithm will fail. [Exercise: Why?]

(iii) Each step requires the solution of n linear equations in n unknowns. This requires O(n3)
operations — extremely expensive.

(iv) We must be able to calculate the (roughly) 1
2n

2 second partial derivatives of f(x). This
is a long tedious calculation for a human. Further, although algebraic manipulation
software (such as Maple or Mathematica) can sometimes be useful, it can be unreliable.

Exercise 2.13 A Pentium III 500 MHz processor can perform about 108 arithmetic op-
erations per second. It can therefore solve n linear equations in n unknowns in (at most)
T (n) = 10−7n3 seconds. Find T (103) and T (106). [One year contains about 3× 107 seconds.]

Having said that Newton’s method is unreliable, let me add that there are excellent reliable
methods that preserve the quadratic convergence of Newton’s method. These are the variable
metric methods, where a positive definite symmetric matrix is used to approximate the second
derivative matrix. We begin by letting B0 be the identity matrix. Each subsequent step
minimizes the quadratic approximation

Q(h) = f(xk) + hT∇f(xk) +
1

2
hTBkh. (2.43)

Setting ∇Q(hk) = 0, we construct hk by solving the linear system

Bkhk = −∇f(xk). (2.44)

The matrix Bk is then modified to form the second derivative approximation at the new point,
denoted Bk+1. Further details of variable metric methods are beyond the scope of this course.
[But see Chapter 10 of Numerical Recipes.]
Another algorithm based on Newton’s method is the modified Newton method. Here we let

d = ±
(

D2f(xk)
)

−1
∇f(xk) (2.45)

be the search direction for an exact line search, choosing the sign in (2.45) to ensure that d is
a descent direction. Unfortunately, modified Newton can also fail when the second derivative
matrix isn’t positive definite, as you will see in exercises.

2.7. Least squares problems

In many applications, we want to fit experimental data using a mathematical model depending
on several parameters x ∈ R

n. More formally, we want to minimize the sum of squares

S(x) =
M
∑

ℓ=1

(rℓ(x))
2, (2.46)

where rℓ(x) is the ℓ
th residual. If every rℓ(x) is a linear function, then we say that minimizing

(2.46) is a linear least squares problem. If some of the rℓ(x) are nonlinear functions, then we
have a nonlinear least squares problem.

Optimization 13

Example 2.10 If the data (t1, y1), (t2, y2), . . . , (tM , yM) lie approximately on a line, then
we can estimate the linear equation by minimizing the sum of squares

S(x) =
M
∑

ℓ=1

(

yℓ − x2tℓ − x1

)2
. (2.47)

The resulting line has equation y(t) = x∗2t+ x∗1 and the residual functions are

rℓ(x) = yℓ − x2tℓ − x1, 1 ≤ ℓ ≤ M. (2.48)

This is a linear least squares problem.

Proposition 2.10 If S(x) is defined by (2.46), then

∇S(x) = 2
M
∑

ℓ=1

rℓ(x)∇rℓ(x) (2.49)

and

D2f(x) = 2

M
∑

ℓ=1

[

∇rℓ(x)
(

∇rℓ(x)
)T

+ rℓ(x)D
2rℓ(x)

]

. (2.50)

Proof. We have

∂S

∂xk
= 2

M
∑

ℓ=1

rℓ
∂rℓ
∂xk

, (2.51)

whence (2.50). Differentiating (2.51), we find

∂2S

∂xj∂xk
= 2

M
∑

ℓ=1

[∂rℓ
∂xj

∂rℓ
∂xk

+ rℓ
∂2rℓ

∂xj∂xk

]

. (2.52)

Now, for any pair of column vectors u,v ∈ R
m, Proposition 3.1 tells us that

(

uvT
)

jk
= ujvk, 1 ≤ j, k ≤ m.

Hence (2.52) implies (2.50). 2

When the fit is good, each residual function rℓ(x) is small. If we have rℓ(x) ≈ 0, for
1 ≤ ℓ ≤ M , then the formula for the second derivative matrix given in (2.50) can be replaced
by the approximation

D2S(x) ≈ 2
M
∑

ℓ=1

∇rℓ(x)
(

∇rℓ(x)
)T

, (2.53)

when x is sufficiently close to a local minimum x∗. In other words, instead of computing the
M2/2 second partial derivatives, we can estimate them using only the first partial derivatives.
Equation (2.53) can then be used in Newton’s method, the combination of the two being
called the Gauss–Newton method for nonlinear least squares problems.

Example 2.11 Returning to the linear least squares problem (2.47), we see that

∇rℓ(x) =

(

−1
−tℓ

)

and D2rℓ(x) = 0. (2.54)

14 Dr Brad Baxter

Hence, by Proposition 2.10,

∇S(x) = −2
M
∑

ℓ=1

(yℓ − x2tℓ − x1)

(

1
tℓ

)

(2.55)

and

D2S(x) = 2
M
∑

ℓ=1

(

1
tℓ

)

(1 tℓ) . (2.56)

Thus the only stationary point occurs when

N
∑

ℓ=1

(yℓ − x2tℓ − x1)

(

1
tℓ

)

= 0, (2.57)

that is,
(

M
∑M

ℓ=1 tℓ
∑M

ℓ=1 tℓ
∑M

ℓ=1 t
2
ℓ

)

(

x1
x2

)

=

(

∑M
ℓ=1 yℓ

∑M
ℓ=1 yℓtℓ

)

. (2.58)

The stationary point is a local minimum because the second derivative matrix is positive
definite. Indeed, for any vector v ∈ R

2, we have

vTD2S(x)v = 2
M
∑

ℓ=1

vT

(

1
tℓ

)

(1 tℓ)v = 2
M
∑

ℓ=1

(

vT

(

1
tℓ

))2

≥ 0, (2.59)

with equality if and only if v is orthogonal to every vector

(

1
tℓ

)

, for 1 ≤ ℓ ≤ M , which

implies v = 0 when the numbers t1, t2, . . . , tM are all different.

2.8. Finite difference methods

Calculating first partial derivatives can be tedious. Can we do without them? One way is to
approximate derivative by finite differences. For example, given a univariate function g(x),
we have

g(x+ h) = g(x) + hg′(x) +
1

2
h2g(2)(x) +

1

6
h3g(3)(x) +

1

24
h4g(4)(x) +O(h5)

and

g(x− h) = g(x)− hg′(x) +
1

2
h2g(2)(x)− 1

6
h3g(3)(x) +

1

24
h4g(4)(x) +O(h5).

Therefore

g(x+ h)− 2g(x) + g(x− h)

h2
= g(2)(x) +

1

12
h2g(4)(x) = g(2) +O(h2). (2.60)

Equation (2.60) is a called a finite difference approximation to the second derivative.

Exercise 2.14 Let g(x) = x cot(x/2). Use (2.60) to estimate g(2)(0).

There’s a similar trick for first derivatives.

Optimization 15

Exercise 2.15 Show that

g′(x) =
(g(x+ h)− g(x− h)

2h

)

+O(h2). (2.61)

We can use (2.61) to construct approximations to ∇f(x) for a multivariate function f(x). We
use

∂f

∂xj
(a) =

(f(a+ hej)− f(a− hej)

2h

)

+O(h2), 1 ≤ j ≤ n, (2.62)

where ej is the jth coordinate vector, that is (ej)k = δjk.
Finite difference approximations like (2.62) are also extremely important when testing that

software for calculating partial derivatives is correct, because errors occur all too easily in
algebra and programming.

3. Mathematical Background

3.1. Some linear algebra

We use Ajk to denote the element in row j and column k of the matrix A. If x ∈ R
n is a

(column) vector, we use both xk and (x)k to denote the kth element (or component) of x.
If

A =







A11 A12 · · · A1n
A21 A22 · · · A2n
...

...
...

...
An1 An2 · · · Ann






(3.1)

is an n× n matrix and

x =







x1
x2
...
xn






∈ R

n (3.2)

then their matrix-vector product y = Ax is given by the equations

y1 = A11x1 +A12x2 + · · ·+A1nxn
y2 = A21x1 +A22x2 + · · ·+A2nxn

...

yn = An1x1 +An2x2 + · · ·+Annxn. (3.3)

(3.4)

It’s boring to write these expressions in full, so we use a briefer notation:

yj =
n
∑

k=1

Ajkxk, 1 ≤ j ≤ n, (3.5)

or

(Ax)j =
n
∑

k=1

Ajkxk, 1 ≤ j ≤ n. (3.6)

16 Dr Brad Baxter

Example 3.1 If A is a p× q matrix and B is a q× r matrix, then their matrix product AB
is given by

(AB)jk =

q
∑

ℓ=1

AjℓBℓk, 1 ≤ j ≤ p, 1 ≤ k ≤ r.

Definition 3.1 The transpose AT of the p× q matrix A is the q × p matrix defined by
(

AT
)

jk
= Akj , 1 ≤ j ≤ q, 1 ≤ k ≤ p. (3.7)

We say that A is symmetric when A = AT .

Proposition 3.1 Let u and v be (column) vectors in R
n. Then M = uvT is the n × n

matrix given by

Mjkujvk, for 1 ≤ j ≤ n, 1 ≤ k ≤ n. (3.8)

Proof. This is just the usual definition of matrix multiplication, thinking of u as a n × 1
matrix and v as a 1× n matrix. 2

Example 3.2
(

1
2
3

)

(4 5 6) =

(

4 5 6
8 10 12
12 15 18

)

.

We shall also need to measure the length of a vector.

Definition 3.2 The length, or norm, of the vector

u =







u1
u2
...
vn






∈ R

n (3.9)

is defined by the number (“norm u”)

‖u‖ =
√

u21 + u22 + · · ·+ u2n. (3.10)

Example 3.3 If x = (1 −3 0 5)T , then ‖x‖ =
√
35.

Proposition 3.2 If A is any n×n symmetric matrix and x ∈ R
n, then the quadratic function

xTAx =
n
∑

j=1

n
∑

k=1

Ajkxjxk. (3.11)

Proof. Setting y = Ax, we see that

xTAx = xTy =
n
∑

j=1

xjyj .

Further, using (3.6), we have

xTAx =

n
∑

j=1

xj

n
∑

k=1

Ajkxk =

n
∑

j=1

n
∑

k=1

Ajkxjxk.

Optimization 17

2

Example 3.4 If

A =

(

2 −1
−1 3

)

then
(

x
y

)T

A

(

x
y

)

= 2x2 + 3y2 − 2xy.

Exercise 3.1 Calculate
(

x
y
z

)T (3 −1 2
−1 −4 5
2 5 6

)(

x
y
z

)

.

3.2. Contours and gradients

Let f(x, y) be a function of two variables. Then a contour of f(x, y) is simply a curve on which
f(x, y) is constant. I’m sure you’ve all seen contours on maps — just think of z = f(x, y) as
the land’s height at location (x, y).

Proposition 3.3 Gradient vectors are orthogonal to contours.

A fully rigorous proof is not needed. Here’s a sketch. Let r and r + h be close points on
the same contour, so that ‖h‖ is small and f(r) = f(r+ h). Then we have

f(r+ h) = f(r) + hT∇f(r) +O(‖h‖2), (3.12)

or

0 = hT∇f(r) +O(‖h‖2). (3.13)

Now let’s introduce the unit vector

u =
h

‖h‖ ,

so that h = hu, where h ≡ ‖h‖. Then (3.13) becomes

0 = uT∇f(r) +O(h). (3.14)

Further, as h → 0, u tends to the tangent vector to the contour passing through the point r;
thus the contour’s tangent is orthogonal to the gradient vector.

3.3. Ellipses

The equation

x2

a2
+

y2

b2
= c2, (3.15)

where a, b are fixed positive numbers and c ≥ 0, represents an ellipse. It’s easy to sketch this
curve if you substitute

X =
x

a
and Y =

y

b
, (3.16)

because then the point (X,Y) satisfies

X2 + Y 2 = c2, (3.17)

18 Dr Brad Baxter

which you should recognize as the equation of a circle of radius c centred at the origin. Thus
an ellipse is simply a squashed circle. This is useful when sketching contours of quadratic
functions in two dimensions.

