BIRKBECK
 (University of London)

MSc EXAMINATION FOR INTERNAL STUDENTS
MSc STATISTICS etc
School of Economics, Mathematics, and Statistics

PROBABILITY THEORY

ANSWERS

200805011035

1. [This question is essentially bookwork.] Let X_{1}, X_{2}, \ldots be independent, identically distributed Bernoulli random variables for which $\mathbb{P}\left(X_{i}=\right.$ ± 1), for all i, and define the scaled average

$$
A_{n}=\frac{1}{\sqrt{n}} \sum_{i=1}^{n} X_{i}
$$

(a) Show that $\mathbb{E} A_{n}=0$ and $\mathbb{E}\left(A_{n}^{2}\right)=1$.

ANS: Firstly, $\mathbb{E} X_{i}=(1 / 2)(1+(-1))=0$, which implies that the scaled sum A_{n} also satisfies $\mathbb{E} A_{n}=0$. Further, $\mathbb{E}\left(X_{i}^{2}\right)=(1 / 2)(1+1)=$ 1 , so the independence of X_{1}, X_{2}, \ldots implies

$$
\begin{aligned}
\mathbb{E}\left(A_{n}^{2}\right) & =\frac{1}{n}\left(\sum_{i=1}^{n} \mathbb{E}\left(X_{i}^{2}\right)+\sum_{i \neq j} \mathbb{E}\left(X_{i} X_{j}\right)\right) \\
& =1+\frac{1}{n} \sum_{i \neq j}\left(\mathbb{E} X_{i}\right)\left(\mathbb{E} X_{j}\right) \\
& =1
\end{aligned}
$$

It's also fine if students observe that the variance of a sum of independent random variables is the sum of their variances.
(b) State Chebyshev's inequality and apply it to show that

$$
\mathbb{P}\left(\left|A_{n}\right| \geq t\right) \leq \frac{1}{t^{2}}
$$

for any $t>0$.
3 pts
ANS: Chebyshev's inequality states that, if V is any random variable for which the mean $\mathbb{E} V=\mu$ and variance $\mathbb{E}\left[(V-\mu)^{2}\right]=\sigma^{2}$ exist, then

$$
\mathbb{P}(|V-\mu| \geq t) \leq \frac{\sigma^{2}}{t^{2}}, \quad t>0
$$

Applying this to $V=A_{n}$ gives the stated inequality.
(c) Using the Markov inequality

$$
e^{c t} \mathbb{P}\left(A_{n} \geq t\right) \leq \mathbb{E} e^{c A_{n}}
$$

for any $c>0$ and $t \in \mathbb{R}$, prove that

$$
\begin{equation*}
\mathbb{P}\left(A_{n} \geq t\right) \leq e^{-c t}\left(\frac{e^{c / \sqrt{n}}+e^{-c / \sqrt{n}}}{2}\right)^{n} \tag{}
\end{equation*}
$$

3 pts
ANS: Markov's inequality implies

$$
\mathbb{P}\left(A_{n} \geq t\right) \leq e^{-c t} \mathbb{E} e^{c A_{n}}
$$

and, by independence of the $\left\{X_{i}\right\}$,

$$
\begin{aligned}
\mathbb{E} e^{c A_{n}} & =\mathbb{E} \prod_{i=1}^{n} e^{(c / \sqrt{n}) X_{i}} \\
& =\prod_{i=1}^{n} \mathbb{E} e^{(c / \sqrt{n}) X_{i}} \\
& =\prod_{i=1}^{n}\left(\frac{e^{c / \sqrt{n}}+e^{-c / \sqrt{n}}}{2}\right) \quad=\left(\frac{e^{c / \sqrt{n}}+e^{-c / \sqrt{n}}}{2}\right)^{n} .
\end{aligned}
$$

(d) Derive the inequality

$$
\frac{e^{x}+e^{-x}}{2} \leq e^{x^{2} / 2}, \quad \text { for } x \geq 0
$$

using the Taylor series of the exponential function. Hence use $\left(^{*}\right)$ to show that

$$
\begin{equation*}
\mathbb{P}\left(A_{n} \geq t\right) \leq e^{-c t+c^{2} / 2} \tag{**}
\end{equation*}
$$

4 pts
ANS: We have

$$
e^{x^{2} / 2}-\left(e^{x}+e^{-x}\right) / 2=\sum_{k=0}^{\infty} x^{2 k}\left(\frac{1}{2^{k} k!}-\frac{1}{(2 k)!}\right) .
$$

Further,
$(2 k)!=(2 k)(2 k-1)(2 k-2) \cdots 3 \cdot 2 \cdot 1 \geq(2 k)(2 k-2)(2 k-4) \cdots 4 \cdot 2 \geq 2^{k} k!$, which implies that every Taylor coefficient in (\dagger) is non-negative.
(e) Using $\left({ }^{* *}\right)$, derive the Bernstein-Azuma-Hoeffding inequality:

$$
\mathbb{P}\left(\left|A_{n}\right| \geq t\right) \leq 2 e^{-t^{2} / 2}
$$

ANS: Inequality $\left({ }^{* *}\right)$ is valid for any $c>0$, so we choose c to minimize the upper bound of $\left({ }^{* *}\right)$. Now

$$
\frac{c^{2}}{2}-c t=\frac{1}{2}\left((c-t)^{2}-t^{2}\right) \geq-t^{2}
$$

the minimum occurring when $c=t$, so that

$$
\mathbb{P}\left(A_{n} \geq t\right) \leq e^{-t^{2} / 2}
$$

Further,

$$
\mathbb{P}\left(A_{n} \leq-t\right) \leq e^{-t^{2} / 2}
$$

by symmetry of the distribution of A_{n} (or by minor modification of the above derivation). Hence

$$
\mathbb{P}\left(\left|A_{n}\right| \geq t\right)=\mathbb{P}\left(A_{n} \geq t\right)+\mathbb{P}\left(A_{n} \leq-t\right) \leq 2 e^{-t^{2} / 2}
$$

since $\left\{A_{n} \geq t\right\} \cap\left\{A_{n} \leq-t\right\}=\emptyset$, for $t>0$.
(f) Show that the characteristic function $\phi_{A_{n}}(z)=\mathbb{E} \exp \left(i z A_{n}\right)$ is given by

$$
\phi_{A_{n}}(z)=\cos ^{n}(z / \sqrt{n}) .
$$

Prove that $\lim _{n \rightarrow \infty} \phi_{A_{n}}(z)=\exp \left(-z^{2} / 2\right)$.

4 pts

ANS: Setting $c=i z$ and applying $\cos \theta=(\exp (i \theta)+\exp (-i \theta)) / 2$ to the calculation of $\mathbb{E} \exp \left(c A_{n}\right)$ in part (c), we obtain the CF. Hence

$$
\phi_{A_{n}}(z)=\left(1-\frac{z^{2}}{2 n}+o(1)\right)^{n} \rightarrow e^{-z^{2} / 2}
$$

as $n \rightarrow \infty$.
2. (a) [Variant on standard problem.] A program generates passwords $\left(X_{1}, X_{2}, \ldots, X_{m}\right)$ of length m, the component characters being chosen uniformly and independently from an alphabet of N symbols. In other words, $\mathbb{P}\left(X_{i}=s_{k}\right)=1 / N$, for $1 \leq k \leq N$ and $1 \leq i \leq m$. We shall say that a password is non-redundant if its component characters are all different.
i. Show that the probability p_{m} that a password of length m is nonredundant is given by

$$
p_{m}=\prod_{k=1}^{m-1}\left(1-\frac{k}{N}\right) .
$$

5 pts
ANS: We have

$$
\begin{aligned}
p_{m} & =\frac{N(N-1)(N-2) \cdots(N-m+1)}{N^{m}} \\
& =\left(1-\frac{1}{N}\right)\left(1-\frac{2}{N}\right) \cdots\left(1-\frac{m-1}{N}\right),
\end{aligned}
$$

as required.
ii. Prove the inequality $1-x \leq \exp (-x)$, for $x \geq 0$. Hence prove that

$$
p_{m} \leq e^{-\frac{(m-1) m}{2 N}} .
$$

Furthermore, show that $p_{m} \leq 10^{-q}$ if $m \geq c \sqrt{N}$, where $c=$ $\sqrt{2 q \ln 10}$. [Hint: One possible derivation of the inequality begins with the integral $\int_{0}^{x} \exp (-s) d s$.]

ANS: Using the hint, $x \geq 0$, and $\exp (-x) \leq 1$, we obtain

$$
x \geq \int_{0}^{x} e^{-s} d s=1-e^{-x}
$$

and rearranging implies $\exp (-x) \geq 1-x$, for $x \geq 0$. Hence

$$
p_{m} \leq \prod_{k=1}^{m-1} e^{-k / N}=e^{-\frac{1}{N} \sum_{k=1}^{m-1} k}=e^{\frac{-m(m-1)}{2 N}},
$$

using the elementary fact that $1+2+\cdots+M=M(M+1) / 2$. Thus, to achieve $p_{m} \leq 10^{-q}=\exp (-q \ln 10)$, it's sufficient to choose m so large that $\exp (-m(m-1) /(2 N) \leq \exp (-q \ln 10)$, i.e. $m(m-1) \geq 2 N q \ln 10$. This is true, with room to spare, if $(m-1)^{2} \geq 2 N q$, i.e. if $m \geq 1+\sqrt{2 N q}$. Thus the original question contained a typo! In the end, I decided to leave this typo uncorrected to teach you a valuable lesson: use logic and experiment, not faith in authority. I have, however, marked it generously.
(b) [Variant on standard problem.] Let X_{1}, X_{2}, \ldots be independent, identically distributed random variables with the exponential distribution at rate λ, that is, they share the probability density function

$$
p_{1}(s)= \begin{cases}\lambda e^{-\lambda s}, & s \geq 0 \\ 0, & s<0\end{cases}
$$

where λ is a positive constant.
i. Let $p_{n}(s)$ be the probability density function for $X_{1}+X_{2}+\cdots+X_{n}$. Show that

$$
p_{n}(s)= \begin{cases}\frac{\lambda^{n} s^{n-1} e^{-\lambda s}}{(n-1)!}, & s \geq 0, \\ 0, & s<0\end{cases}
$$

ANS: The students have seen two derivations of this result. Firstly, convolving the PDFs of $X_{1}+\cdots+X_{n-1}$ and X_{1},

$$
p_{n}(s)=\int_{\mathbb{R}} p_{n-1}(y) p_{1}(s-y) d y=\int_{0}^{s} p_{n-1}(y) p_{1}(s-y) d y
$$

for $s \geq 0$, because the PDFs are nonzero if and only if $y \geq 0$ and $s-y \geq 0$. We can now proceed by induction, noting that the given formula is correct when $n=1$. Assuming its validity for $n-1$, we obtain

$$
\begin{aligned}
p_{n}(s) & =\int_{0}^{s}\left(\frac{\lambda^{n-1} y^{n-2} e^{-\lambda y}}{(n-2)!}\right) \lambda e^{-\lambda(s-y)} d y \\
& =\frac{\lambda^{n}}{(n-2)!} e^{-\lambda s} \int_{0}^{s} y^{n-2} d y \\
& =\frac{\lambda^{n}}{(n-2)!} e^{-\lambda s}\left[\frac{y^{n-1}}{n-1}\right]_{0}^{s} \\
& =\frac{\lambda^{n}}{(n-1)!} s^{n-1} e^{-\lambda s}
\end{aligned}
$$

Alternatively, the student might observe that, since the random vector $\mathbf{X}=\left(X_{1}, X_{2}, \ldots, X_{n}\right) \in \mathbb{R}^{n}$ has PDF

$$
q(\mathbf{s})=p_{1}\left(s_{1}\right) p_{1}\left(s_{2}\right) \cdots p_{1}\left(s_{n}\right), \quad \mathbf{s} \in \mathbb{R}^{n}
$$

we obtain

$$
\mathbb{P}\left(a \leq \mathbf{e}^{T} \mathbf{X} \leq b\right)=\int_{a \leq \mathbf{e}^{T} \mathbf{s} \leq b, \mathbf{s} \geq 0} \lambda^{n} e^{-\lambda \mathbf{e}^{T} \mathbf{s}} d s
$$

where $\mathbf{e}=(1,1, \ldots, 1)^{T} \in \mathbb{R}^{n}$. Hence geometry implies the relation

$$
\mathbb{P}\left(a \leq \mathbf{e}^{T} \mathbf{X} \leq b\right)=c_{n} \int_{a}^{b} \lambda^{n} e^{-\lambda u} u^{n-1} d u
$$

for some constant c_{n}. To determine c_{n}, we set $a=0$ and $b=\infty$, whence

$$
1=c_{n} \int_{0}^{\infty} \lambda^{n} e^{-\lambda u} u^{n-1} d u=c_{n} \int_{0}^{\infty} e^{-v} v^{n-1} d v=c_{n}(n-1)!
$$

on setting $v=\lambda u$ and recalling the definition of the Gamma function.
ii. Show that the characteristic frunction $\phi_{X_{1}}(z)=\mathbb{E} \exp \left(i z X_{1}\right)$ is given by

$$
\phi_{X_{1}}(z)=\frac{\lambda}{\lambda-i z} .
$$

Hence state the characteristic function for $X_{1}+X_{2}+\cdots+X_{n}$.
ANS: We have

$$
\begin{aligned}
\phi_{X_{1}}(z) & =\mathbb{E} e^{i z X_{1}} \\
& =\int_{0}^{\infty} e^{i z s} p_{1}(s) d s \\
& =\lambda \int_{0}^{\infty} e^{s(i z-\lambda)} d s \\
& =\lambda\left[\frac{e^{s(i z-\lambda)}}{(i z-\lambda)}\right]_{0}^{\infty} \\
& =-\frac{\lambda}{i z-\lambda} \\
& =\frac{\lambda}{\lambda-i z} .
\end{aligned}
$$

Finally,

$$
\phi_{X_{1}+\cdots+X_{n}}(z)=\left(\phi_{X_{1}}(z)\right)^{n}=\frac{\lambda^{n}}{(\lambda-i z)^{n}},
$$

since CFs satisfy $\phi_{X+Y}(z)=\phi_{X}(z) \phi_{Y}(z)$ for independent random variables X and Y.

