Data Mining Examination ANSWERS

Brad Baxter

200504062045

1. (i). The SVD is the factorization $A = USV^T$, where $U \in O(m)$, $V \in O(n)$ and $S \in \mathbb{R}^{m \times n}$ is a diagonal matrix whose diagonal elements satisfy

$$s_1 > s_2 > \cdots > s_n$$
.

The diagonal elements of S are called the singular values of A.

5 pts

(ii). Given any pair of matrices $A, B \in \mathbb{R}^{m \times n}$, their Frobenius inner product is given by

$$\langle A, B \rangle_F = \sum_{i=1}^m \sum_{j=1}^n A_{ij} B_{ij}.$$

The Frobenius norm is defined by

$$||A||_F = \sqrt{\langle A, A \rangle_F}.$$

4 pts

(iii). If $A = (\mathbf{a}_1 \ \mathbf{a}_2 \ \cdots \ \mathbf{a}_n)$, then

$$||QA||_F^2 = \sum_{k=1}^n ||Q\mathbf{a}_k||_2^2 = \sum_{k=1}^n ||\mathbf{a}_k||_2^2 = ||A||_F^2,$$

because an orthogonal matrix leaves the Euclidean norm of a vector unchanged.

Now

$$||AR||_F = ||(AR)^T||_F = ||R^T A^T||_F = ||A^T||_F = ||A||_F,$$

because $R \in O(n)$ if and only if $R^T \in O(n)$, and the Frobenius norm is invariant under the transpose operation, which is obvious from its definition.

4 pts

(iv). We have

$$||A - Q||_F^2 = ||USV^T - Q||_F^2 = ||U^T (USV^T - Q) V||_F^2 = ||S - U^T QV||_F^2,$$

since the Frobenius norm is invariant under pre- and post-multiplication by orthogonal matrices. Thus

$$||A - Q||_F^2 = ||S - W||^2 = \langle S - W, S - W \rangle_F = ||S||_F^2 - 2\langle S, W \rangle_F + ||W||_F^2.$$

Now every column of an orthogonal matrix is a unit vector, which implies $||W||_F^2 = n$. Further, since S is a diagonal matrix, $\langle S, W \rangle_F = s_1 W_{11} + \cdots + s_n W_{nn}$. Therefore

$$||A - Q||_F^2 = ||S||_F^2 - 2\sum_{k=1}^n s_k W_{kk} + n = \sum_{k=1}^n s_k^2 - 2s_k W_{kk} + 1.$$

(v). We have

$$||A - Q||_F^2 = \sum_{k=1}^n s_k^2 + 1 - 2\sum_{k=1}^n s_k W_{kk}.$$

Thus minimizing $||A-Q||_F$ is equivalent to maximizing $\sum_{k=1}^n s_k W_{kk}$, for $W \in O(n)$. Now every column of an orthogonal matrix is a unit vector, so its diagonal elements satisfy $-1 \le W_{kk} \le 1$. Hence

$$\sum_{k=1}^{n} s_k W_{kk} \le \sum_{k=1}^{n} s_k,$$

with equality if $U^TQV = W = I$, or $Q = UV^T$.

The Procrustes problems arises in many areas, but one possible application is in missile guidance systems, where A is a perturbed orthogonal matrix, generated by hardware, which specifies the orientation of the missile.

2. (i). Let $\mathbf{x}_1, \dots, \mathbf{x}_n$ be points in \mathbb{R}^d . The k-means algorithm is a simple method for iteratively updating a set of k cluster centres $\mathbf{m}_1, \dots, \mathbf{m}_k$. At the start of the algorithm, these points can be any vectors.

Now the k cluster centres partition \mathbb{R}^d into k clusters: we let the ith cluster C_i be those points in \mathbb{R}^d for which \mathbf{m}_i is the closest cluster centre, that is

$$C_i = \{ \mathbf{x} \in \mathbb{R}^d : \|\mathbf{x} - \mathbf{m}_i\| = \min_{1 \le \ell \le k} \|\mathbf{x} - \mathbf{m}_\ell\| \}, \qquad 1 \le i \le n,$$

and students are not expected to deal with ambiguous cases for which some points lie in more than one cluster. We then replace each cluster centre \mathbf{m}_i by the centroid of the subset of points in $\mathbf{x}_1, \ldots, \mathbf{x}_n$ which are contained in the *i*th-cluster (the centroid of a finite set of points $\mathbf{v}_1, \ldots, \mathbf{v}_j$ is simply the sample average $(\mathbf{v}_1 + \cdots + \mathbf{v}_j)/j$). The new cluster centres then define corresponding new centres, and we then repeat the procedure until the cluster centres converge.

8 pts

(ii). We can summarize the links between websites by a single matrix containing 0s and 1s. Specifically, if there are N websites, then we let $W_{ij} = 1$ if site i links to site j and $i \neq j$, but otherwise set $W_{ij} = 0$. A

Page and Brin decided to rank these N websites by simulating user behaviour with a Markov model based on the connectivity matrix W. Specifically, we imagine vast numbers of users surfing the web in discrete time. At the kth step, the vector $\pi^{(k)}$ denotes the probability distribution for our users, that is, $\pi_i^{(k)}$ is the probability that a user is surfing site i at time k. We then let our users surf to new sites according to the transition matrix $P \in \mathbb{R}^{N \times N}$, where

$$P_{ij} = \frac{W_{ij}}{\sum_{k=1}^{N} W_{ik}}, \qquad 1 \le i, j \le N.$$
 (1)

Further, we shall assume that $\sum_{k=1}^{n} W_{ik} \neq 0$, for all i, to avoid a zero denominator in the definition of P (we are assuming that there are no *dangling pages*, to use Google's jargon).

Thus the new probability vector is given by

$$\pi^{(k+1)} = P^T \pi^{(k)} \tag{2}$$

and, over time, we hope to obtain an *invariant measure* (or stationary probability vector) π . Unfortunately this Markov chain turns out to be inadequate, because most sites tend to fall into isolated clusters and it inherits this stagnation. One way to avoid this is a *teleporting random walk*: we choose a parameter $c \in (0,1)$ and *either* use P with probability c, or move to one of the N websites with equal probability. Thus our new transition matrix is

$$M = cP + (1 - c)\frac{\mathbf{e}\mathbf{e}^T}{N},\tag{3}$$

where

$$\mathbf{e} = \begin{pmatrix} 1\\1\\\vdots\\1 \end{pmatrix}. \tag{4}$$

The new invariant measure vector π now satisfies $M^T\pi=\pi$.

Page and Brin decided to define the rank vector $\mathbf{r} = N\pi$. Thus the last equation becomes

$$(I - cP^T)\mathbf{r} = (1 - c)\mathbf{e}.$$
 (5)

This linear system contains N linear equations in N unknowns, but $N \approx 10^9$. Unfortunately, direct elimination requires $T(N) = CN^3$ seconds, where $T(10^3) \approx 1$ on basic modern computer. Hence elimination is completely unsuitable. Fortunately, a simple iterative algorithm called *Jacobi's method* is available. Specifically, given any $n \times n$ matrix A, Jacobi's method attempts to solve $A\mathbf{x} = \mathbf{y}$ as follows. We first choose any initial vector $\mathbf{x}^{(0)}$. Then, given $\mathbf{x}^{(k-1)}$, we define $\mathbf{x}^{(k)}$ by the equation

$$x_i^{(k)} = \frac{y_i}{A_{ii}} - \sum_{j=1, j \neq i}^n \left(\frac{A_{ij}}{A_{ii}}\right) x_j^{(k)}, \qquad 1 \le i \le n.$$
 (6)

Hence

$$\mathbf{r}^{(k)} = cP^T\mathbf{r}^{(k-1)} + (1-c)\mathbf{e}.\tag{7}$$

3. (i). We have $ds = r^2 dt$, so that

$$\Gamma(\alpha) = \int_0^\infty e^{-r^2 t} r^{-2+2\alpha} t^{-1+\alpha} r^2 dt$$
$$= r^{2\alpha} \int_0^\infty e^{-r^2 t} t^{-1+\alpha} dt,$$

and the formula now follows.

5 pts

(ii). If we set $r^2 = ||\mathbf{x}||_2^2 + c^2$, then we obtain

$$\begin{split} \frac{1}{(\|\mathbf{x}\|_{2}^{2}+c^{2})^{\alpha}} &= \frac{1}{\Gamma(\alpha)} \int_{0}^{\infty} e^{-(\|\mathbf{x}\|_{2}^{2}+c^{2})t} t^{-1+\alpha} \, dt \\ &= \frac{1}{\Gamma(\alpha)} \int_{0}^{\infty} e^{-\|\mathbf{x}\|_{2}^{2}t} e^{-c^{2}t} t^{-1+\alpha} \, dt. \end{split}$$

5 pts

(iii). Let $A \in \mathbb{R}^{n \times n}$ be the interpolation matrix whose elements are given by

$$A_{jk} = \frac{1}{(\|\mathbf{x}_j - \mathbf{x}_k\|_2^2 + c^2)^{\alpha}}, \quad 1 \le j, k \le n.$$

Then

$$\mathbf{a}^{T} A \mathbf{a} = \sum_{j=1}^{n} \sum_{k=1}^{n} a_{j} a_{k} A_{jk}$$

$$= \frac{1}{\Gamma(\alpha)} \int_{0}^{\infty} \left(\sum_{j=1}^{n} \sum_{k=1}^{n} a_{j} a_{k} e^{-\|\mathbf{x}_{j} - \mathbf{x}_{k}\|_{2}^{2} t} \right) e^{-c^{2} t} t^{-1+\alpha} dt$$

Now the double sum in the integrand is non-negative for all t > 0, and can be zero only if $\mathbf{a} = 0$. Since the remainder of the integrand is positive for t > 0, we deduce that A is a symmetric positive definite matrix. Hence it is invertible, and we can interpolate with this radial basis function.

4. (i). We have, recalling that $S_{pq} = s_p \delta_{pq}$,

$$A_{ij} = \sum_{p=1}^{m} U_{ip}(SV^{T})_{pj}$$

$$= \sum_{p=1}^{m} \sum_{q=1}^{n} U_{ip}S_{pq}V_{jq}$$

$$= \sum_{p=1}^{n} s_{p}U_{ip}V_{jp}$$

$$= \sum_{p=1}^{n} s_{p}\mathbf{u}_{p}(i)\mathbf{v}_{p}(j)$$

$$= \left(\sum_{p=1}^{n} s_{p}\mathbf{u}_{p}\mathbf{v}_{p}^{T}\right)_{ij},$$

as required.

6 pts

(ii). We have

$$A\mathbf{v}_{\ell} = \sum_{k=1}^{r} s_k \mathbf{u}_k \mathbf{v}_k^T \mathbf{v}_{\ell} = 0,$$

if $\ell > r$.

3 pts

(iii). We have

$$A\mathbf{x} = \sum_{k=1}^{r} s_k(\mathbf{v}_k^T \mathbf{x}) \mathbf{u}_k.$$

3 pts

(iv). The orthogonal invariance of the Frobenius norm implies

$$||A - A_r||_F^2 = ||S - S_r||_F^2 = s_{r+1}^2 + \dots + s_n^2,$$

where $S_r = \text{diag } \{s_1, \dots, s_r, 0, \dots, 0\}.$

3 pts

(v). We have $\|(A - A_r)\mathbf{x}\|_2 = \|(S - S_r)\mathbf{y}\|_2$, where $\mathbf{y} = V^T\mathbf{x}$ and $\|\mathbf{y}\|_2 = \|\mathbf{x}\|_2$. Now $\|(S - S_r)\mathbf{y}\|_2^2 = s_{r+1}^2y_{r+1}^2 + \dots + s_ny_n^2 \le s_{r+1}^2\|\mathbf{y}\|^2$,

because $s_1 \ge \cdots \ge s_n$. Hence $||(A - A_r)\mathbf{x}||_2 \le s_{r+1}||\mathbf{x}||_2$, as required.