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1. (i). The matrices U ∈ R
m×m and V ∈ R

n×n are orthogonal matrices, whilst S ∈ R
m×n

is a diagonal matrix whose diagonal elements satisfy s1 ≥ s2 ≥ · · · ≥ sn ≥ 0. These
diagonal elements of S are called the singular values of A.

4 pts

(ii). Pre- and post-multiplying by orthogonal matrices leaves the Euclidean norm of
vectors invariant. Thus

‖Ax − y‖2 = ‖USV Tx − y‖2 = ‖Sa − UT y‖2 = ‖Sa − b‖2.

4 pts

(iii). Using the previous part of the question,

‖Ax − y‖2 =
n
∑

k=1

(skak − bk)
2 +

∑

`>n

b2
` ≥

∑

`>n

b2
` .

If every singular value of A is positive, then we can attain this lower bound by
setting ak = s−1

k bk, for 1 ≤ k ≤ n. Thus

a = Tb,

or
V Tx∗ = TUTy,

i.e.
x∗ = V TUTy.

4 pts

(iv). We need to show that
V TUT = (AT A)−1AT ,

and I would be tempted to reward any student who remembered that this is called
the Moore–Penrose pseudo-inverse of A. Now

(AT A)−1AT =
(

(USV T )T USV T
)−1

(USV T )T

=
(

V ST UT USV T
)−1

V ST UT

=
(

V ST SV T
)−1

V ST UT

= V (ST S)−1V T V ST UT

= V (ST S)−1ST UT .

But (ST S)−1 is the inverse of the n × n diagonal matrix whose diagonal elements
are s−2

1 , . . . , s−2
n . Hence

(ST S)−1ST = T,

as required.

8 pts
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2. Let x1, . . . ,xn be points in R
d. The k-means algorithm is a simple method for iteratively

updating a set of k cluster centres m1, . . . ,mk. At the start of the algorithm, these points
can be any vectors.

Now the k cluster centres partition R
d into k clusters: we let the ith cluster Ci be those

points in R
d for which mi is the closest cluster centre, that is

Ci = {x ∈ R
d : ‖x − mi‖ = min

1≤`≤k
‖x − m`‖}, 1 ≤ i ≤ n,

and students are not expected to deal with ambiguous cases for which some points lie
in more than one cluster. We then replace each cluster centre mi by the centroid of the
subset of points in x1, . . . ,xn which are contained in the ith-cluster (the centroid of a
finite set of points v1, . . . ,vj is simply the sample average (v1 + · · · + vj)/j). The new
cluster centres then define corresponding new centres, and we then repeat the procedure
until the cluster centres converge.

8 pts

(i). Here (−R,±1) lie in the left cluster, whilst (R,±1) lie in the right cluster. Hence
the new centroids are (−R, 0) and (R, 0), and no further change occurs.

4pts

(ii). Here (±R, 1) lie in the upper cluster, while (±R,−1) lie in the lower cluster. Hence
the new centroids are (0,−1) and (0, 1), and no further change occurs.

4pts

(iii). If (R,±1) lie in the same cluster, that is, u⊥ separates (R,±1) and (−R,±1), then
the new centroids are (±R, 0), and no further progress occurs.

However, if (±R, 1) lie in the same cluster, that is, u⊥ separates (±R, 1) and
(±R,−1), then the new centroids are (0,±1), and no further progress occurs.

4 pts
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3. (i). We have

Γ(n + 1/2) =

∫ ∞

0

e−ttn−1/2 dt

=

∫ ∞

0

e−a2sa2n−1sn−1/2a2 ds

= a2n+1

∫ ∞

0

e−a2ssn−1/2 ds.

6 pts

(ii). Setting a2 = r2 + c2 in the previous integral, we obtain

(r2 + c2)−(2n+1)/2 =

∫ ∞

0

e−(r2+c2)ssn−1/2 ds

=

∫ ∞

0

e−r2se−c2ssn−1/2 ds.

6 pts

(iii). Using the integral derived in the second part of this question, we find

n
∑

j=1

n
∑

k=1

vkvk(‖xj−xk‖
2+c2)−(2n+1)/2 =

∫ ∞

0

(

n
∑

j=1

n
∑

k=1

vkvk exp(−s‖xj − xk‖
2)

)

w(s) ds.

The integrand is strictly positive for all s > 0 if the points x1, . . . ,xn are distinct,
because the Gaussian is a strictly positive definite function (given in the question).
Thus we have shown that the interpolation matrix for this radial basis function is
also strictly positive definite.

8 pts
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4.

‖A‖f =

(

m
∑

j=1

n
∑

k=1

A2
jk

)1/2

.

2 pts

If a1, . . . , an are the columns of A, then

‖UA‖2
F = ‖Ua1‖

2 + · · · + ‖Uan‖
2

= ‖a1‖
2 + · · · + ‖an‖

2

= ‖A‖2
F .

Thus pre-multiplication by an orthogonal matrix leaves the Frobenius norm unchanged.
For post-multiplication, we use the fact that ‖A‖F = ‖AT‖F , so that

‖AV ‖F = ‖(AV )T‖F = ‖V T AT‖F = ‖AT‖F = ‖A‖F .

6 pts

(i). If A = USV T is the SVD of A, then QA = UV T .

4 pts

(ii). If BT A = USV T is the SVD of BT A, then Q̂ = UV T .

4 pts

(iii). If A = USV T is the SVD of A, then we let

Sr = diag {s1, . . . , sr, 0, . . . , 0} ∈ R
m×n

and define Ar = USrV
T .

4 pts
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