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1. [This question is essentially bookwork.] Let X1, X2, . . . be indepen-
dent, identically distributed Bernoulli random variables for which P(Xi =
±1), for all i, and define the scaled average

An =
1√
n

n
∑

i=1

Xi.

(a) Show that EAn = 0 and E(A2
n) = 1.

2 pts

ANS: Firstly, EXi = (1/2) (1 + (−1)) = 0, which implies that the
scaled sum An also satisfies EAn = 0. Further, E(X2

i ) = (1/2)(1+1) =
1, so the independence of X1, X2, . . . implies

E(A2
n) =

1

n

(

n
∑

i=1

E(X2
i ) +

∑

i6=j

E(XiXj)

)

= 1 +
1

n

∑

i6=j

(EXi)(EXj)

= 1.

It’s also fine if students observe that the variance of a sum of indepen-
dent random variables is the sum of their variances.

(b) State Chebyshev’s inequality and apply it to show that

P(|An| ≥ t) ≤ 1

t2
,

for any t > 0.

3 pts

ANS: Chebyshev’s inequality states that, if V is any random variable
for which the mean EV = µ and variance E[(V −µ)2] = σ2 exist, then

P (|V − µ| ≥ t) ≤ σ2

t2
, t > 0.

Applying this to V = An gives the stated inequality.

(c) Using the Markov inequality

ect
P (An ≥ t) ≤ EecAn ,

for any c > 0 and t ∈ R, prove that

P (An ≥ t) ≤ e−ct

(

ec/
√

n + e−c/
√

n

2

)n

. (*)

3 pts

ANS: Markov’s inequality implies

P (An ≥ t) ≤ e−ct
EecAn ,
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and, by independence of the {Xi},

EecAn = E

n
∏

i=1

e(c/
√

n)Xi

=
n
∏

i=1

Ee(c/
√

n)Xi

=
n
∏

i=1

(

ec/
√

n + e−c/
√

n

2

)

=

(

ec/
√

n + e−c/
√

n

2

)n

.

(d) Derive the inequality

ex + e−x

2
≤ ex2/2, for x ≥ 0,

using the Taylor series of the exponential function. Hence use (*) to
show that

P (An ≥ t) ≤ e−ct+c2/2. (**)

4 pts

ANS: We have

ex2/2 − (ex + e−x)/2 =
∞
∑

k=0

x2k

(

1

2kk!
− 1

(2k)!

)

. (†)

Further,

(2k)! = (2k)(2k−1)(2k−2) · · · 3·2·1 ≥ (2k)(2k−2)(2k−4) · · · 4·2 ≥ 2kk!,

which implies that every Taylor coefficient in (†) is non-negative.

(e) Using (**), derive the Bernstein–Azuma–Hoeffding inequality:

P (|An| ≥ t) ≤ 2e−t2/2

4 pts

ANS: Inequality (**) is valid for any c > 0, so we choose c to minimize
the upper bound of (**). Now

c2

2
− ct =

1

2

(

(c − t)2 − t2
)

≥ −t2,

the minimum occurring when c = t, so that

P (An ≥ t) ≤ e−t2/2.

Further,
P (An ≤ −t) ≤ e−t2/2,

by symmetry of the distribution of An (or by minor modification of
the above derivation). Hence

P (|An| ≥ t) = P (An ≥ t) + P (An ≤ −t) ≤ 2e−t2/2,

since {An ≥ t} ∩ {An ≤ −t} = ∅, for t > 0.
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(f) Show that the characteristic function φAn
(z) = E exp(izAn) is given

by
φAn

(z) = cosn(z/
√

n).

Prove that limn→∞ φAn
(z) = exp(−z2/2).

4 pts

ANS: Setting c = iz and applying cos θ = (exp(iθ) + exp(−iθ))/2 to
the calculation of E exp(cAn) in part (c), we obtain the CF. Hence

φAn
(z) =

(

1 − z2

2n
+ o(1)

)n

→ e−z2/2,

as n → ∞.
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2. (a) [Variant on standard problem.] A program generates passwords
(X1, X2, . . . , Xm) of length m, the component characters being chosen
uniformly and independently from an alphabet of N symbols. In other
words, P(Xi = sk) = 1/N , for 1 ≤ k ≤ N and 1 ≤ i ≤ m. We shall
say that a password is non-redundant if its component characters are
all different.

i. Show that the probability pm that a password of length m is non-
redundant is given by

pm =
m−1
∏

k=1

(

1 − k

N

)

.

5 pts
ANS: We have

pm =
N(N − 1)(N − 2) · · · (N − m + 1)

Nm

=

(

1 − 1

N

)(

1 − 2

N

)

· · ·
(

1 − m − 1

N

)

,

as required.

ii. Prove the inequality 1 − x ≤ exp(−x), for x ≥ 0. Hence prove
that

pm ≤ e−
(m−1)m

2N .

Furthermore, show that pm ≤ 10−q if m ≥ c
√

N , where c =√
2q ln 10. [Hint: One possible derivation of the inequality begins

with the integral
∫ x

0
exp(−s) ds. ]

5 pts
ANS: Using the hint, x ≥ 0, and exp(−x) ≤ 1, we obtain

x ≥
∫ x

0

e−s ds = 1 − e−x,

and rearranging implies exp(−x) ≥ 1 − x, for x ≥ 0. Hence

pm ≤
m−1
∏

k=1

e−k/N = e−
1
N

P

m−1
k=1 k = e

−m(m−1)
2N ,

using the elementary fact that 1 + 2 + · · · + M = M(M + 1)/2.
Thus, to achieve pm ≤ 10−q = exp(−q ln 10), it’s sufficient to
choose m so large that exp(−m(m − 1)/(2N) ≤ exp(−q ln 10),
i.e. m(m − 1) ≥ 2Nq ln 10. This is true, with room to spare,
if (m − 1)2 ≥ 2Nq, i.e. if m ≥ 1 +

√
2Nq. Thus the original

question contained a typo! In the end, I decided to leave this
typo uncorrected to teach you a valuable lesson: use logic and
experiment, not faith in authority. I have, however, marked it
generously.
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(b) [Variant on standard problem.] Let X1, X2, . . . be independent,
identically distributed random variables with the exponential distri-
bution at rate λ, that is, they share the probability density function

p1(s) =

{

λe−λs, s ≥ 0,

0, s < 0,

where λ is a positive constant.

i. Let pn(s) be the probability density function for X1+X2+· · ·+Xn.
Show that

pn(s) =

{

λnsn−1e−λs

(n−1)!
, s ≥ 0,

0, s < 0.

5 pts
ANS: The students have seen two derivations of this result. Firstly,
convolving the PDFs of X1 + · · · + Xn−1 and X1,

pn(s) =

∫

R

pn−1(y)p1(s − y) dy =

∫ s

0

pn−1(y)p1(s − y) dy,

for s ≥ 0, because the PDFs are nonzero if and only if y ≥ 0 and
s − y ≥ 0. We can now proceed by induction, noting that the
given formula is correct when n = 1. Assuming its validity for
n − 1, we obtain

pn(s) =

∫ s

0

(

λn−1yn−2e−λy

(n − 2)!

)

λe−λ(s−y) dy

=
λn

(n − 2)!
e−λs

∫ s

0

yn−2 dy

=
λn

(n − 2)!
e−λs

[

yn−1

n − 1

]s

0

=
λn

(n − 1)!
sn−1e−λs.

Alternatively, the student might observe that, since the random
vector X = (X1, X2, . . . , Xn) ∈ R

n has PDF

q(s) = p1(s1)p1(s2) · · · p1(sn), s ∈ R
n,

we obtain

P
(

a ≤ eTX ≤ b
)

=

∫

a≤e
T
s≤b, s≥0

λne−λe
T
s ds,

where e = (1, 1, . . . , 1)T ∈ R
n. Hence geometry implies the rela-

tion

P
(

a ≤ eTX ≤ b
)

= cn

∫ b

a

λne−λuun−1 du,
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for some constant cn. To determine cn, we set a = 0 and b = ∞,
whence

1 = cn

∫ ∞

0

λne−λuun−1 du = cn

∫ ∞

0

e−vvn−1 dv = cn(n − 1)!,

on setting v = λu and recalling the definition of the Gamma
function.

ii. Show that the characteristic frunction φX1(z) = E exp(izX1) is
given by

φX1(z) =
λ

λ − iz
.

Hence state the characteristic function for X1 + X2 + · · · + Xn.
5 pts

ANS: We have

φX1(z) = EeizX1

=

∫ ∞

0

eizsp1(s) ds

= λ

∫ ∞

0

es(iz−λ) ds

= λ

[

es(iz−λ)

(iz − λ)

]∞

0

= − λ

iz − λ

=
λ

λ − iz
.

Finally,

φX1+···+Xn
(z) = (φX1(z))n =

λn

(λ − iz)n ,

since CFs satisfy φX+Y (z) = φX(z)φY (z) for independent random
variables X and Y .
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