PROBABILITY THEORY

BRAD BAXTER

Version: 200905281454

1. INTRODUCTION

The textbooks mentioned in the formal syllabus are fine, but the following pair
are particularly useful:

e Probability and Random Processes, by G. Grimmett and D. Stirzaker.
o Weighing the Odds, by D. Williams.

Grimmett and Stirzaker is thorough, but somewhat dry for my taste. Williams’
book is inspiring, but slightly eccentric. I hope to steer a safe path between the two.
You can download an earlier set of older lecture notes, developed by my colleagues,
A. Cartea and L. Sinnadurai, from my office linux server:

http://econl109.econ.bbk.ac.uk/brad/PSM/
This server also contains other useful information. The syllabus is unchanged from
previous years, but I shall present the material in an alternative order.

These notes are provisional, and will be updated regularly; please note
the date stamp in the heading above. Please check the webpage above
for newer versions (probnotes.pdf) and let me know of any slips.

Brad Baxter [b.baxter@bbk.ac.uk]

1.1. Some Fundamentals. A continuous random variable X is a real-valued ran-
dom variable for which there is a probability density function (PDF) p(s), for s € R,
for which

b
(1.1) Pla < X <b) = / p(s) ds,
for any real numbers a < b. Its expected value is then given by
oo
(1.2) p=EX = / sp(s)ds
—00
and its variance by
(1.3) var X =E ([X — p)?) = / (s — u)?p(s) ds.

if the integral exists'

Exercise 1.1. Show that
var X = E(X?) — (EX)?.

LAs we shall soon see, this integrability requirement fails for the Cauchy distribution.
1
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Exercise 1.2. We say that U is uniformly distributed on the interval [a,b] if its

PDF is given by
p(s) = {b_la ifa<s<hb,

0 otherwise.

Calculate EU and var U.

The variance of a sum of independent random variables is simply the sum of
their variances, but the general case is slightly more complicated.

Proposition 1.1. We have

(1.4) var X +Y =var X +varY + 2 [E(XY) — (EX)(EY)].

Thus var X +Y = var X + varY if and only if E(XY) — (EX)(EY) = 0.

Proof. We have

varX +Y =E[(X +Y)?] - (EX +Y)?

=E[X*+Y?+2XY] — (EX)*> — (EY)® — 2(EX)(EY)
=E(X?) - (EX)2 4+ E(Y?) — (EY)? +2[E(XY) — (EX)(EY)]
=varX +varY + 2[E(XY) — (EX)(EY)].

Thus var X +Y = var X + varY if and only if E(XY) — (EX)(EY) = 0.
O

The quantity E(XY) — (EX)(EY) is sufficiently important to merit a name: it’s
called the covariance of X and Y.

Definition 1.1. The covariance Cov(X,Y) is defined by

(1.5) Cov(X,YV)=E[(X —EX)(Y —EY)].

Further, if Cov(X,Y) = 0, then we say that X and Y are uncorrelated.
Exercise 1.3. Show that Cov(X,Y) = E(XY) — (EX)(EY).

Thus we have shown that the variance of a sum of uncorrelated random vari-
ables is the sum of their variances. We come now to one of the most fundamental
definitions in Probability Theory.

Definition 1.2. We shall say that random variables X and Y are independent if
Pa<X<bandc<Y <d)=Pa<X<b) -Plc<Y <d),
for any real numbers a < b and ¢ < d.

Independence is a stronger condition than uncorrelated, but the key slogan is
“Independence means multiply!”.

Proposition 1.2. If X and Y are independent random variables, then

E(f(X)g(Y)) = (Ef(X))(Eg(Y)),

for any continuous functions f and g.
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Proof. This is not examinable in its full generality. However, one possible proof
begins with the observation that E(XPY?) = E(XP)E(Y'?), for any non-negative
integers p and ¢, which implies that the theorem is true when f and g are polyno-
mials. (]

Proposition 1.3. If X and Y are independent random wvariables, then they’re
uncorrelated, that is, Cov(X,Y) = 0.

Proof. This is “Independence means multiply!” again:
E[X-X)(Y-Y)]
=E(X-X)-E(Y-Y)

=0.
|
Exercise 1.4. Prove that E(aX 4+bY) = aEX +bEY . Show further that var(cX) =
c2var X, for any ¢ € R.
More generally, we have the relation
(16) B = [ fomls)ds.
—00
1.2. Random Vectors.
Theorem 1.4. Let X1, Xs,..., X, be independent continuous random wvariables
with PDF's p1,pa,...,pn. Then the random vector
Xy
Xo
X = .
Xn
has PDF
S1
52
q(s) = p1(s1)p2(s2) - pnlsn), Jors = . €R™.
Sn
Proof. TBW U

In general the components of a random vector X are not independent random
variables, in which case its covariance matriz M is extremely useful. Specifically,
we define M, = Cov(X;, Xy), for 1 < j, k < n. In matrix notation, we write

M == Cov(X) = E(X — EX) (X — EX)"".
The full derivation of (2.7) is not required, but the key observation is as follows.
Proposition 1.5. Let
(1.7) U = la1,b1] X [ag,bs] == {(xl,xg) €R?:ay <z <by and as < x5 < bg}.
Then

by ba
(18) ]P(X € U) = / dSl/ d82p1(51)p2(82).
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Proof. We have

PXeU)=P(a; < X1 <b; and ay < X5 < by)

a1 < X1 <by) Plag < Xo < by)

(
(o)
/ / ds2p1(s1)p2(s2),

as required. O

P
P

1.3. The Gaussian.

Definition 1.3. We say that a continuous random variable W is Gaussian (or,
equivalently, normal) if its PDF is the Gaussian function

seR.

—(s —p)? )

202 ’
As we shall see shortly, EW = pu and var W = 2.
write W ~ N (u,0?).

(1.9) p(s) = (2mo?)"1/2 exp(

The standard notation s to

One crucial integral is as follows.

Lemma 1.6.

(1.10) I(c) = /Z e~ dy = \/f

for any ¢ > 0.

Proof. If we use the change of variable s = y/cx in (1.10), then we obtain I(c) =
1(1)/+/c, so we only need to calculate I(1). Now

2
I(1)? = </ e ds)
R
://e_(52+t2)d5 dt
R JR
e’} 2 R
z/ / e~ " ddrdf
o Jo
= 77/ ore~" dr
0

=T.
Thus I(1) = /7. O
Lemma 1.7. Furthermore, (1.10) is valid for any ¢ € C with positive real part.

Proof. This proof is not examinable, but is not difficult if you've taken a first
course in complex analysis. Firstly, the integral is well- deﬁned if the real part of
¢ is positive. Secondly, we have already shown that I(c) = y/7/c for ¢ > 0. The
identity principle for analytic functions therefore 1mphes the result. (I
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1.4. Multivariate Gaussians. If Z;,...,Z, are independent N(0,1) Gaussian
random variables, then the random vector

A
Z
Z= :
Zn
has PDF
q(s) = (271')_"/26_“5“2/2, for s € R™.

We say that Z is a normalized Gaussian random vector. We see that EZ, = 0,
EZ? =1, and EZ,Z, = 0, for k # ¢. In matrix notation, we have EZ = 0, and its
covariance matrix EZZT = I, the identity matrix; we write Z ~ N (0, I).

However, let us now consider the PDF for W = AZ, where A € R™*"™ can be
any nonsingular matrix (i.e. det A # 0). Then, for any (measurable) set U in R",
we have

P(WeU)=P(Ze A 'U),
where
AU ={A w1 u e U},
hence
P(WeU)=P(Ze A™'U)
=0 [ eI/ ds
A-1U
= (277)*”/2/ exp(—sT's/2) ds
A-1U

= (2m) ™2 det(A7Y) / exp(—(A7')T (A7) /2) dt
U

= (27)7™/2 det(A) ! / exp(—t7(A~T)A~1t)/2) ds
U

using the substitution t = As, so that dt = |det(A)|ds, together with the notation
AT = (AT, Hence the EW = E(AZ) = AEZ = 0 and its covariance matrix is
given by

M =E(WW7)
=R(AZ)(AZ)T
= ARZZT AT
= AAT,
Hence M~1 = A=TA~! and W has PDF q(t), t € R", where
q(t) = (27)7"/2(det M)~ 2 exp(—tTM~1t/2),  teR".
We write W ~ N (0, M).
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1.5. Stirling’s formula. We have

n
log(n — 1) < / log z dx < logn!,

1

or
logn! —logn < n(logn —1) < lognl!.
Dividing by n, we obtain
1
log((n!)'/™) — 222 < logn — 1 < log((n!) /™).
n

Rearranging these inequalities, we have

1
0 <log((n)Y™) —logn+1 < %,

or y
h~/m 1
O§10g<(n) )g ogn.
n/e n
Hence,
n1/n
lim log <(”') ) —0,
n—00 n/e
or "
] n
lim (GDRA =

We need a less cumbersome notation to describe these properties. If two sequences
(up) and (vy,) satisfy lim, oo t, /v, = 1, then we shall write u,, ~ v,. In other
words, u, ~ v, if the percentage error in estimating u,, by v, tends to zero.

Exercise 1.5. Show that u, = n? and v,, = (n + 1)? satisfy u, ~ v,, as n — oo,
but that v,, — u,, — oo.

In our new notation, we have shown that
(n)¥™ ~n/e,

as n — oo. However, a stronger result was derived by de Moivre and Stirling in the
early Eighteenth century:

Theorem 1.8 (Stirling’s Formula). It can be shown that
(1.11) V2rn(n/e) < nl < e2M\orn(n/e)",
for all positive n. In particular, we have n! ~ +/2wn(n/e)™.

Proof. See Section 2.9 of the excellent An Introduction to Probability Theory and
its Applications, by William Feller. (]

It can also be shown (see Feller again) that the percentage error in using the
right hand side of (1.11) to estimate n! is at most 9n~2 per cent. For example,
when n = 5, the right hand side gives 120.01.
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2. SUMS OF RANDOM VARIABLES

2.1. Sums of Exponentially Distributed r.v.s. We shall say that a random
variable X is exponentially distributed if it has the PDF

2.) o) = { o

0 otherwise.

Let X1, Xs, ..., X, beindependent exponentially distributed random variables. We
shall calculate the PDF of their sum X; + X5+ - -+ X,,. To this end, we introduce
the random vector

X1
Xo
(2.2) X_ fr— . 6 R’I’L,
Xn
which has PDF
(2.3) q(s) = e (atsatton) for s > 0.

Then
Pla<Xi+Xo+--+ X, <)

= / q(s) ds
a<si+:+5,<b

_ / e~ (s1t+tsn) gg

a<sy 4o+, <b, 830
b
:/ e “Chu™ 1t du,
a

where C,, is a constant depending only on the ambient dimension n. To calculate
C,, we set a = 0 and b = oo, providing

1= C’n/ eyt du,
0

or
1

(n—1)1"
Hence the PDF for X; + --- + X, is given by

() {(nll),e_"u”_l if u >0,
r(u) = :

C, =

0 otherwise.

2.2. Sums of Gaussians. Now suppose we have a pair of independent N(0,1)
Gaussian random variables Z; and Z; and want to calculate the PDF of their sum
Z1 + Z5. The Gaussian random vector

| Z 2
s (% )en

p(s) = (2m) e IsIP/2 g e R2

has PDF
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Thus
(2.4) Pla< X1+ X2<b) = / (QW)—le—(s?+s§)/2 ds.

a<si+s2<b

We now change coordinates, using u; = s1 + s2 and us = s1 — So, that is,

u= 1 1 S
B N A | ’

1 1
det(l 1>

and s1 = (u1 + u2)/2, s2 = (u; — ug)/2. Therefore

Then

du = s = 2ds

1
si+ 83 = 5 (ul +u3),

which implies that

1 b fe'e)
Pla < Z1+ 75 <b) = 5/ dul/ du2(2ﬂ)—1e—(uf+u§)/4

b
(2.5) = / duy (2m.2) "1/ 2 i/ (2:2),

a
that is we have shown that Z; + Zy ~ N(0,2). We now prove the more general
result.

Proposition 2.1. Let Z; and Zs be independent N(0,1) random variables. Then
their linear combination w1 Zy + waZe ~ N(0,w? +w3), for any wi,ws € R.

Proof. To calculate the PDF of the sum, we proceed as before:

(26) P =P (a < ’LU1Z1 + ’LU2Z2 < b) = / (271):1/26*(5f+5§)/2 ds.

a<wysi+wasa<b
The problem here is to rotate our coordinate system so that the integral becomes
simple. If we let

1 w1 1 — W2
we ) e e ()
then these are orthogonal unit vectors. Our new coordinates t1,ts are defined by
s = tiu; + tauy,

or
s:(u1 Us )t,

where ( u; up ) denotes the 2 x 2 matrix whose columns are u; and u,, whilst

t:<t1>eR2.
ta

Then

Hence
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and
det( u; U9 ) =1.

Finally

a w181 + WaSa b
Iwll = Vwi+w ~ [Iwl

b
:{SERQ:L<U{S<—}

}

{SGR2:a§w151+w232§b}:{s€R2:

fwil = = [lwll
a b
={tcR*: — <t; < —}.
[[wll [[wll
Further s? + s2 = t2 + t2, so that
b/lwl oo 2 o
P:/ dtl/ dt2(2ﬂ')_1€_(t1+t2)/2
a/[wl —oo
b/lwl . o0 )
:/ dt1(2ﬂ')71/267t1/2\/ dto(2m) "2 t/?
a/lwl —o0
b/llwll )
:/ (2m)~1/2e71/2 gt
a/lwl

b
:/ (2r|w][2)~1/2e= B/ CIWI) g,

using the change of variable vy = t;/||w|. Hence w1 Z; +waZs ~ N(0,||w]?). O

2.3. General Sums of Random Variables. Let X; and X5 be independent
random variables with PDFs f; and fs, respectively. Then the PDF of the random

vector
_( X1 2
X = ( X, ) eR
is given by
(2.7) p(s) = f1(s1)f2(s2), for s = ( Z; ) € R?.
Thus
IP)(CL S X1 —+ X2 S b) = / fl(Sl)fZ(Sz) d’US.
a<si+s2<b

Again using the change of variables

we have

and
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Therefore the PDF for X; 4+ X5 is given by

q(ur) = %/:’O fi <U1 42—1@) fa (u1 ;1@) dus.

If we now make the further change of variable y = (u1 + u2)/2, then (u1 —uz2)/2 =
u; —y and dy = (1/2)dus, and the integral becomes

q(u1) = [ f1(y) fa(ur — y) dy, for u; € R,

so this particular integral provides the PDF for X; + X5 when X7, X5 are indepen-
dent continuous random variables with PDFs f;, fo — it’s sufficiently important to
merit a standard notation:

Definition 2.1. The convolution f; * fa is defined by

fl*f2(u):/_ fi(y) fa(u —y) dy, for u € R.

We now summarize our findings.

Theorem 2.2. If X| and X5 are independent continuous random variables with
PDFs f1 and fo, respectively, then their sum X1 + Xo has PDF fi x f5.

Corollary 2.3. If X1, Xo,..., X, are independent continuous random variables,
with associated PDFs f1, fa,..., fn, then their sum X1 + --- 4+ X,, has PDF f; %

oo fo. [Here fix-ox fr = (frx* fam1) * fo]

Corollary 2.4. If f1 and f2 are the probability density functions any two indepen-
dent continuous random variables X1 and Xs, then the order of their convolution
is irrelevant, that is, f1 * fo = fo % f1.

Proof. We have

f1 % fo = PDF of X; + Xo
= PDF of Xs + X3
= fax f1.
O

The great advantage of the convolution integral is that it avoids multivariate
integration, although sometimes the integration is the easier route — that’s why you
learn both. This is best illustrated by an example.

Example 2.1. Suppose X1, X5, ..., X,, are independent exponentially distributed
random variables. Let’s calculate the PDF p,(s) of their sum X1 +---+ X, via the
convolution integral. Using

(2.8) () = { 520,

0 otherwise,

we deduce that the PDF ps(s) of X1 + Xo is given by the convolution integral

oo

p2(s) = p1 xp1(s) = / p1(z)p1(s — 2) dz.

— 00
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Nowpi(2) =0ifz<0 and p1(s —2) =0 if s— z < 0. In other words, p1(2)p1(s —
z) > 0 if and only if 0 < z < s. Hence

pa(s) = / " (pa(s — 2) d

S
:/ e %e=(572) gy
0

=se °,

for s > 0; obuviously pa(s) =0 for s < 0.
Similarly, we have

Pn(8) = p1 * pp_1(s)

= /OO p1(2)pn-1(s — 2) dz.

— 00

Exercise 2.1. Using the terminology of the last example, using proof by induction
to show that

gn—l s .
(2.9) pn(s) — {(nl)!e Zfs > 07

0 otherwise.

3. CHARACTERISTIC FUNCTIONS
It’s extremely tedious computing convolution integrals. Fortunately, there is an

extremely clever alternative due to Fourier.

Definition 3.1. Let X be any random variable for which the expectation E(|X|) of
its absolute value is finite. Then the characteristic function, of CF, of X is defined

by
bx(z) = Be*X.
If you have encountered Fourier transforms previously, then I hope you’ve noticed

that, for a continuous random variable X with PDF p(s), the characteristic function
¢x (z) is simply the Fourier transform of the PDF, that is,

ox(z) = /jo e p(s) ds, z €R.

Example 3.1. Suppose X ~ U[—1/2,1/2], i.e. it’s uniformly distributed on the
interval [—1/2,1/2]. Thus its PDF is given by

p(s) = {1 if—1/2<s<1,

0 otherwise.
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Then

qu(Z) — EeizX

/2
/ elZS ds
—1/2

1/2 1/2
= / cos(zs)ds + z/ sin(zs) ds

—1/2 —1/2

1/2
= 2/ cos(zs) ds
0

_ sin(z/2)
2/2

The key property of characteristic functions is the Convolution Theorem:

Theorem 3.1 (Convolution Theorem). Let X1, X2 be independent continuous ran-
dom variables with CFs ¢x,(z) and ¢x,(z), respectively. Then the CF ¢x,+x,(2)
corresponding to the sum of random variables X1 + X5 satisfies

¢X1+X2 (Z) = ¢X1 (2)¢X2 (Z)
Proof. We have

Bx1 4 x,(2) = Ee#1HX2)
—_ Eeile]EeizXQ

= ¢x, (2)x, (2).
O

Example 3.2. Let X1, Xs,..., X, be exponentially distributed random variables,
their common PDF being given by

(31) o) = {6_5 -

0 otherwise.

Their common CF is then

sz

%)

/ zzs e~ ds
0
%)

/ 1+’LZ
0

é( 1+iz)
- [ -1 —I— 12 }

—1+zz
1

1—iz’
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The sum S, = X1 + Xo + - -- + X,, therefore has CF

s, (2) = dx, 44 x, (%)
= (6(2)"
=(1—iz)™"
Lemma 3.2. Ifc€R and Z ~ N(0,1), then
(3.2) EetZ = /2,

Proof.

Theorem 3.3. Lemma 3.2 is valid for any complex number c € R.

Not examinable. The function F(c) = Eexp(cZ) is well-defined and analytic for all
c € C, and F(c) = exp(c?/2), for all ¢ € R, by Lemma 3.2. Therefore the identity
theorem for analytic functions implies that the theorem is true. (I

Corollary 3.4. If W ~ N(0,1), then
ow(z) = e /2,
Proof. Setting ¢ = iz is Lemma 3.2, we obtain
ow(2) = Be=W
— olin)?/2

=e /2,

Corollary 3.5. If V ~ N(u,0?), then
ov(z) = 6@'#270222/2'
Proof. We write V = u+ oW, where W ~ N(0,1). Then
by (2) = Eei*(ntoW)
— piznizoW
_ eiz;tfa2z2/27

on setting ¢ = 1z0 in Lemma 3.2. (]
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Corollary 3.6. If Zj ~ N(ug,0%), for k =1,2,...,n, are independent Gaussian
random variables, then their sum is also Gaussian. Specifically, their sum S, =
Z1+ -+ Z, satisfies

Sp o~ N1+ -+ pn, 07 + -+ 07).

Proof. The CF ¢ (z) is given by

du(z) = M2 1<k <,
Hence the CF of S, is given by
¢s, (2) = ¢1(2)p2(2) - - Pn(2)

— pilbatetpn) =322 (0 ++on)

O

Example 3.3. If W ~ N(0,1), then we have already computed the PDF for x? =
W?2. However, it’s easy to calculate its CF, as follows. We have

62 (2) = B

:/ eizs2(2ﬂ_)—1/2e—sz/2d8

— 00

— (2m) 112 /Oo (~1/2)(~1-2i2) g

— 00

= (1—2iz)" /2
Therefore the CF of X2 is given by
by (2) = (1 — 2iz) /2,

We have see that the CF of a sum of independent random variables is simply
the product of their CFs. It’s easy to calculate the CF of ¢X, for any ¢ € R.
Specifically, we have

bex (2) = Ee'*X = ¢x(cz).
Corollary 3.7. Let X1, Xo,..., X, be continuous, independent, identically dis-
tributed CF's with common CF ¢(z). Then their average

Xyt + X,
- n

An
has CF
$a,(z) = o(z/n)".
Proof. Writing A,, = S,,/n, we obtain
¢4, (2) = ¢s,/n(2) = ¢s,(2/n) = ¢(z/n)".

It’s often useful to consider a slightly different average:
— X4+ X,
(3.3) A, = At An
vn

the idea here is that this normalization ensures that var A,, = var X, for all k =
1,2,...,n. I shall refer to (3.3) as the variance-normalized average.
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Corollary 3.8. Let X1, Xo,..., X, be continuous, independent, identically dis-
tributed CF's with common CF ¢(z). Then

—~ Xi1+--+ X,

A=
has CF

o5 (2) = ¢(z/vVn)".

Proof. Writing Z:L = S, /n, we obtain

012 (2) = b5, ym(2) = s, (2/Vn) = d(z/Vn)".
]

Exercise 3.1. Let X, ~ N(0,1), for all k. Prove that A, is also N(0,1), for all
n.

We're now very close to one form of the central limit theorem.

Theorem 3.9 (The Central Limit Theorem for CFs). Let X1, Xo,... be indepen-
dent, identically distributed random variables satisfying EX, = 0 and E(X,f) =02,

for all positive integer k. Then the CFs of the variance-normalized averages ;1; of
(3.3) satisfy

(3.4) lim ¢ (2) = e * /2.

n—oo

In other words, the CFs of these variance-normalized averages converges pointwise
to the CF for the normalized Gaussian.

Exercise 3.2. A key assumption of the CLT is that the random variables must
have finite variance. The CLT fails without this condition and, unsurprisingly, the
counterexample is the Cauchy distribution. In this case, it can be shown that the
CF corresponding to the PDF p(s) = 1/(w(1 + s?)), for s € R, is given by

P(z) = eI, zeR.
Prove that ¢4, (z) = ¢(z), for all positive integer n.
How do we recover the PDF from the CF?

Theorem 3.10. Suppose the continuous PDF p(s) has an absolutely integrable
CF ¢(z), that is,

| i)z < .

oo

Then

(3.5) p(x) 1./w¢uw%“da

:EOC

for all x € R.
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4. THE x? DISTRIBUTION

Theorem 4.1. Let Z € R™ be a normalized Gaussian random vector, that is, its

components are independent N (0,1) random variables. Then the probability density

function p,(t) for the random variable ||Z||*> = Z? + Z3 + --- + Z2 is given by
o—t/2¢(n/2)-1 o—t/2¢(n/2)~1

4.1 t) = = t>0.
( ) pn( ) ﬁ)oo e_u/Qu(n/z)_l du 2”/2F(n/2) 5 f07" =

[Of course, p,(t) = 0 for t < 0, since the random variable ||Z||?* is always non-
negative.] We say that ||Z||* has the x2 distribution.

Proof. Let us define the annulus
Ann(ry,re) ={s e R" : ry < |s|| <72} .
We first observe that

P(a<|Z]?<b) = / (2m) /2618172 g
Ann(y/a,Vb)

=P (Z € Ann(v/a, \/B)>
\/E 2
= / Cre™" /2=t dy
va

b
:/ Dye~ 2 /2=1 gt

where I have used spherical polar coordinates to obtain the second line, and the
change of variable ¢ = r? to obtain the third. To find the constant D,,, we set a = 0
and b = oo, in which case we find

L=PO<|ZP) =Dy [ e 2l d,
0

or
1

fooo e—u/2q(n/2)=1 dy,°

If we set v = u/2 in the last integral, then we find

D, =

Dt = 2/ eV (20)"/AD 1 dy = 272D (n/2).
0
0

Karl Pearson (1857-1936) introduced the chi-squared test and the name for it
in ”On the Criterion that a Given System of Deviations from the Probable in the
Case of a Correlated System of Variables is such that it can be Reasonably Sup-
posed to have Arisen from Random Sampling,” Philosophical Magazine, 50, (1900),
157-175. Pearson used x to denote ||Z]||, and such is the inertia of human habit
that the notation is preserved: we still say that ||Z|| has the x2 distribution. Inci-
dentally, Pearson founded the world’s first university department wholly dedicated
to statistics at UCL, a short walk from our lecture room.

The modern view that the x? distribution is one of a family of distributions
linked by the Gamma function was pioneered by another UCL statistician, R. A.
Fisher.
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5. AN INTRODUCTION TO EXTREME VALUE THEORY

The theme of this section is estimating the probability that a random variable
can be very far from its mean (an extreme value).

Theorem 5.1 (Chebyshev’s Inequality). Let X be any random variable, with mean
1 and variance o®. Then, for any positive J,

0,2

P(|X_H‘Zé)§57-

Proof. We have
o? =E(X — p)* > 8°P(|1X — p| > 6).
O

Chebyshev’s inequality leads immediately to the Weak Law of Large Numbers:

Theorem 5.2. Let X1, X5, ... be a sequence of independent random variables for
which EX), = 0 and EX}? = 02, for all k > 1. Let

Xi+Xo+--+ X,
- .

A, =

Then, for any § > 0,
2

g

nd?’

Proof. We have EA,, = 0 and EA2 = no?/n? = 0?/n. Hence, by Chebyshev’s
inequality,

P(lAn] = 6) <

P >0) < —.
(| n‘ = 6) — n52
(]

In particular, lim, ., P(|A,| > §) = 0, for any § > 0. The assigned work last
year and this year provides further examples of extreme value theory.

6. INTERESTING PROBLEMS

6.1. The Birthday Problem. This is a traditional probabilistic problem which I
shall treat in further detail than is common. Given n people, whose birthdays are
uniformly distributed over the 365 days of the year (ignoring leap years), find

(6.1) P (at least 2 people share a birthday) .

It’s easier to observe that

(6.2) P (at least 2 people share a birthday) = 1 — py,

where

(6.3) pn = P (all n people have different birthdays) .
Now

365-364-363--- (365 —n+1)
N 365"

Pn
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In a sense, we have now finished the problem, since we can easily evaluate (6.4)

for any n. However, displaying the values of ps, ps, ..., p100, we see that the graph

strongly resembles a Gaussian. Moreover, we can see that pay ~ 1/2; to be more

precise, pog = 0.51 and p3s = 0.99. Can we understand these observations?
Taking logarithms in (6.4), we obtain

n—1
k
. 1 = n{l—-—].
(6.5) np, kz_:ln< 365)

Now it can be shown that

22 23 2t

6.6 In(1 =r— —+—=——4--

(6.6) ntn)=o- S+ S Ty

and the series is convergent for || < 1. Thus, for > 0, we have
2?2 2 ot

) n(l-gz)=—-2—————" —...<g.

(6.7) n(l—x) z= 3 1 <z

In other words, for small positive x, we have both the approximation In(1—z) ~ —x
and the inequality in(1 —z) < —z. Applying these observations to (6.5), we obtain
the approximation

=k n(n—1
(6.8) Inp, ~ — 2 365 = —%
and the bound

n(n—1

(6.9) Inp, < —%.
Taking exponentials, we have
(6.10) Py A& e —1)/730
and
(6.11) Py < e 1)/730,
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