PROBABILITY THEORY

Due: January 7, 2009, at the General Office.

Brad Baxter

1. Let X_{1}, X_{2}, \ldots be independent, identically distributed Bernoulli random variables for which $\mathbb{P}\left(X_{i}= \pm 1\right)=1 / 2$, for all i, and define the scaled average

$$
A_{n}=\frac{1}{\sqrt{n}} \sum_{i=1}^{n} X_{i} .
$$

(a) Show that $\mathbb{E} A_{n}=0$ and $\mathbb{E}\left(A_{n}^{2}\right)=1$.
(b) State Chebyshev's inequality and apply it to show that

$$
\mathbb{P}\left(\left|A_{n}\right| \geq t\right) \leq \frac{1}{t^{2}}
$$

for any $t>0$.
(c) Using the Markov inequality

$$
e^{c t} \mathbb{P}\left(A_{n} \geq t\right) \leq \mathbb{E} e^{c A_{n}}
$$

for any $c>0$ and $t \in \mathbb{R}$, prove that

$$
\begin{equation*}
\mathbb{P}\left(A_{n} \geq t\right) \leq e^{-c t}\left(\frac{e^{c / \sqrt{n}}+e^{-c / \sqrt{n}}}{2}\right)^{n} \tag{*}
\end{equation*}
$$

(d) Derive the inequality

$$
\frac{e^{x}+e^{-x}}{2} \leq e^{x^{2} / 2}, \quad \text { for } x \in \mathbb{R}
$$

using the Taylor series of the exponential function. Hence use $\left({ }^{*}\right)$ to show that

$$
\begin{equation*}
\mathbb{P}\left(A_{n} \geq t\right) \leq e^{-c t+c^{2} / 2} \tag{**}
\end{equation*}
$$

(e) Using $\left({ }^{* *}\right)$, derive the Bernstein-Azuma-Hoeffding inequality:

$$
\mathbb{P}\left(\left|A_{n}\right| \geq t\right) \leq 2 e^{-t^{2} / 2}
$$

(f) Show that the characteristic function $\phi_{A_{n}}(z)=\mathbb{E} \exp \left(i z A_{n}\right)$ is given by

$$
\phi_{A_{n}}(z)=\cos ^{n}(z / \sqrt{n}) .
$$

Prove that $\lim _{n \rightarrow \infty} \phi_{A_{n}}(z)=\exp \left(-z^{2} / 2\right)$.
2. (a) A program generates passwords $\left(X_{1}, X_{2}, \ldots, X_{m}\right)$ of length m, the component characters being chosen uniformly and independently from an alphabet of N symbols: in other words, $\mathbb{P}\left(X_{i}=s_{k}\right)=1 / N$, for $1 \leq k \leq N$ and $1 \leq i \leq m$. We shall say that a password is nonredundant if its component characters are all different.
i. Show that the probability p_{m} that a password of length m is nonredundant is given by

$$
p_{m}=\prod_{k=1}^{m-1}\left(1-\frac{k}{N}\right) .
$$

ii. Prove the inequality $1-x \leq \exp (-x)$, for $x \geq 0$. Hence show that

$$
p_{m} \leq e^{-\frac{(m-1) m}{2 N}} .
$$

Furthermore, show that $p_{m} \leq 10^{-q}$ if $m \geq c \sqrt{N}$, where $c=$ $\sqrt{2 q \ln 10}$.
[Hint: One possible derivation of the inequality begins with the integral $\int_{0}^{x} \exp (-s) d s$.]
(b) Let X_{1}, X_{2}, \ldots be independent, identically distributed random variables with the exponential distribution at rate λ, that is, they share the probability density function

$$
p_{1}(s)= \begin{cases}\lambda e^{-\lambda s}, & s \geq 0, \\ 0, & s<0\end{cases}
$$

where λ is a positive constant.
i. Let $p_{n}(s)$ be the probability density function for $X_{1}+X_{2}+\cdots+X_{n}$. Show that

$$
p_{n}(s)= \begin{cases}\frac{\lambda^{n} s^{n-1} e^{-\lambda s}}{(n-1)!}, & s \geq 0, \\ 0, & s<0\end{cases}
$$

ii. Show that the characteristic function $\phi_{X_{1}}(z)=\mathbb{E} \exp \left(i z X_{1}\right)$ is given by

$$
\phi_{X_{1}}(z)=\frac{\lambda}{\lambda-i z} .
$$

Hence state the characteristic function for $X_{1}+X_{2}+\cdots+X_{n}$. [You may use standard properties of characteristic functions without proof, if clearly stated.]

