Data Mining Examination Questions

Brad Baxter

January 13, 2006

1. Let A be any real $m \times n$ matrix, where $m \geq n$.
(i). Define the singular value decomposition $A=U S V^{T}$.

4 pts
(ii). Prove that

$$
\|A \mathbf{x}-\mathbf{y}\|^{2}=\|S \mathbf{a}-\mathbf{b}\|^{2}
$$

where $\mathbf{a}=V^{T} \mathbf{x}$ and $\mathbf{b}=U^{T} \mathbf{y}$.
(iii). If every singular value s_{1}, \ldots, s_{n} of A is strictly positive, prove that the least squares solution x^{*} minimizing $\|A \mathrm{x}-\mathrm{y}\|^{2}$ is given by

$$
\mathbf{x}^{*}=V T U^{T} \mathbf{y}
$$

where $T \in \mathbb{R}^{m \times n}$ matrix whose only nonzero elements are given by

$$
T_{j j}=\frac{1}{s_{j}}, \quad \text { for } 1 \leq j \leq n
$$

(iv). Use the singular value decomposition to prove that the least squares solution vector is also given by

$$
\mathbf{x}^{*}=\left(A^{T} A\right)^{-1} A^{T} \mathbf{y}
$$

2. Briefly describe the k-means clustering algorithm.

8pts
Suppose we apply the k-means clustering algorithm when $k=2$ and there are 4 points $(\pm R, \pm 1)$ in \mathbb{R}^{2}, where $R \gg 1$. Find the limiting clusters for the following initial centroid positions.
(i). $\mathbf{m}_{1}=(-a, 0), \mathbf{m}_{2}=(a, 0)$, where $a>0$.

4 pts
(ii). $\mathbf{m}_{1}=(0,-a), \mathbf{m}_{2}=(0, a)$, where $a>0$.

4 pts
(iii). $\mathbf{m}_{1}=\mathbf{u}, \mathbf{m}_{2}=-\mathbf{u}$, where \mathbf{u} can be any unit vector. [You may ignore any cases when cluster membership is ambiguous.]

4 pts

Page 3
3. The theory of the Gamma function implies the equation

$$
\Gamma(n+1 / 2)=\int_{0}^{\infty} e^{-t} t^{n-1 / 2} d t
$$

for any positive integer n.
(i). Use the change of variable $t=a^{2} s$, where a is a positive constant, to show that

$$
\frac{1}{a^{2 n+1}}=\frac{1}{\Gamma(n+1 / 2)} \int_{0}^{\infty} e^{-a^{2} s} s^{n-1 / 2} d s
$$

(ii). Use the previous integral to derive

$$
\left(r^{2}+c^{2}\right)^{-(2 n+1) / 2}=\int_{0}^{\infty} e^{-r^{2} s} w(s) d s, \quad \text { for } r \geq 0
$$

where

$$
w(s)=\frac{1}{\Gamma(n+1 / 2)} e^{-c^{2} s} s^{n-1 / 2}
$$

and c is a positive constant.
6 pts
(iii). Hence, or otherwise, prove that the radial basis function $\phi(r)=\left(r^{2}+c^{2}\right)^{-(2 n+1) / 2}$, for $r \geq 0$, can be used for interpolation in dimension d. [You may use the fact that, if $\mathbf{x}_{1}, \ldots, \mathbf{x}_{n} \in \mathbb{R}^{d}$ are distinct vectors, then

$$
\sum_{j=1}^{n} \sum_{k=1}^{n} v_{j} v_{k} e^{-s\left\|\mathbf{x}_{j}-\mathbf{x}_{k}\right\|^{2}} \geq 0
$$

for $s>0$, with equality if and only if $v_{1}=\cdots=v_{n}=0$.]
4. Define the Frobenius norm $\|A\|_{F}$ of a matrix $A \in \mathbb{R}^{m \times n}$.

Prove that $\|U A V\|_{F}=\|A\|_{F}$ when $U \in \mathbb{R}^{m \times m}$ and $V \in \mathbb{R}^{n \times n}$ are orthogonal matrices.
6 pts
Briefly describe how the singular value decomposition can be used to solve the following nonlinear least-squares problems. [You do not need to prove that these solutions are valid.]
(i). Given any square matrix $A \in \mathbb{R}^{n \times n}$, find the closest orthogonal matrix Q_{A}, in the sense that

$$
\left\|A-Q_{A}\right\|_{F}=\min _{Q \in O(n)}\|A-Q\|_{F}
$$

where $O(n)$ denotes the set of all real, $n \times n$ orthogonal matrices. [This is the square Procrustes problem.]

4 pts
(ii). Given matrices $A, B \in \mathbb{R}^{m \times n}, m \geq n$, find the orthogonal matrix $\hat{Q} \in O(n)$ minimizing

$$
\|A-B \hat{Q}\|_{F}=\min _{Q \in O(n)}\|A-B Q\|_{F}
$$

[This is the rectangular Procrustes problem.]
4 pts
(iii). Define the rank of a matrix $A \in \mathbb{R}^{m \times n}$, for $m \geq n$, in terms of the singular values of A. Find the closest matrix A_{r} of rank r to a general matrix A of rank n, in the sense that

$$
\left\|A-A_{r}\right\|_{F}=\min _{\operatorname{rank} B=r}\|A-B\|_{F}
$$

