Data Mining Coursework

Brad Baxter
20070228

Due Tuesday, April 24th, to the General Office (not to me). Attempt all questions.

1. Let A be any real $m \times n$ matrix, where $m \geq n$. Throughout this question $O(k)$ will denote the set of real $k \times k$ orthogonal matrices. You may assume standard properties of orthogonal matrices if clearly stated.
(i). Define the singular value decomposition.

3 pts
(ii). Define the Frobenius norm and inner product.

4 pts
(iii). Prove that $\|Q A\|_{F}=\|A R\|_{F}=\|A\|_{F}$, for any $A \in \mathbb{R}^{m \times n}, Q \in O(m)$ amd $R \in$ $O(n)$.

4 pts
(iv). Given any matrix $A \in \mathbb{R}^{n \times n}$, with singular value decomposition $A=U S V^{T}$, prove that

$$
\|A-Q\|_{F}^{2}=\|S-W\|_{F}^{2},
$$

for any $Q \in O(n)$, where $W=U^{T} Q V$. Hence show that

$$
\|A-Q\|_{F}^{2}=\sum_{k=1}^{n}\left(s_{k}^{2}-2 s_{k} W_{k k}+1\right)
$$

where s_{1}, \ldots, s_{n} are the singular values of A.
(v). Hence, or otherwise, prove that the non-linear least squares Procrustes problem

$$
\min _{Q \in O(n)}\|A-Q\|_{F},
$$

where $A \in \mathbb{R}^{n \times n}$, is solved by setting $Q=U V^{T}$. Briefly describe one application of this Procrustes problem.
2. (i). Describe the k-means clustering algorithm.
(ii). Describe the PageRank algorithm. You should describe a suitable iterative method for obtaining the PageRank stationary distribution, but need not prove convergence.

12 pts

Page 3
3. The Gamma function is defined by the integral relation

$$
\Gamma(\alpha)=\int_{0}^{\infty} e^{-s} s^{-1+\alpha} d s, \quad \text { for } \alpha>0
$$

(i). Use the substitution $s=r^{2} t$ to show that

$$
r^{-2 \alpha}=\frac{1}{\Gamma(\alpha)} \int_{0}^{\infty} e^{-r^{2} t} t^{-1+\alpha} d t
$$

for any positive r.
5 pts
(ii). Hence, or otherwise, prove that

$$
\frac{1}{\left(\|\mathbf{x}\|_{2}^{2}+c^{2}\right)^{\alpha}}=\frac{1}{\Gamma(\alpha)} \int_{0}^{\infty} e^{-\|\mathbf{x}\|_{2}^{2} t} e^{-c^{2} t} t^{-1+\alpha} d t
$$

for any $\mathbf{x} \in \mathbb{R}^{d}$ and positive constant c.
5 pts
(iii). Prove that the Radial Basis Function

$$
s(\mathbf{x})=\sum_{j=1}^{n} \frac{a_{j}}{\left(\left\|\mathbf{x}-\mathbf{x}_{j}\right\|_{2}^{2}+c^{2}\right)^{\alpha}}, \quad \mathbf{x} \in \mathbb{R}^{d},
$$

can be used to interpolate arbitrary observations $s\left(\mathbf{x}_{i}\right)=f_{i}$, for $1 \leq i \leq n$, when the points $\mathbf{x}_{1}, \mathbf{x}_{2}, \ldots, \mathbf{x}_{n} \in \mathbb{R}^{d}$ are distinct.

10 pts
[You may assume that

$$
\sum_{j=1}^{n} \sum_{k=1}^{n} a_{j} a_{k} \exp \left(-\lambda\left\|\mathbf{x}_{j}-\mathbf{x}_{k}\right\|_{2}^{2}\right) \geq 0
$$

for any real numbers a_{1}, \ldots, a_{n} and any vectors $\mathbf{x}_{1}, \ldots, \mathbf{x}_{n} \in \mathbb{R}^{d}$, where λ can be any positive constant. You may also assume that this inequality is strict when the points $\mathbf{x}_{1}, \ldots, \mathbf{x}_{n}$ are distinct and the coefficients a_{1}, \ldots, a_{n} are not identically zero.]
4. Let $A \in \mathbb{R}^{m \times n}$, where $m \geq n$, have singular value decomposition $A=U S V^{T}$, where $U=\left(\mathbf{u}_{1} \mathbf{u}_{2} \cdots \mathbf{u}_{m}\right), V=\left(\mathbf{v}_{1} \mathbf{v}_{2} \cdots \mathbf{v}_{n}\right)$ and the singular values s_{1}, \ldots, s_{n} are all positive.
(i). Prove that

$$
A=\sum_{k=1}^{n} s_{k} \mathbf{u}_{k} \mathbf{v}_{k}^{T}
$$

(ii). For $1 \leq r \leq n$, define

$$
A_{r}=\sum_{k=1}^{r} s_{k} \mathbf{u}_{k} \mathbf{v}_{k}^{T}
$$

Prove that $A_{r} \mathbf{w}=0$ if $\mathbf{w} \in \operatorname{span}\left\{\mathbf{v}_{r+1}, \ldots, \mathbf{v}_{n}\right\}$.

3 pts

(iii). Prove that $A_{r} \mathbf{x} \in \operatorname{span}\left\{\mathbf{u}_{1}, \ldots, \mathbf{u}_{r}\right\}$, for any $\mathbf{x} \in \mathbb{R}^{n}$.
(iv). Calculate $\left\|A-A_{r}\right\|_{F}^{2}$, for $1 \leq r \leq n$.
(v). Prove that $\left\|\left(A-A_{r}\right) \mathbf{x}\right\|_{2} \leq s_{r+1}\|\mathbf{x}\|_{2}$, for $1 \leq r \leq n$.
5. Let $f:[0, \infty) \rightarrow \mathbb{R}$ be a function with the property that the quadratic form

$$
Q:=\sum_{j=1}^{n} \sum_{k=1}^{n} a_{j} a_{k} f\left(\left\|\mathbf{x}_{j}-\mathbf{x}_{k}\right\|_{2}^{2}\right)
$$

is always non-negative, for any dimension d, for any number n of points $\mathbf{x}_{1}, \ldots, \mathbf{x}_{n} \in \mathbb{R}^{d}$, and for any real numbers $a_{1}, \ldots, a_{n} \in \mathbb{R}$.
(i). Prove that $f(0) \geq 0$.

$$
4 \mathrm{pts}
$$

(ii). Let λ be any nonzero real number, let $a_{j}=1$, for $1 \leq j \leq n$, and let $\mathbf{x}_{j}=\lambda \mathbf{e}_{j}$, for $j=1, \ldots, n$, where \mathbf{e}_{j} is the j th coordinate vectors. Prove that

$$
Q=n f(0)+n(n-1) f\left(2 \lambda^{2}\right)
$$

10 pts

(iii). Hence prove that $f(t) \geq 0$, for every $t>0$.
6. One way to use radial basis functions in data mining is as follows. We are given sequences of points $\mathbf{b}_{1}, \ldots, \mathbf{b}_{m}$ and $\mathbf{c}_{1}, \ldots, \mathbf{c}_{n}$ lying in \mathbb{R}^{d} and, given function values f_{1}, \ldots, f_{n}, we seek real coefficients a_{1}, \ldots, a_{m} minimizing the sum of squares

$$
\sum_{\ell=1}^{n}\left(f_{\ell}-s\left(\mathbf{c}_{\ell}\right)\right)^{2}
$$

where

$$
s(\mathbf{x})=\sum_{k=1}^{n} a_{k} \phi\left(\mathbf{x}-\mathbf{b}_{k}\right)
$$

for some radially symmetric function $\phi: \mathbb{R}^{d} \rightarrow \mathbb{R}$. One solution to this problem, as for any least squares problem, is to solve the normal equations, which are given by

$$
A^{T} A \mathbf{a}=A^{T} \mathbf{f}
$$

where $\mathbf{a}=\left(a_{1}, \ldots, a_{m}\right)^{T}, \mathbf{f}=\left(f_{1}, \ldots, f_{n}\right)^{T}$ and

$$
A_{\ell k}=\phi\left(\mathbf{c}_{\ell}-\mathbf{b}_{k}\right), \quad 1 \leq k \leq m, \quad 1 \leq \ell \leq n
$$

(i). Show that

$$
\left(A^{T} A\right)_{j k}=\sum_{\ell=1}^{n} \phi\left(\mathbf{c}_{\ell}-\mathbf{b}_{j}\right) \phi\left(\mathbf{c}_{\ell}-\mathbf{b}_{k}\right), \quad 1 \leq j, k \leq m
$$

6 pts

(ii). Hence derive

$$
\mathbf{v}^{T} A^{T} A \mathbf{v}=\sum_{\ell=1}^{n}\left(\sum_{k=1}^{m} v_{k} \phi\left(\mathbf{c}_{\ell}-\mathbf{b}_{k}\right)\right)^{2}
$$

6 pts
(iii). Now suppose that $\phi(\mathbf{x})=e^{-\lambda\|\mathbf{x}\|^{2}}$, for $\mathbf{x} \in \mathbb{R}^{d}, \lambda$ being a positive constant. Further, suppose that $\mathbf{b}_{k}^{T} \mathbf{c}_{\ell}=0$, for all k and ℓ. Prove that there is a nonzero vector \mathbf{v} for which $\mathbf{v}^{T} A^{T} A \mathbf{v}=0$. Thus the matrix for the normal equations can be singular in some special cases.

8 pts

