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1. Introduction

The textbooks mentioned in the formal syllabus are fine, but the following pair
are particularly useful:

• Probability and Random Processes, by G. Grimmett and D. Stirzaker.
• Weighing the Odds, by D. Williams.

Grimmett and Stirzaker is thorough, but somewhat dry for my taste. Williams’
book is inspiring, but slightly eccentric. I hope to steer a safe path between the two.
You can download an earlier set of older lecture notes, developed by my colleagues,
A. Cartea and L. Sinnadurai, from my office linux server:

http://econ109.econ.bbk.ac.uk/brad/PSM/

This server also contains other useful information. The syllabus is unchanged from
previous years, but I shall present the material in an alternative order.

These notes are provisional, and will be updated regularly; please note
the date stamp in the heading above. Please check the webpage above
for newer versions (probnotes.pdf) and let me know of any slips.

Brad Baxter [b.baxter@bbk.ac.uk]

1.1. Some Fundamentals. A continuous random variable X is a real-valued ran-
dom variable for which there is a probability density function (PDF) p(s), for s ∈ R,
for which

(1.1) P(a ≤ X ≤ b) =

∫ b

a

p(s) ds,

for any real numbers a ≤ b. Its expected value is then given by

(1.2) µ = EX =

∫ ∞
−∞

sp(s) ds

and its variance by

(1.3) varX = E
(
[X − µ]2

)
=

∫ ∞
−∞

(s− µ)2p(s) ds.

if the integral exists1

Exercise 1.1. Show that

varX = E(X2)− (EX)
2
.

1As we shall soon see, this integrability requirement fails for the Cauchy distribution.
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Exercise 1.2. We say that U is uniformly distributed on the interval [a, b] if its
PDF is given by

p(s) =

{
1
b−a if a ≤ s ≤ b,
0 otherwise.

Calculate EU and varU .

The variance of a sum of independent random variables is simply the sum of
their variances, but the general case is slightly more complicated.

Proposition 1.1. We have

(1.4) varX + Y = varX + varY + 2 [E(XY )− (EX)(EY )] .

Thus varX + Y = varX + varY if and only if E(XY )− (EX)(EY ) = 0.

Proof. We have

varX + Y = E
[
(X + Y )2

]
− (EX + Y )

2

= E
[
X2 + Y 2 + 2XY

]
− (EX)2 − (EY )2 − 2(EX)(EY )

= E(X2)− (EX)2 + E(Y 2)− (EY )2 + 2 [E(XY )− (EX)(EY )]

= varX + varY + 2 [E(XY )− (EX)(EY )] .

Thus varX + Y = varX + varY if and only if E(XY )− (EX)(EY ) = 0.
�

The quantity E(XY )− (EX)(EY ) is sufficiently important to merit a name: it’s
called the covariance of X and Y .

Definition 1.1. The covariance Cov(X,Y ) is defined by

(1.5) Cov(X,Y ) = E [(X − EX)(Y − EY )] .

Further, if Cov(X,Y ) = 0, then we say that X and Y are uncorrelated.

Exercise 1.3. Show that Cov(X,Y ) = E(XY )− (EX)(EY ).

Thus we have shown that the variance of a sum of uncorrelated random vari-
ables is the sum of their variances. We come now to one of the most fundamental
definitions in Probability Theory.

Definition 1.2. We shall say that random variables X and Y are independent if

P (a ≤ X ≤ b and c ≤ Y ≤ d) = P (a ≤ X ≤ b) · P (c ≤ Y ≤ d) ,

for any real numbers a ≤ b and c ≤ d.

Independence is a stronger condition than uncorrelated, but the key slogan is
“Independence means multiply!”.

Proposition 1.2. If X and Y are independent random variables, then

E(f(X)g(Y )) = (Ef(X))(Eg(Y )),

for any continuous functions f and g.
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Proof. This is not examinable in its full generality. However, one possible proof
begins with the observation that E(XpY q) = E(Xp)E(Y q), for any non-negative
integers p and q, which implies that the theorem is true when f and g are polyno-
mials. �

Proposition 1.3. If X and Y are independent random variables, then they’re
uncorrelated, that is, Cov(X,Y ) = 0.

Proof. This is “Independence means multiply!” again:

E
[
(X −X)(Y − Y )

]
= E(X −X) · E(Y − Y )

= 0.

�

Exercise 1.4. Prove that E(aX+bY ) = aEX+bEY . Show further that var(cX) =
c2 varX, for any c ∈ R.

More generally, we have the relation

(1.6) Ef(X) =

∫ ∞
−∞

f(s)p(s) ds.

1.2. Random Vectors.

Theorem 1.4. Let X1, X2, . . . , Xn be independent continuous random variables
with PDFs p1, p2, . . . , pn. Then the random vector

X =


X1

X2

...
Xn


has PDF

q(s) = p1(s1)p2(s2) · · · pn(sn), for s =


s1
s2
...
sn

 ∈ Rn.

Proof. TBW �

In general the components of a random vector X are not independent random
variables, in which case its covariance matrix M is extremely useful. Specifically,
we define Mjk = Cov(Xj , Xk), for 1 ≤ j, k ≤ n. In matrix notation, we write

M =≡ Cov(X) = E (X− EX) (X− EX)
T
.

The full derivation of (2.7) is not required, but the key observation is as follows.

Proposition 1.5. Let

(1.7) U = [a1, b1]× [a2, b2] ≡=
{

(x1, x2) ∈ R2 : a1 ≤ x1 ≤ b1 and a2 ≤ x2 ≤ b2
}
.

Then

(1.8) P (X ∈ U) =

∫ b1

a1

ds1

∫ b2

a2

ds2p1(s1)p2(s2).
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Proof. We have

P (X ∈ U) = P (a1 ≤ X1 ≤ b1 and a2 ≤ X2 ≤ b2)

= P (a1 ≤ X1 ≤ b1) · P (a2 ≤ X2 ≤ b2)

=

(∫ b1

a1

p1(s1) ds1

)(∫ b2

a2

p2(s2) ds2

)

=

∫ b1

a1

ds1

∫ b2

a2

ds2p1(s1)p2(s2),

as required. �

1.3. The Gaussian.

Definition 1.3. We say that a continuous random variable W is Gaussian (or,
equivalently, normal) if its PDF is the Gaussian function

(1.9) p(s) = (2πσ2)−1/2 exp
(−(s− µ)2

2σ2

)
, s ∈ R.

As we shall see shortly, EW = µ and varW = σ2. The standard notation is to
write W ∼ N(µ, σ2).

One crucial integral is as follows.

Lemma 1.6.

(1.10) I(c) =

∫ ∞
−∞

e−cx
2

dx =

√
π

c
,

for any c > 0.

Proof. If we use the change of variable s =
√
cx in (1.10), then we obtain I(c) =

I(1)/
√
c, so we only need to calculate I(1). Now

I(1)2 =

(∫
R
e−s

2

ds

)2

=

∫
R

∫
R
e−(s

2+t2) ds dt

=

∫ ∞
0

∫ 2π

0

e−r
2

ddrdθ

= π

∫ ∞
0

2re−r
2

dr

= π.

Thus I(1) =
√
π. �

Lemma 1.7. Furthermore, (1.10) is valid for any c ∈ C with positive real part.

Proof. This proof is not examinable, but is not difficult if you’ve taken a first
course in complex analysis. Firstly, the integral is well-defined if the real part of
c is positive. Secondly, we have already shown that I(c) =

√
π/c for c > 0. The

identity principle for analytic functions therefore implies the result. �
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1.4. Multivariate Gaussians. If Z1, . . . , Zn are independent N(0, 1) Gaussian
random variables, then the random vector

Z =


Z1

Z2

...
Zn


has PDF

q(s) = (2π)−n/2e−‖s‖
2/2, for s ∈ Rn.

We say that Z is a normalized Gaussian random vector. We see that EZk = 0,
EZ2

k = 1, and EZkZ` = 0, for k 6= `. In matrix notation, we have EZ = 0, and its
covariance matrix EZZT = I, the identity matrix; we write Z ∼ N(0, I).

However, let us now consider the PDF for W = AZ, where A ∈ Rn×n can be
any nonsingular matrix (i.e. detA 6= 0). Then, for any (measurable) set U in Rn,
we have

P (W ∈ U) = P
(
Z ∈ A−1U

)
,

where

A−1U = {A−1u : u ∈ U}.

hence

P (W ∈ U) = P
(
Z ∈ A−1U

)
= (2π)−n/2

∫
A−1U

exp(−‖s‖2/2) ds

= (2π)−n/2
∫
A−1U

exp(−sT s/2) ds

= (2π)−n/2 det(A−1)

∫
U

exp(−(A−1t)T (A−1t)/2) dt

= (2π)−n/2 det(A)−1
∫
U

exp(−tT (A−T )A−1t)/2) ds

using the substitution t = As, so that dt = |det(A)|ds, together with the notation
A−T ≡ (A−1)T . Hence the EW = E(AZ) = AEZ = 0 and its covariance matrix is
given by

M = E
(
WWT

)
= E(AZ)(AZ)T

= AEZZTAT

= AAT .

Hence M−1 = A−TA−1, and W has PDF q(t), t ∈ Rn, where

q(t) = (2π)−n/2(detM)−1/2 exp(−tTM−1t/2), t ∈ Rn.

We write W ∼ N(0,M).
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1.5. Stirling’s formula. We have

log(n− 1)! ≤
∫ n

1

log x dx ≤ log n!,

or
log n!− log n ≤ n (log n− 1) ≤ log n!.

Dividing by n, we obtain

log((n!)1/n)− log n

n
≤ log n− 1 ≤ log((n!)1/n).

Rearranging these inequalities, we have

0 ≤ log((n!)1/n)− log n+ 1 ≤ log n

n
,

or

0 ≤ log

(
(n!)1/n

n/e

)
≤ log n

n
.

Hence,

lim
n→∞

log

(
(n!)1/n

n/e

)
= 0,

or

lim
n→∞

(n!)1/n

n/e
= 1.

We need a less cumbersome notation to describe these properties. If two sequences
(un) and (vn) satisfy limn→∞ un/vn = 1, then we shall write un ∼ vn. In other
words, un ∼ vn if the percentage error in estimating un by vn tends to zero.

Exercise 1.5. Show that un = n2 and vn = (n + 1)2 satisfy un ∼ vn, as n → ∞,
but that vn − un →∞.

In our new notation, we have shown that

(n!)1/n ∼ n/e,
as n→∞. However, a stronger result was derived by de Moivre and Stirling in the
early Eighteenth century:

Theorem 1.8 (Stirling’s Formula). It can be shown that

(1.11)
√

2πn(n/e)n ≤ n! ≤ e1/(12n)
√

2πn(n/e)n,

for all positive n. In particular, we have n! ∼
√

2πn(n/e)n.

Proof. See Section 2.9 of the excellent An Introduction to Probability Theory and
its Applications, by William Feller. �

It can also be shown (see Feller again) that the percentage error in using the
right hand side of (1.11) to estimate n! is at most 9n−2 per cent. For example,
when n = 5, the right hand side gives 120.01.
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2. Sums of Random Variables

2.1. Sums of Exponentially Distributed r.v.s. We shall say that a random
variable X is exponentially distributed if it has the PDF

(2.1) p(s) =

{
e−s if s ≥ 0,

0 otherwise.

Let X1, X2, . . . , Xn be independent exponentially distributed random variables. We
shall calculate the PDF of their sum X1 +X2 + · · ·+Xn. To this end, we introduce
the random vector

(2.2) X =


X1

X2

...
Xn

 ∈ Rn,

which has PDF

(2.3) q(s) = e−(s1+s2+···+sn), for s ≥ 0.

Then

P (a ≤ X1 +X2 + · · ·+Xn ≤ b)

=

∫
a≤s1+···+sn≤b

q(s) ds

=

∫
a≤s1+···+sn≤b, s≥0

e−(s1+···+sn) ds

=

∫ b

a

e−uCnu
n−1 du,

where Cn is a constant depending only on the ambient dimension n. To calculate
Cn, we set a = 0 and b =∞, providing

1 = Cn

∫ ∞
0

e−uun−1 du,

or

Cn =
1

(n− 1)!
.

Hence the PDF for X1 + · · ·+Xn is given by

r(u) =

{
1

(n−1)!e
−uun−1 if u ≥ 0,

0 otherwise.

2.2. Sums of Gaussians. Now suppose we have a pair of independent N(0, 1)
Gaussian random variables Z1 and Z2 and want to calculate the PDF of their sum
Z1 + Z2. The Gaussian random vector

Z =

(
Z1

Z2

)
∈ R2

has PDF

p(s) = (2π)−1e−‖s‖
2/2, s ∈ R2.
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Thus

(2.4) P (a ≤ X1 +X2 ≤ b) =

∫
a≤s1+s2≤b

(2π)−1e−(s
2
1+s

2
2)/2 ds.

We now change coordinates, using u1 = s1 + s2 and u2 = s1 − s2, that is,

u =

(
1 1
1 −1

)
s.

Then

du =

∣∣∣∣det

(
1 1
1 −1

)∣∣∣∣ s = 2ds

and s1 = (u1 + u2)/2, s2 = (u1 − u2)/2. Therefore

s21 + s22 =
1

2
(u21 + u22),

which implies that

P(a ≤ Z1 + Z2 ≤ b) =
1

2

∫ b

a

du1

∫ ∞
−∞

du2(2π)−1e−(u
2
1+u

2
2)/4

=

∫ b

a

du1(2π.2)−1/2e−u
2
1/(2.2),(2.5)

that is we have shown that Z1 + Z2 ∼ N(0, 2). We now prove the more general
result.

Proposition 2.1. Let Z1 and Z2 be independent N(0, 1) random variables. Then
their linear combination w1Z1 + w2Z2 ∼ N(0, w2

1 + w2
2), for any w1, w2 ∈ R.

Proof. To calculate the PDF of the sum, we proceed as before:

P = P (a ≤ w1Z1 + w2Z2 ≤ b) =

∫
a≤w1s1+w2s2≤b

(2π)=1/2e−(s
2
1+s

2
2)/2 ds.(2.6)

The problem here is to rotate our coordinate system so that the integral becomes
simple. If we let

u1 =
1√

w2
1 + w2

2

(
w1

w2

)
and u2 =

1√
w2

1 + w2
2

(
−w2

w1

)
,

then these are orthogonal unit vectors. Our new coordinates t1, t2 are defined by

s = t1u1 + t2u2,

or

s =
(

u1 u2

)
t,

where
(

u1 u2

)
denotes the 2× 2 matrix whose columns are u1 and u2, whilst

t =

(
t1
t2

)
∈ R2.

Then (
uT1
uT2

)(
u1 u2

)
=

(
1 0
0 1

)
.

Hence

t =

(
uT1
uT2

)
u
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and

det
(

u1 u2

)
= 1.

Finally

{s ∈ R2 : a ≤ w1s1 + w2s2 ≤ b} = {s ∈ R2 :
a

‖w‖
≤ w1s1 + w2s2√

w2
1 + w2

2

≤ b

‖w‖
}

= {s ∈ R2 :
a

‖w‖
≤ uT1 s ≤ b

‖w‖
}

= {t ∈ R2 :
a

‖w‖
≤ t1 ≤

b

‖w‖
}.

Further s21 + s22 = t21 + t22, so that

P =

∫ b/‖w‖

a/‖w‖
dt1

∫ ∞
−∞

dt2(2π)−1e−(t
2
1+t

2
2)/2

=

∫ b/‖w‖

a/‖w‖
dt1(2π)−1/2e−t

2
1/2

∫ ∞
−∞

dt2(2π)−1/2e−t
2
2/2

=

∫ b/‖w‖

a/‖w‖
(2π)−1/2e−t

2
1/2 dt1

=

∫ b

a

(2π‖w‖2)−1/2e−t
2
1/(2‖w‖

2) dt1,

using the change of variable v1 = t1/‖w‖. Hence w1Z1 + w2Z2 ∼ N(0, ‖w‖2). �

2.3. General Sums of Random Variables. Let X1 and X2 be independent
random variables with PDFs f1 and f2, respectively. Then the PDF of the random
vector

X =

(
X1

X2

)
∈ R2

is given by

(2.7) p(s) = f1(s1)f2(s2), for s =

(
s1
s2

)
∈ R2.

Thus

P(a ≤ X1 +X2 ≤ b) =

∫
a≤s1+s2≤b

f1(s1)f2(s2) dvs.

Again using the change of variables

u =

(
1 1
1 −1

)
s.

we have

du =

∣∣∣∣det

(
1 1
1 −1

)∣∣∣∣ s = 2ds

and

P(a ≤ X1 +X2 ≤ b) =
1

2

∫ b

a

du1

∫ ∞
−∞

du2f1(
u1 + u2

2
)f2(

u1 − u2
2

).
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Therefore the PDF for X1 +X2 is given by

q(u1) =
1

2

∫ ∞
−∞

f1

(
u1 + u2

2

)
f2

(
u1 − u2

2

)
du2.

If we now make the further change of variable y = (u1 + u2)/2, then (u1 − u2)/2 =
u1 − y and dy = (1/2)du2, and the integral becomes

q(u1) =

∫ ∞
−∞

f1(y)f2(u1 − y) dy, for u1 ∈ R,

so this particular integral provides the PDF for X1 +X2 when X1, X2 are indepen-
dent continuous random variables with PDFs f1, f2 — it’s sufficiently important to
merit a standard notation:

Definition 2.1. The convolution f1 ∗ f2 is defined by

f1 ∗ f2(u) =

∫ ∞
−∞

f1(y)f2(u− y) dy, for u ∈ R.

We now summarize our findings.

Theorem 2.2. If X1 and X2 are independent continuous random variables with
PDFs f1 and f2, respectively, then their sum X1 +X2 has PDF f1 ∗ f2.

Corollary 2.3. If X1, X2, . . . , Xn are independent continuous random variables,
with associated PDFs f1, f2, . . . , fn, then their sum X1 + · · · + Xn has PDF f1 ∗
· · · ∗ fn. [Here f1 ∗ · · · ∗ fn = (f1 ∗ · · · ∗ fn−1) ∗ fn.]

Corollary 2.4. If f1 and f2 are the probability density functions any two indepen-
dent continuous random variables X1 and X2, then the order of their convolution
is irrelevant, that is, f1 ∗ f2 = f2 ∗ f1.

Proof. We have

f1 ∗ f2 = PDF of X1 +X2

= PDF of X2 +X1

= f2 ∗ f1.

�

The great advantage of the convolution integral is that it avoids multivariate
integration, although sometimes the integration is the easier route – that’s why you
learn both. This is best illustrated by an example.

Example 2.1. Suppose X1, X2, . . . , Xn are independent exponentially distributed
random variables. Let’s calculate the PDF pn(s) of their sum X1 + · · ·+Xn via the
convolution integral. Using

(2.8) p1(s) =

{
e−s if s ≥ 0,

0 otherwise,

we deduce that the PDF p2(s) of X1 +X2 is given by the convolution integral

p2(s) = p1 ∗ p1(s) =

∫ ∞
−∞

p1(z)p1(s− z) dz.
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Now p1(z) = 0 if z < 0 and p1(s− z) = 0 if s− z < 0. In other words, p1(z)p1(s−
z) > 0 if and only if 0 < z < s. Hence

p2(s) =

∫ s

0

p1(z)p1(s− z) dz

=

∫ s

0

e−ze−(s−z) sz

= se−s,

for s ≥ 0; obviously p2(s) = 0 for s < 0.
Similarly, we have

pn(s) = p1 ∗ pn−1(s)

=

∫ ∞
−∞

p1(z)pn−1(s− z) dz.

Exercise 2.1. Using the terminology of the last example, using proof by induction
to show that

(2.9) pn(s) =

{
sn−1

(n−1)!e
−s if s ≥ 0,

0 otherwise.

3. Characteristic Functions

It’s extremely tedious computing convolution integrals. Fortunately, there is an
extremely clever alternative due to Fourier.

Definition 3.1. Let X be any random variable for which the expectation E(|X|) of
its absolute value is finite. Then the characteristic function, of CF, of X is defined
by

φX(z) = EeizX .

If you have encountered Fourier transforms previously, then I hope you’ve noticed
that, for a continuous random variable X with PDF p(s), the characteristic function
φX(z) is simply the Fourier transform of the PDF, that is,

φX(z) =

∫ ∞
−∞

eizsp(s) ds, z ∈ R.

Example 3.1. Suppose X ∼ U [−1/2, 1/2], i.e. it’s uniformly distributed on the
interval [−1/2, 1/2]. Thus its PDF is given by

p(s) =

{
1 if −1/2 ≤ s ≤ 1,

0 otherwise.
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Then

φX(z) = EeizX

=

∫ 1/2

−1/2
eizs ds

=

∫ 1/2

−1/2
cos(zs) ds+ i

∫ 1/2

−1/2
sin(zs) ds

= 2

∫ 1/2

0

cos(zs) ds

=
sin(z/2)

z/2
.

The key property of characteristic functions is the Convolution Theorem:

Theorem 3.1 (Convolution Theorem). Let X1, X2 be independent continuous ran-
dom variables with CFs φX1(z) and φX2(z), respectively. Then the CF φX1+X2(z)
corresponding to the sum of random variables X1 +X2 satisfies

φX1+X2
(z) = φX1

(z)φX2
(z).

Proof. We have

φX1+X2
(z) = Eeiz(X1+X2)

= EeizX1EeizX2

= φX1
(z)φX2

(z).

�

Example 3.2. Let X1, X2, . . . , Xn be exponentially distributed random variables,
their common PDF being given by

(3.1) p(s) =

{
e−s if s ≥ 0,

0 otherwise.

Their common CF is then

φ(z) = EeizX

=

∫ ∞
0

eizse−s ds

=

∫ ∞
0

es(−1+iz) ds

=

[
es(−1+iz)

−1 + iz

]∞
s=0

=
−1

−1 + iz

=
1

1− iz
.
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The sum Sn = X1 +X2 + · · ·+Xn therefore has CF

φSn(z) = φX1+···+Xn(z)

= (φ(z))
n

= (1− iz)−n.

Lemma 3.2. If c ∈ R and Z ∼ N(0, 1), then

(3.2) EecZ = ec
2/2.

Proof.

EecZ =

∫ ∞
−∞

ecs(2π)−1/2e−s
2/2 ds

=

∫ ∞
−∞

e−
1
2 [(s−c)2−c2] ds

= ec
2/2

∫ ∞
−∞

(2π)−1/2e−
1
2 (s−c)

2

ds

= ec
2/2.

�

Theorem 3.3. Lemma 3.2 is valid for any complex number c ∈ R.

Not examinable. The function F (c) = E exp(cZ) is well-defined and analytic for all
c ∈ C, and F (c) = exp(c2/2), for all c ∈ R, by Lemma 3.2. Therefore the identity
theorem for analytic functions implies that the theorem is true. �

Corollary 3.4. If W ∼ N(0, 1), then

φW (z) = e−z
2/2.

Proof. Setting c = iz is Lemma 3.2, we obtain

φW (z) = EeizW

= e(iz)
2/2

= e−z
2/2.

�

Corollary 3.5. If V ∼ N(µ, σ2), then

φV (z) = eiµz−σ
2z2/2.

Proof. We write V = µ+ σW , where W ∼ N(0, 1). Then

φV (z) = Eeiz(µ+σW )

= eizµEeizσW

= eizµ−σ
2z2/2,

on setting c = izσ in Lemma 3.2. �
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Corollary 3.6. If Zk ∼ N(µk, σ
2
k), for k = 1, 2, . . . , n, are independent Gaussian

random variables, then their sum is also Gaussian. Specifically, their sum Sn =
Z1 + · · ·+ Zn satisfies

Sn ∼ N(µ1 + · · ·+ µn, σ
2
1 + · · ·+ σ2

n).

Proof. The CF φk(z) is given by

φk(z) = eiµkz−σ2
kz

2/2, 1 ≤ k ≤ n.
Hence the CF of Sn is given by

φSn
(z) = φ1(z)φ2(z) · · ·φn(z)

= ei(µ1+···+µn)− 1
2 z

2(σ2
1+···+σ

2
n).

�

Example 3.3. If W ∼ N(0, 1), then we have already computed the PDF for χ2
1 ≡

W 2. However, it’s easy to calculate its CF, as follows. We have

φχ2
1
(z) = EeizW

2

=

∫ ∞
−∞

eizs
2

(2π)−1/2e−s
2/2 ds

= (2π)−1/2
∫ ∞
−∞

e(−1/2)(−1−2iz) ds

= (1− 2iz)−1/2.

Therefore the CF of χ2
n is given by

φχ2
n
(z) = (1− 2iz)−n/2.

We have see that the CF of a sum of independent random variables is simply
the product of their CFs. It’s easy to calculate the CF of cX, for any c ∈ R.
Specifically, we have

φcX(z) = EeiczX = φX(cz).

Corollary 3.7. Let X1, X2, . . . , Xn be continuous, independent, identically dis-
tributed CFs with common CF φ(z). Then their average

An =
X1 + · · ·+Xn

n

has CF

φAn
(z) = φ(z/n)n.

Proof. Writing An = Sn/n, we obtain

φAn(z) = φSn/n(z) = φSn(z/n) = φ(z/n)n.

�

It’s often useful to consider a slightly different average:

(3.3) Ân =
X1 + · · ·+Xn√

n
.

the idea here is that this normalization ensures that varAn = varXk, for all k =
1, 2, . . . , n. I shall refer to (3.3) as the variance-normalized average.
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Corollary 3.8. Let X1, X2, . . . , Xn be continuous, independent, identically dis-
tributed CFs with common CF φ(z). Then

Ân =
X1 + · · ·+Xn√

n

has CF

φ
Ân

(z) = φ(z/
√
n)n.

Proof. Writing Ân = Sn/n, we obtain

φ
Ân

(z) = φSn/
√
n(z) = φSn

(z/
√
n) = φ(z/

√
n)n.

�

Exercise 3.1. Let Xk ∼ N(0, 1), for all k. Prove that Ân is also N(0, 1), for all
n.

We’re now very close to one form of the central limit theorem.

Theorem 3.9 (The Central Limit Theorem for CFs). Let X1, X2, . . . be indepen-
dent, identically distributed random variables satisfying EXk = 0 and E(X2

k) = σ2,

for all positive integer k. Then the CFs of the variance-normalized averages Ân of
(3.3) satisfy

(3.4) lim
n→∞

φ
Ân

(z) = e−z
2/2.

In other words, the CFs of these variance-normalized averages converges pointwise
to the CF for the normalized Gaussian.

Exercise 3.2. A key assumption of the CLT is that the random variables must
have finite variance. The CLT fails without this condition and, unsurprisingly, the
counterexample is the Cauchy distribution. In this case, it can be shown that the
CF corresponding to the PDF p(s) = 1/(π(1 + s2)), for s ∈ R, is given by

φ(z) = e−|z|, z ∈ R.

Prove that φAn(z) = φ(z), for all positive integer n.

How do we recover the PDF from the CF?

Theorem 3.10. Suppose the continuous PDF p(s) has an absolutely integrable
CF φ(z), that is, ∫ ∞

∞
|φ(z)| dz <∞.

Then

(3.5) p(x) =
1

2π

∫ ∞
∞

φ(z)e−ixz dz,

for all x ∈ R.
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4. The χ2 distribution

Theorem 4.1. Let Z ∈ Rn be a normalized Gaussian random vector, that is, its
components are independent N(0, 1) random variables. Then the probability density
function pn(t) for the random variable ‖Z‖2 ≡ Z2

1 + Z2
2 + · · ·+ Z2

n is given by

(4.1) pn(t) =
e−t/2t(n/2)−1∫∞

0
e−u/2u(n/2)−1 du

=
e−t/2t(n/2)−1

2n/2Γ(n/2)
, for t ≥ 0.

[Of course, pn(t) = 0 for t < 0, since the random variable ‖Z‖2 is always non-
negative.] We say that ‖Z‖2 has the χ2

n distribution.

Proof. Let us define the annulus

Ann(r1, r2) = {s ∈ Rn : r1 ≤ ‖s‖ ≤ r2} .

We first observe that

P
(
a ≤ ‖Z‖2 ≤ b

)
=

∫
Ann(

√
a,
√
b)

(2π)−n/2e−‖s‖
2/2 ds

= P
(
Z ∈ Ann(

√
a,
√
b)
)

=

∫ √b
√
a

Cne
−r2/2rn−1 dr

=

∫ b

a

Dne
−t/2t(n/2)−1 dt,

where I have used spherical polar coordinates to obtain the second line, and the
change of variable t = r2 to obtain the third. To find the constant Dn, we set a = 0
and b =∞, in which case we find

1 = P
(
0 ≤ ‖Z‖2

)
= Dn

∫ ∞
0

e−u/2u(n/2)−1 du,

or

Dn =
1∫∞

0
e−u/2u(n/2)−1 du

.

If we set v = u/2 in the last integral, then we find

D−1n = 2

∫ ∞
0

e−v(2v)(n/2)−1 dv = 2n/2Γ(n/2).

�

Karl Pearson (1857–1936) introduced the chi-squared test and the name for it
in ”On the Criterion that a Given System of Deviations from the Probable in the
Case of a Correlated System of Variables is such that it can be Reasonably Sup-
posed to have Arisen from Random Sampling,” Philosophical Magazine, 50, (1900),
157–175. Pearson used χ to denote ‖Z‖, and such is the inertia of human habit
that the notation is preserved: we still say that ‖Z‖ has the χ2

n distribution. Inci-
dentally, Pearson founded the world’s first university department wholly dedicated
to statistics at UCL, a short walk from our lecture room.

The modern view that the χ2 distribution is one of a family of distributions
linked by the Gamma function was pioneered by another UCL statistician, R. A.
Fisher.



PROBABILITY THEORY 17

5. An Introduction to Extreme Value Theory

The theme of this section is estimating the probability that a random variable
can be very far from its mean (an extreme value).

Theorem 5.1 (Chebyshev’s Inequality). Let X be any random variable, with mean
µ and variance σ2. Then, for any positive δ,

P (|X − µ| ≥ δ) ≤ σ2

δ2
.

Proof. We have

σ2 = E(X − µ)2 ≥ δ2P(|X − µ| ≥ δ).
�

Chebyshev’s inequality leads immediately to the Weak Law of Large Numbers:

Theorem 5.2. Let X1, X2, . . . be a sequence of independent random variables for
which EXk = 0 and EX2

k = σ2, for all k ≥ 1. Let

An =
X1 +X2 + · · ·+Xn

n
.

Then, for any δ > 0,

P (|An| ≥ δ) ≤
σ2

nδ2
.

Proof. We have EAn = 0 and EA2
n = nσ2/n2 = σ2/n. Hence, by Chebyshev’s

inequality,

P(|An| ≥ δ) ≤
σ2

nδ2
.

�

In particular, limn→∞ P(|An| ≥ δ) = 0, for any δ > 0. The assigned work last
year and this year provides further examples of extreme value theory.

6. Interesting Problems

6.1. The Birthday Problem. This is a traditional probabilistic problem which I
shall treat in further detail than is common. Given n people, whose birthdays are
uniformly distributed over the 365 days of the year (ignoring leap years), find

(6.1) P (at least 2 people share a birthday) .

It’s easier to observe that

(6.2) P (at least 2 people share a birthday) = 1− pn,
where

(6.3) pn = P ( all n people have different birthdays) .

Now

pn =
365 · 364 · 363 · · · (365− n+ 1)

365n

=

n−1∏
k=1

(
1− k

365

)
.(6.4)
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In a sense, we have now finished the problem, since we can easily evaluate (6.4)
for any n. However, displaying the values of p2, p3, . . . , p100, we see that the graph
strongly resembles a Gaussian. Moreover, we can see that p20 ≈ 1/2; to be more
precise, p23 = 0.51 and p35 = 0.99. Can we understand these observations?

Taking logarithms in (6.4), we obtain

(6.5) ln pn =

n−1∑
k=1

ln

(
1− k

365

)
.

Now it can be shown that

(6.6) ln(1 + x) = x− x2

2
+
x3

3
− x4

4
+ · · · ,

and the series is convergent for |x| < 1. Thus, for x > 0, we have

(6.7) ln(1− x) = −x− x2

2
− x3

3
− x4

4
− · · · ≤ x.

In other words, for small positive x, we have both the approximation ln(1−x) ≈ −x
and the inequality ln(1−x) ≤ −x. Applying these observations to (6.5), we obtain
the approximation

(6.8) ln pn ≈ −
n−1∑
k=1

k

365
= −n(n− 1)

730

and the bound

(6.9) ln pn ≤ −
n(n− 1)

730
.

Taking exponentials, we have

(6.10) pn ≈ e−n(n−1)/730

and

(6.11) pn ≤ e−n(n−1)/730.
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