Data Mining Examination Solutions

Brad Baxter

January 13, 2006

1. (i). The matrices $U \in \mathbb{R}^{m \times m}$ and $V \in \mathbb{R}^{n \times n}$ are orthogonal matrices, whilst $S \in \mathbb{R}^{m \times n}$ is a diagonal matrix whose diagonal elements satisfy $s_1 \ge s_2 \ge \cdots \ge s_n \ge 0$. These diagonal elements of S are called the singular values of A.

4 pts

(ii). Pre- and post-multiplying by orthogonal matrices leaves the Euclidean norm of vectors invariant. Thus

$$||A\mathbf{x} - \mathbf{y}||^2 = ||USV^T\mathbf{x} - \mathbf{y}||^2 = ||S\mathbf{a} - U^Ty||^2 = ||S\mathbf{a} - \mathbf{b}||^2.$$

4 pts

(iii). Using the previous part of the question,

$$||A\mathbf{x} - \mathbf{y}||^2 = \sum_{k=1}^n (s_k a_k - b_k)^2 + \sum_{\ell > n} b_\ell^2 \ge \sum_{\ell > n} b_\ell^2.$$

If every singular value of A is positive, then we can attain this lower bound by setting $a_k = s_k^{-1}b_k$, for $1 \le k \le n$. Thus

$$\mathbf{a} = T\mathbf{b},$$

or

 $V^T \mathbf{x}^* = T U^T \mathbf{y},$

i.e.

$$\mathbf{x}^* = VTU^T \mathbf{y}.$$

4 pts

(iv). We need to show that

$$VTU^T = (A^T A)^{-1} A^T,$$

and I would be tempted to reward any student who remembered that this is called the Moore–Penrose pseudo-inverse of A. Now

$$(A^{T}A)^{-1}A^{T} = ((USV^{T})^{T}USV^{T})^{-1}(USV^{T})^{T}$$
$$= (VS^{T}U^{T}USV^{T})^{-1}VS^{T}U^{T}$$
$$= (VS^{T}SV^{T})^{-1}VS^{T}U^{T}$$
$$= V(S^{T}S)^{-1}V^{T}VS^{T}U^{T}$$
$$= V(S^{T}S)^{-1}S^{T}U^{T}.$$

But $(S^TS)^{-1}$ is the inverse of the $n \times n$ diagonal matrix whose diagonal elements are $s_1^{-2}, \ldots, s_n^{-2}$. Hence

$$(S^T S)^{-1} S^T = T,$$

as required.

2. Let $\mathbf{x}_1, \ldots, \mathbf{x}_n$ be points in \mathbb{R}^d . The k-means algorithm is a simple method for iteratively updating a set of k cluster centres $\mathbf{m}_1, \ldots, \mathbf{m}_k$. At the start of the algorithm, these points can be any vectors.

Now the k cluster centres partition \mathbb{R}^d into k clusters: we let the *i*th cluster C_i be those points in \mathbb{R}^d for which \mathbf{m}_i is the closest cluster centre, that is

$$C_i = \{ \mathbf{x} \in \mathbb{R}^d : \|\mathbf{x} - \mathbf{m}_i\| = \min_{1 \le \ell \le k} \|\mathbf{x} - \mathbf{m}_\ell\| \}, \qquad 1 \le i \le n,$$

and students are not expected to deal with ambiguous cases for which some points lie in more than one cluster. We then replace each cluster centre \mathbf{m}_i by the centroid of the subset of points in $\mathbf{x}_1, \ldots, \mathbf{x}_n$ which are contained in the *i*th-cluster (the centroid of a finite set of points $\mathbf{v}_1, \ldots, \mathbf{v}_j$ is simply the sample average $(\mathbf{v}_1 + \cdots + \mathbf{v}_j)/j$). The new cluster centres then define corresponding new centres, and we then repeat the procedure until the cluster centres converge.

8 pts

(i). Here $(-R, \pm 1)$ lie in the left cluster, whilst $(R, \pm 1)$ lie in the right cluster. Hence the new centroids are (-R, 0) and (R, 0), and no further change occurs.

4pts

(ii). Here $(\pm R, 1)$ lie in the upper cluster, while $(\pm R, -1)$ lie in the lower cluster. Hence the new centroids are (0, -1) and (0, 1), and no further change occurs.

4pts

(iii). If (R,±1) lie in the same cluster, that is, u[⊥] separates (R,±1) and (-R,±1), then the new centroids are (±R,0), and no further progress occurs.
However, if (±R,1) lie in the same cluster, that is, u[⊥] separates (±R,1) and (±R,-1), then the new centroids are (0,±1), and no further progress occurs.

3. (i). We have

$$\Gamma(n+1/2) = \int_0^\infty e^{-t} t^{n-1/2} dt$$

= $\int_0^\infty e^{-a^2 s} a^{2n-1} s^{n-1/2} a^2 ds$
= $a^{2n+1} \int_0^\infty e^{-a^2 s} s^{n-1/2} ds.$

 $6 \ \mathrm{pts}$

(ii). Setting $a^2 = r^2 + c^2$ in the previous integral, we obtain

$$(r^{2} + c^{2})^{-(2n+1)/2} = \int_{0}^{\infty} e^{-(r^{2} + c^{2})s} s^{n-1/2} ds$$
$$= \int_{0}^{\infty} e^{-r^{2}s} e^{-c^{2}s} s^{n-1/2} ds.$$

6 pts

(iii). Using the integral derived in the second part of this question, we find

$$\sum_{j=1}^{n} \sum_{k=1}^{n} v_k v_k (\|\mathbf{x}_j - \mathbf{x}_k\|^2 + c^2)^{-(2n+1)/2} = \int_0^\infty \left(\sum_{j=1}^{n} \sum_{k=1}^{n} v_k v_k \exp(-s\|\mathbf{x}_j - \mathbf{x}_k\|^2) \right) w(s) \, ds$$

The integrand is strictly positive for all s > 0 if the points $\mathbf{x}_1, \ldots, \mathbf{x}_n$ are distinct, because the Gaussian is a strictly positive definite function (given in the question). Thus we have shown that the interpolation matrix for this radial basis function is also strictly positive definite.

4.

$$||A||_f = \left(\sum_{j=1}^m \sum_{k=1}^n A_{jk}^2\right)^{1/2}.$$

2	pts

If $\mathbf{a}_1, \ldots, \mathbf{a}_n$ are the columns of A, then

$$||UA||_F^2 = ||U\mathbf{a}_1||^2 + \dots + ||U\mathbf{a}_n||^2$$

= $||\mathbf{a}_1||^2 + \dots + ||\mathbf{a}_n||^2$
= $||A||_F^2.$

Thus pre-multiplication by an orthogonal matrix leaves the Frobenius norm unchanged. For post-multiplication, we use the fact that $||A||_F = ||A^T||_F$, so that

$$||AV||_F = ||(AV)^T||_F = ||V^T A^T||_F = ||A^T||_F = ||A||_F.$$

6 pts

(i). If
$$A = USV^T$$
 is the SVD of A, then $Q_A = UV^T$.

(ii). If $B^T A = USV^T$ is the SVD of $B^T A$, then $\hat{Q} = UV^T$.

4 pts

4 pts

(iii). If $A = USV^T$ is the SVD of A, then we let

$$S_r = \operatorname{diag} \{s_1, \dots, s_r, 0, \dots, 0\} \in \mathbb{R}^{m \times n}$$

and define $A_r = U S_r V^T$.