Data Mining Examination Solutions

Brad Baxter

January 13, 2006

1. (i). The matrices $U \in \mathbb{R}^{m \times m}$ and $V \in \mathbb{R}^{n \times n}$ are orthogonal matrices, whilst $S \in \mathbb{R}^{m \times n}$ is a diagonal matrix whose diagonal elements satisfy $s_{1} \geq s_{2} \geq \cdots \geq s_{n} \geq 0$. These diagonal elements of S are called the singular values of A.

4 pts

(ii). Pre- and post-multiplying by orthogonal matrices leaves the Euclidean norm of vectors invariant. Thus

$$
\|A \mathbf{x}-\mathbf{y}\|^{2}=\left\|U S V^{T} \mathbf{x}-\mathbf{y}\right\|^{2}=\left\|S \mathbf{a}-U^{T} y\right\|^{2}=\|S \mathbf{a}-\mathbf{b}\|^{2}
$$

4 pts
(iii). Using the previous part of the question,

$$
\|A \mathbf{x}-\mathbf{y}\|^{2}=\sum_{k=1}^{n}\left(s_{k} a_{k}-b_{k}\right)^{2}+\sum_{\ell>n} b_{\ell}^{2} \geq \sum_{\ell>n} b_{\ell}^{2}
$$

If every singular value of A is positive, then we can attain this lower bound by setting $a_{k}=s_{k}^{-1} b_{k}$, for $1 \leq k \leq n$. Thus

$$
\mathbf{a}=T \mathbf{b},
$$

or

$$
V^{T} \mathbf{x}^{*}=T U^{T} \mathbf{y}
$$

i.e.

$$
\mathbf{x}^{*}=V T U^{T} \mathbf{y}
$$

4 pts

(iv). We need to show that

$$
V T U^{T}=\left(A^{T} A\right)^{-1} A^{T},
$$

and I would be tempted to reward any student who remembered that this is called the Moore-Penrose pseudo-inverse of A. Now

$$
\begin{aligned}
\left(A^{T} A\right)^{-1} A^{T} & =\left(\left(U S V^{T}\right)^{T} U S V^{T}\right)^{-1}\left(U S V^{T}\right)^{T} \\
& =\left(V S^{T} U^{T} U S V^{T}\right)^{-1} V S^{T} U^{T} \\
& =\left(V S^{T} S V^{T}\right)^{-1} V S^{T} U^{T} \\
& =V\left(S^{T} S\right)^{-1} V^{T} V S^{T} U^{T} \\
& =V\left(S^{T} S\right)^{-1} S^{T} U^{T} .
\end{aligned}
$$

But $\left(S^{T} S\right)^{-1}$ is the inverse of the $n \times n$ diagonal matrix whose diagonal elements are $s_{1}^{-2}, \ldots, s_{n}^{-2}$. Hence

$$
\left(S^{T} S\right)^{-1} S^{T}=T
$$

as required.
8 pts
2. Let $\mathbf{x}_{1}, \ldots, \mathbf{x}_{n}$ be points in \mathbb{R}^{d}. The k-means algorithm is a simple method for iteratively updating a set of k cluster centres $\mathbf{m}_{1}, \ldots, \mathbf{m}_{k}$. At the start of the algorithm, these points can be any vectors.
Now the k cluster centres partition \mathbb{R}^{d} into k clusters: we let the i th cluster C_{i} be those points in \mathbb{R}^{d} for which \mathbf{m}_{i} is the closest cluster centre, that is

$$
C_{i}=\left\{\mathbf{x} \in \mathbb{R}^{d}:\left\|\mathbf{x}-\mathbf{m}_{i}\right\|=\min _{1 \leq \ell \leq k}\left\|\mathbf{x}-\mathbf{m}_{\ell}\right\|\right\}, \quad 1 \leq i \leq n,
$$

and students are not expected to deal with ambiguous cases for which some points lie in more than one cluster. We then replace each cluster centre \mathbf{m}_{i} by the centroid of the subset of points in $\mathbf{x}_{1}, \ldots, \mathbf{x}_{n}$ which are contained in the i th-cluster (the centroid of a finite set of points $\mathbf{v}_{1}, \ldots, \mathbf{v}_{j}$ is simply the sample average $\left.\left(\mathbf{v}_{1}+\cdots+\mathbf{v}_{j}\right) / j\right)$. The new cluster centres then define corresponding new centres, and we then repeat the procedure until the cluster centres converge.
(i). Here $(-R, \pm 1)$ lie in the left cluster, whilst $(R, \pm 1)$ lie in the right cluster. Hence the new centroids are $(-R, 0)$ and $(R, 0)$, and no further change occurs.
(ii). Here $(\pm R, 1)$ lie in the upper cluster, while $(\pm R,-1)$ lie in the lower cluster. Hence the new centroids are $(0,-1)$ and $(0,1)$, and no further change occurs.
(iii). If $(R, \pm 1)$ lie in the same cluster, that is, u^{\perp} separates $(R, \pm 1)$ and $(-R, \pm 1)$, then the new centroids are $(\pm R, 0)$, and no further progress occurs.
However, if $(\pm R, 1)$ lie in the same cluster, that is, u^{\perp} separates $(\pm R, 1)$ and $(\pm R,-1)$, then the new centroids are $(0, \pm 1)$, and no further progress occurs.
3. (i). We have

$$
\begin{aligned}
\Gamma(n+1 / 2) & =\int_{0}^{\infty} e^{-t} t^{n-1 / 2} d t \\
& =\int_{0}^{\infty} e^{-a^{2} s} a^{2 n-1} s^{n-1 / 2} a^{2} d s \\
& =a^{2 n+1} \int_{0}^{\infty} e^{-a^{2} s} s^{n-1 / 2} d s
\end{aligned}
$$

(ii). Setting $a^{2}=r^{2}+c^{2}$ in the previous integral, we obtain

$$
\begin{aligned}
\left(r^{2}+c^{2}\right)^{-(2 n+1) / 2} & =\int_{0}^{\infty} e^{-\left(r^{2}+c^{2}\right) s} s^{n-1 / 2} d s \\
& =\int_{0}^{\infty} e^{-r^{2} s} e^{-c^{2} s} s^{n-1 / 2} d s
\end{aligned}
$$

(iii). Using the integral derived in the second part of this question, we find

$$
\sum_{j=1}^{n} \sum_{k=1}^{n} v_{k} v_{k}\left(\left\|\mathbf{x}_{j}-\mathbf{x}_{k}\right\|^{2}+c^{2}\right)^{-(2 n+1) / 2}=\int_{0}^{\infty}\left(\sum_{j=1}^{n} \sum_{k=1}^{n} v_{k} v_{k} \exp \left(-s\left\|\mathbf{x}_{j}-\mathbf{x}_{k}\right\|^{2}\right)\right) w(s) d s
$$

The integrand is strictly positive for all $s>0$ if the points $\mathbf{x}_{1}, \ldots, \mathbf{x}_{n}$ are distinct, because the Gaussian is a strictly positive definite function (given in the question). Thus we have shown that the interpolation matrix for this radial basis function is also strictly positive definite.

$$
\|A\|_{f}=\left(\sum_{j=1}^{m} \sum_{k=1}^{n} A_{j k}^{2}\right)^{1 / 2}
$$

2 pts
If $\mathbf{a}_{1}, \ldots, \mathbf{a}_{n}$ are the columns of A, then

$$
\begin{aligned}
\|U A\|_{F}^{2} & =\left\|U \mathbf{a}_{1}\right\|^{2}+\cdots+\left\|U \mathbf{a}_{n}\right\|^{2} \\
& =\left\|\mathbf{a}_{1}\right\|^{2}+\cdots+\left\|\mathbf{a}_{n}\right\|^{2} \\
& =\|A\|_{F}^{2} .
\end{aligned}
$$

Thus pre-multiplication by an orthogonal matrix leaves the Frobenius norm unchanged.
For post-multiplication, we use the fact that $\|A\|_{F}=\left\|A^{T}\right\|_{F}$, so that

$$
\|A V\|_{F}=\left\|(A V)^{T}\right\|_{F}=\left\|V^{T} A^{T}\right\|_{F}=\left\|A^{T}\right\|_{F}=\|A\|_{F}
$$

(i). If $A=U S V^{T}$ is the SVD of A, then $Q_{A}=U V^{T}$.
(ii). If $B^{T} A=U S V^{T}$ is the SVD of $B^{T} A$, then $\hat{Q}=U V^{T}$.

4 pts
(iii). If $A=U S V^{T}$ is the SVD of A, then we let

$$
S_{r}=\operatorname{diag}\left\{s_{1}, \ldots, s_{r}, 0, \ldots, 0\right\} \in \mathbb{R}^{m \times n}
$$

and define $A_{r}=U S_{r} V^{T}$.

